寿阳县第四高级中学2018-2019学年高二上学期第二次月考试卷数学测试

合集下载

寿阳县第四中学2018-2019学年高二上学期第二次月考试卷数学

寿阳县第四中学2018-2019学年高二上学期第二次月考试卷数学

寿阳县第四中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示2. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:23. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( ) A .﹣1 B .1 C .6D .124. 三角函数()sin(2)cos 26f x x x π=-+的振幅和最小正周期分别是( )A 2πB πC 2πD π5. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③6. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称7. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点8. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐近线平行且距离为2,则双曲线C 的离心率是( ) AB .2 CD.29. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞) B.(,1)∪(1,2) C.(,1)∪(2,+∞) D .(0,)∪(2,+∞)10.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( ) A .2+B .1+C.D.11.若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0 C .1D .﹣1或112.设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( )A .2B .8C .﹣2或8D .2或8二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.14.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.15.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 .16.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .17.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .18.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.三、解答题19.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F . (1)求证:DE 是⊙O 的切线.(2)若,求的值.20.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a 人在排队等候购票.开始售票后,排队的人数平均每分钟增加b 人.假设每个窗口的售票速度为c 人/min ,且当开放2个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min 后恰好不会出现排队现象.若要求售票10min 后不会出现排队现象,则至少需要同时开几个窗口?21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.22.已知全集U 为R ,集合A={x|0<x ≤2},B={x|x <﹣3,或x >1}求:(I )A ∩B ;(II)(C U A)∩(C U B);(III)C U(A∪B).23.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表;(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.独立性检验观察值计算公式,独立性检验临界值表:24.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.寿阳县第四中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 2. 【答案】D【解析】解:设球的半径为R ,则圆柱、圆锥的底面半径也为R ,高为2R ,则球的体积V 球=圆柱的体积V 圆柱=2πR 3圆锥的体积V 圆锥=故圆柱、圆锥、球的体积的比为2πR 3:: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.3. 【答案】C 【解析】解:由题意知当﹣2≤x ≤1时,f (x )=x ﹣2,当1<x ≤2时,f (x )=x 3﹣2,又∵f (x )=x ﹣2,f (x )=x 3﹣2在定义域上都为增函数,∴f (x )的最大值为f (2)=23﹣2=6.故选C .4. 【答案】B 【解析】()sincos 2cossin 2cos 266f x x x x ππ=-+31cos 222sin 2)22x x x x ==-)6x π=+,故选B .5. 【答案】 A【解析】解:如图所示,连接AC 、BD 相交于点O ,连接EM ,EN . 在①中:由异面直线的定义可知:EP 与BD 是异面直线,不可能EP ∥BD ,因此不正确; 在②中:由正四棱锥S ﹣ABCD ,可得SO ⊥底面ABCD ,AC ⊥BD , ∴SO ⊥AC .∵SO ∩BD=O ,∴AC ⊥平面SBD , ∵E ,M ,N 分别是BC ,CD ,SC 的中点, ∴EM ∥BD ,MN ∥SD ,而EM ∩MN=M ,∴平面EMN ∥平面SBD ,∴AC ⊥平面EMN ,∴AC ⊥EP .故正确. 在③中:由①同理可得:EM ⊥平面SAC ,若EP ⊥平面SAC ,则EP ∥EM ,与EP ∩EM=E 相矛盾, 因此当P 与M 不重合时,EP 与平面SAC 不垂直.即不正确. 在④中:由②可知平面EMN ∥平面SBD , ∴EP ∥平面SBD ,因此正确.故选:A .【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.6. 【答案】C【解析】解:∵f (﹣x )=﹣+x=﹣f (x )∴是奇函数,所以f (x )的图象关于原点对称故选C .7. 【答案】C【解析】解:设一条直线上存在两个有理点A (x 1,y 1),B (x 2,y 2),由于也在此直线上,所以,当x 1=x 2时,有x 1=x 2=a 为无理数,与假设矛盾,此时该直线不存在有理点;当x 1≠x 2时,直线的斜率存在,且有,又x 2﹣a 为无理数,而为有理数,所以只能是,且y 2﹣y 1=0,即;所以满足条件的直线只有一条,且直线方程是; 所以,正确的选项为C . 故选:C .【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.8. 【答案】C 【解析】试题分析:由题意知()1,0到直线0bx ay -=2=,得a b =,则为等轴双曲故本题答案选C. 1 考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2a 化为的关系式,解方程或者不等式求值或取值范围.9. 【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减,∵函数f(x)是偶函数,∴不等式等价为f(||)<,即||>,即>或<﹣,解得0<x<或x>2,故x的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.10.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.11.【答案】A【解析】解:∵(m2﹣1)+(m+1)i为实数,∴m+1=0,解得m=﹣1,故选A.12.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.二、填空题13.【答案】7 14⎛⎤ ⎥⎝⎦,【解析】14.【答案】【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,∴m=4.答案:415.【答案】①②④.【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.16.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.17.【答案】2.【解析】解:∵复数z满足z(2﹣3i)=6+4i(i为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.18.1【解析】三、解答题19.【答案】【解析】(I)证明:连接OD,可得∠ODA=∠OAD=∠DAC∴OD∥AE又AE⊥DE∴DE⊥OD,又OD为半径∴DE是的⊙O切线(II)解:过D作DH⊥AB于H,则有∠DOH=∠CAB设OD=5x,则AB=10x,OH=2x,∴AH=7x由△AED≌△AHD可得AE=AH=7x又由△AEF∽△DOF可得∴【点评】本题考查平面几何中三角形的相似和全等,辅助线的做法,是解题关键,本题是难题.20.【答案】【解析】解:设至少需要同时开x 个窗口,则根据题意有,.由①②得,c=2b ,a=75b ,代入③得,75b+10b ≤20bx ,∴x ≥,即至少同时开5个窗口才能满足要求.21.【答案】【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列. ∴数列}{n a 的通项公式为n n a 3=.………………5分22.【答案】【解析】解:如图:(I)A∩B={x|1<x≤2};(II)C U A={x|x≤0或x>2},C U B={x|﹣3≤x≤1}(C U A)∩(C U B)={x|﹣3≤x≤0};(III)A∪B={x|x<﹣3或x>0},C U(A∪B)={x|﹣3≤x≤0}.【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.23.【答案】【解析】解:(1)(2)所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的24.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.。

寿阳县高级中学2018-2019学年高二上学期第二次月考试卷数学

寿阳县高级中学2018-2019学年高二上学期第二次月考试卷数学

寿阳县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. A 是圆上固定的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度大于等于半径长度的概率为( )A .B .C .D .2. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)3. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.64. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .105. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()6. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.其中正确结论的序号是( ) A .①③B .①④C .②③D .②④7. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .8. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .24259. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]10.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA .1B .2C .3D .411.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )A .B .C .D .12.若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <0二、填空题13.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .14.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .15.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下:①若()()0f x f x '+>,且(0)1f =,则不等式()xf x e -<的解集为(0,)+∞;②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0;⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .16.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 . 17.若全集,集合,则18.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.三、解答题19.如图所示,一动圆与圆x 2+y 2+6x+5=0外切,同时与圆x 2+y 2﹣6x ﹣91=0内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线.20.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的 最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.21.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.22.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.23.(本小题满分10分)如图⊙O 经过△ABC 的点B ,C 与AB 交于E ,与AC 交于F ,且AE =AF . (1)求证EF ∥BC ;(2)过E 作⊙O 的切线交AC 于D ,若∠B =60°,EB =EF =2,求ED 的长.24.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 32=,且0=⋅. (1)求曲线C 的方程;(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为23,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.寿阳县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:在圆上其他位置任取一点B,设圆半径为R,则B点位置所有情况对应的弧长为圆的周长2πR,其中满足条件AB的长度大于等于半径长度的对应的弧长为2πR,则AB弦的长度大于等于半径长度的概率P==.故选B.【点评】本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关键.2.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.3.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.4.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.5.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.6.【答案】C【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),∵a<b<c,且f(a)=f(b)=f(c)=0.∴a<1<b<3<c,设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,∵f(x)=x3﹣6x2+9x﹣abc,∴a+b+c=6,ab+ac+bc=9,∴b+c=6﹣a,∴bc=9﹣a(6﹣a)<,∴a2﹣4a<0,∴0<a<4,∴0<a<1<b<3<c,∴f(0)<0,f(1)>0,f(3)<0,∴f(0)f(1)<0,f(0)f(3)>0.故选:C.7. 【答案】D【解析】解:抛物线y 2=4x 的焦点(1,0),直线y=ax+1经过抛物线y 2=4x 的焦点,可得0=a+1,解得a=﹣1, 直线的斜率为﹣1,该直线的倾斜角为:.故选:D .【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.8. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 9. 【答案】D【解析】解:由A 中不等式变形得:﹣2≤2x ≤4,即﹣1≤x ≤2, ∴A=[﹣1,2],由B 中y=lg (x ﹣1),得到x ﹣1>0,即x >1, ∴B=(1,+∞), 则A ∩B=(1,2], 故选:D .10.【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A .【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.11.【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.12.【答案】A【解析】解:∵函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点, ∴﹣m=3﹣|x ﹣1|无解,∵﹣|x ﹣1|≤0,∴0<3﹣|x ﹣1|≤1,∴﹣m ≤0或﹣m >1, 解得m ≥0或m >﹣1 故选:A .二、填空题13.【答案】【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==海里,则这时船与灯塔的距离为海里.故答案为.14.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.15.【答案】②④⑤【解析】解析:构造函数()()xg x e f x =,()[()()]0xg x e f x f x ''=+>,()g x 在R 上递增, ∴()xf x e-<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;构造函数()()x f x g x e =,()()()0xf x f xg x e '-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;由()()x e xf x f x x '+=得2()()x e xf x f x x-'=,设()()xg x e xf x =-,则()()()xg x e f x xf x ''=--(1)x x x e e e x x x=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.16.【答案】.【解析】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.17.【答案】{|0<<1}【解析】∵,∴{|0<<1}。

高二数学上册第二次月考测试题

高二数学上册第二次月考测试题

高二数学上册第二次月考测试题大家把实际知识温习好的同时,也应该要多做题,从题中找到自己的缺乏,及时学懂,下面是查字典数学网小编为大家整理的高二数学上册第二次月考测试题,希望对大家有协助。

一:选择题:本大题共12小题,每题5分,共60分. 在每题给出的四个选项中,只要一项为哪一项契合标题要求的.选项填涂在答题卡上。

1.假定 ,那么等于( )A. B. C. D.2. 假定函数的图象的顶点在第四象限,那么函数的图象是( )3.命题:,,那么A. :,B. :,C. :,D. :,4、是方程表示椭圆或双曲线的( )A、充沛不用要条件B、必要不充沛条件C、充要条件D、既不充沛也不用要条件5、设是函数的导函数,的图象如下图,那么的图象最有能够的是( ).6、过抛物线的焦点的直线交抛物线于两点,假定的纵坐标之积为,那么实数 ( )A、 B、或 C、 D、7、使2x2-5x-30成立的一个必要不充沛条件是()A.-8、设双曲线 (a0)的渐近线与抛物线y=x2 +1相切,那么该双曲线的离心率等于( ) A. B.2 C. D.9、双曲线的左、右焦点区分是、,其一条渐近线方程为,点在双曲线上.那么 =( )A. -12B. -2C. 0D. 410、是恣意实数,那么方程的曲线不能够是 ( )A.椭圆B.双曲线C.抛物线D.圆11、以下命题中是真命题的是( )①假定x2+y20,那么x,y不全为零的否命题②正多边形都相似的逆命题③假定m0,那么x2+x-m=0有实根的逆否命题④假定x- 是有理数,那么x是在理数的逆否命题A、①②③④B、①③④C、②③④D、①④12、椭圆的焦点,是椭圆上的一个动点,假设延伸到,使得,那么动点的轨迹是( )A、圆B、椭圆C、双曲线的一支D、抛物线二、填空题(本大题共4小题,每题5分,共20分)13. 假定 .14.抛物线在点(1,4)处的切线方程是 .15、函数的单调增区间为 .16、以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60 ,那么双曲线C的离心率为 .三、解答题:(共6个题,17题10分,其他每题12分,共70分)17、命题函数的定义域为,命题:函数(其中 ),是上的减函数。

寿阳县民族中学2018-2019学年高二上学期第二次月考试卷数学

寿阳县民族中学2018-2019学年高二上学期第二次月考试卷数学

寿阳县民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .32. 定义运算,例如.若已知,则=( )A .B .C .D .3. 已知集合M={﹣1,0,1},N={x|x=2a ,a ∈M},则集合M ∩N=( ) A .{0} B .{0,﹣2} C .{﹣2,0,2} D .{0,2}4. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .105. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-546. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为457. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°8. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .9. 已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x10.已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)11.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 12.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25二、填空题13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3 ③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .14.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.15.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 . 16.log 3+lg25+lg4﹣7﹣(﹣9.8)0= .17.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .18.在△ABC 中,a=4,b=5,c=6,则= .三、解答题19.已知函数f (x )=x 3+x .(1)判断函数f (x )的奇偶性,并证明你的结论; (2)求证:f (x )是R 上的增函数;(3)若f (m+1)+f (2m ﹣3)<0,求m 的取值范围.(参考公式:a 3﹣b 3=(a ﹣b )(a 2+ab+b 2))20.如图,已知几何体的底面ABCD 为正方形,AC ∩BD=N ,PD ⊥平面ABCD , PD=AD=2EC ,EC ∥PD .(Ⅰ)求异面直线BD 与AE 所成角: (Ⅱ)求证:BE ∥平面PAD ;(Ⅲ)判断平面PAD 与平面PAE 是否垂直?若垂直,请加以证明;若不垂直,请说明理由.21.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD.(1)求证:A′C∥平面BDE;(2)求体积V A′﹣ABCD与V E﹣ABD的比值.22.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.23.已知a>0,a≠1,命题p:“函数f(x)=a x在(0,+∞)上单调递减”,命题q:“关于x的不等式x2﹣2ax+≥0对一切的x∈R恒成立”,若p∧q为假命题,p∨q为真命题,求实数a的取值范围.24.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性质Ω.(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.寿阳县民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.2.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.3.【答案】A【解析】解:N={x|x=2a,a∈M}={﹣2,0,2},则M∩N={0},故选:A【点评】本题主要考查集合的基本运算,求出集合N是解决本题的关键.4. 【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.5. 【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.6. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 7. 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.8.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题9.【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p为∀x>0,lnx≥x.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.10.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C11.【答案】B【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.x(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 12.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =310.二、填空题13.【答案】 ①④⑤【解析】解:由题意知:A ≠,B ≠,C ≠,且A+B+C=π∴tan (A+B )=tan (π﹣C )=﹣tanC , 又∵tan (A+B )=,∴tanA+tanB=tan (A+B )(1﹣tanAtanB )=﹣tanC (1﹣tanAtanB )=﹣tanC+tanAtanBtanC , 即tanA+tanB+tanC=tanAtanBtanC ,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,此时sin2C=,sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣cos2A=sin(2A﹣30°)≤,则sin2C≥sinA•sinB.故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.14.【答案】815.【答案】(x﹣1)2+(y+1)2=5.【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a )2+(1﹣b )2=r 2;②又直线x ﹣y+1=0截圆所得的弦长为,且圆心(a ,b )到直线x ﹣y+1=0的距离为d==,根据垂径定理得:r 2﹣d 2=,即r 2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x ﹣1)2+(y+1)2=5. 故答案为:(x ﹣1)2+(y+1)2=5.16.【答案】 .【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=, 故选:【点评】本题考查了对数的运算性质,属于基础题.17.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦.考点:抽象函数定义域.18.【答案】 1 .【解析】解:∵△ABC 中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.三、解答题19.【答案】【解析】解:(1)f(x)是R上的奇函数证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+1]<0恒成立,2+x2因此得到函数f(x)是R上的增函数.(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),∵函数f(x)是R上的增函数,∴m+1<3﹣2m,∴20.【答案】【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,∴EC⊥平面ABCD,又BD⊂平面ABCD,∴EC⊥BD,∵底面ABCD为正方形,AC∩BD=N,∴AC⊥BD,又∵AC∩EC=C,AC,EC⊂平面AEC,∴BD⊥平面AEC,∴BD⊥AE,∴异面直线BD与AE所成角的为90°.(Ⅱ)∵底面ABCD为正方形,∴BC∥AD,∵BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD,∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,∴EC∥平面PAD,∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴∴平面BCE∥平面PAD,∵BE⊂平面BCE,∴BE∥平面PAD.(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,∴PD⊥CD,PD⊥AD,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.21.【答案】【解析】(1)证明:设BD交AC于M,连接ME.∵ABCD为正方形,∴M为AC中点,又∵E为A′A的中点,∴ME为△A′AC的中位线,∴ME∥A′C.又∵ME⊂平面BDE,A′C⊄平面BDE,∴A′C∥平面BDE.(2)解:∵V E﹣ABD====V A′﹣ABCD.∴V A′﹣ABCD:V E﹣ABD=4:1.22.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值23.【答案】【解析】解:若p为真,则0<a<1;若q为真,则△=4a2﹣1≤0,得,又a>0,a≠1,∴.因为p∧q为假命题,p∨q为真命题,所以p,q中必有一个为真,且另一个为假.①当p为真,q为假时,由;②当p为假,q为真时,无解.综上,a的取值范围是.【点评】1.求解本题时,应注意大前提“a>0,a≠1”,a的取值范围是在此条件下进行的.24.【答案】【解析】解:(Ⅰ)∵对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.∴集合P3,P5中的元素个数分别为9,23,∵集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω,∴P3不具有性质Ω.…..证明:(Ⅱ)假设存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.其中E15={1,2,3,…,15}.因为1∈E15,所以1∈A∪B,不妨设1∈A.因为1+3=22,所以3∉A,3∈B.同理6∈A,10∈B,15∈A.因为1+15=42,这与A具有性质Ω矛盾.所以假设不成立,即不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.…..解:(Ⅲ)因为当n≥15时,E15⊆P n,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B.若n=14,当b=1时,,取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.当b=4时,集合中除整数外,其余的数组成集合为,令,,则A2,B2具有性质Ω,且A2∩B2=∅,使.当b=9时,集中除整数外,其余的数组成集合,令,.则A3,B3具有性质Ω,且A3∩B3=∅,使.集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.综上,所求n的最大值为14.…..【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.。

寿阳县第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

寿阳县第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

寿阳县第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 已知圆的半径为1,为该圆的两条切线,为两切点,那么O ,PA PB ,A B PA PB∙的最小值为A 、B 、C 、D 、4-+3-+4-+3-+2. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,]6πB .[,)6ππ C. (0,]3πD .[,)3ππ3. 已知,其中是实数,是虚数单位,则的共轭复数为 11xyi i=-+,x y x yi +A 、 B 、 C 、 D 、12i +12i -2i +2i-4. 在△ABC 中,已知,则∠C=( )A .30°B .150°C .45°D .135°5. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A .B .C .D .6. 不等式的解集为( )A .或B .C .或D .7. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣28. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9. 如果a >b ,那么下列不等式中正确的是( )A .B .|a|>|b|C .a 2>b 2D .a 3>b 310.执行如图所示的一个程序框图,若f(x)在[﹣1,a]上的值域为[0,2],则实数a的取值范围是()A.(0,1]B.[1,]C.[1,2]D.[,2]11.已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2﹣x)的图象为()A.B.C.D.12.A={x|x<1},B={x|x<﹣2或x>0},则A∩B=()A.(0,1)B.(﹣∞,﹣2)C.(﹣2,0)D.(﹣∞,﹣2)∪(0,1)二、填空题13.i是虚数单位,若复数(1﹣2i)(a+i)是纯虚数,则实数a的值为 .14.下列命题:①函数y=sinx和y=tanx在第一象限都是增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;④在△ABC中,A>B的充要条件是cos2A<cos2B;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是 (把所有正确命题的序号都写上).15.曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为 .16.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-18.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 . 三、解答题19.(本小题满分10分)求经过点的直线,且使到它的距离相等的直线()1,2P ()()2,3,0,5A B -方程.20.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1).(Ⅰ) 讨论函数f (x )的单调性;(Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ).(1)若首项a 1=10,证明数列{a n }为递增数列;(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值. 21.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.22.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1PF 交轴于,且为坐标原点.y Q 22,PF QO O =(1)求椭圆的方程;C (2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.12,k k 122k k +=AB 23.求同时满足下列两个条件的所有复数z :①z+是实数,且1<z+≤6;②z 的实部和虚部都是整数.24.(本小题满分12分)在中,内角的对边为,已知ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2cos 22=-+C B B A(I )求角的值;C(II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.寿阳县第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D.【解析】设,向量与的夹角为,,,PO t =PA PB θPA PB ==1sin 2t θ=,,222cos 12sin 12t θθ=-=-∴222cos (1)(11)PA PB PA PB t t tθ==--> A,依不等式的最小值为.2223(1)PA PB t t t∴=+-> A PA PB ∴A 32. 【答案】C 【解析】考点:三角形中正余弦定理的运用.3. 【答案】D【解析】故选D 1()1,2,1,12x x xi yi x y i =-=-∴==+4. 【答案】C【解析】解:∵a 2+b 2=c 2+ba ,即a 2+b 2﹣c 2=ab ,∴由余弦定理得:cosC==,∴∠C=45°.故选:C .【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.5.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.6.【答案】A【解析】令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A7.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.8.【答案】A【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.9.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.10.【答案】B【解析】解:由程序框图知:算法的功能是求f(x)=的值,当a<0时,y=log2(1﹣x)+1在[﹣1,a]上为减函数,f(﹣1)=2,f(a)=0⇒1﹣a=,a=,不符合题意;当a≥0时,f′(x)=3x2﹣3>⇒x>1或x<﹣1,∴函数在[0,1]上单调递减,又f(1)=0,∴a≥1;又函数在[1,a]上单调递增,∴f(a)=a3﹣3a+2≤2⇒a≤.故实数a的取值范围是[1,].故选:B.【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值.11.【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.12.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.二、填空题13.【答案】 ﹣2 .【解析】解:由(1﹣2i)(a+i)=(a+2)+(1﹣2a)i为纯虚数,得,解得:a=﹣2.故答案为:﹣2.14.【答案】 ②③④⑤ 【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.15.【答案】 .【解析】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)∴曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为S=()dx+dx=(x﹣x3)+(x3﹣x)=.故答案为:.16.【答案】 .【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.17.【答案】714⎛⎤ ⎥⎝⎦,【解析】18.【答案】 [,4] .【解析】解:由题意知≤log 2x ≤2,即log 2≤log 2x ≤log 24,∴≤x ≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f (x )的定义域是[,2],得到≤log 2x ≤2”是关键,考查理解与运算能力,属于中档题.三、解答题19.【答案】或.420x y --=1x =【解析】20.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】21.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA ⊥平面ABCD ,所以PA ⊥BD ,PA ∩AC=A所以BD ⊥平面PAC(II )设AC ∩BD=O ,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O 为坐标原点,分别以OB ,OC 为x 轴、y 轴,以过O 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系O ﹣xyz ,则P (0,﹣,2),A (0,﹣,0),B (1,0,0),C (0,,0)所以=(1,,﹣2),设PB 与AC 所成的角为θ,则cos θ=|(III )由(II )知,设,则设平面PBC 的法向量=(x ,y ,z )则=0,所以令,平面PBC 的法向量所以,同理平面PDC 的法向量,因为平面PBC ⊥平面PDC ,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力22.【答案】(1);(2)证明见解析.2212x y +=【解析】试题解析:(1),∴,∴,22PF QO =212PF F F ⊥1c =,2222221121,1a b c b a b+==+=+∴,221,2b a ==即;2212x y +=(2)设方程为代入椭圆方程AB y kx b =+,,22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭22221,1122A B A B kb b x x x x k k --+==++A ,∴,11,A B MA MB A B y y k k x x --==()112A B A B A B A B MA MB A B A By x x y x x y y k k x x x x +-+--+=+==A ∴代入得:所以, 直线必过.11k b =+y kx b =+1y kx k =+-()1,1--考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.23.【答案】【解析】解:设z+=t ,则 z 2﹣tz+10=0.∵1<t ≤6,∴△=t 2﹣40<0,解方程得 z=±i .又∵z 的实部和虚部都是整数,∴t=2或t=6,故满足条件的复数共4个:z=1±3i 或 z=3±i .24.【答案】【解析】(I )∵,1cos )sin 3(cos 2cos 22=-+C B B A ∴,0cos sin 3cos cos cos =-+C B C B A ∴,0cos sin 3cos cos )cos(=-++-C B C B C B ∴,0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B ∴,因为,所以0cos sin 3sin sin =-C B C B sin 0B >3tan =C 又∵是三角形的内角,∴.C 3π=C。

高二数学上学期第二次月考试题 文(含解析)人教版

高二数学上学期第二次月考试题 文(含解析)人教版

2019学年第一学期高二第二次月考文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,,则下列不等式成立的是()A. B. C. D.【答案】C【解析】试题分析:考点:不等式性质2. 等差数列中,已知公差,且,则的值为()A. 170B. 150C. 145D. 120【答案】C【解析】∵数列{a n}是公差为的等差数列,∴数列{a n}中奇数项构成公差为1的等差数列,又∵a1+a3+…+a97+a99=60,∴50+×1=60,,=145故选C3. 已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则()A. B. C. D.【答案】B【解析】已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则,故选B4. 设,,,则数列()A. 是等差数列,但不是等比数列B. 是等比数列,但不是等差数列C. 既是等差数列又是等比数列D. 既非等差数列又非等比数列【答案】A【解析】因为,,,根据对数定义得:,,;而b-a=,c-b=, 所以b-a=c-b,数列a、b、c为等差数列.而, 所以数列a、b、c不为等比数列.故选A5. 三角形的两边之差为2,夹角的余弦值为,该三角形的面积是14,那么这两边分别为()A. 3,5B. 4,6C. 6,8D. 5,7【答案】D【解析】三角形的两边a-c=2,cosB=,该三角形的面积是14,∵0<B<π,∴sinB=,又14=ac,所以ac=35,∴这个三角形的此两边长分别是5和7.故选D.6. 函数的最小值是()A. B. C. D.【答案】C【解析】,当且仅当即x=时取等号故选C7. 若均为单位向量,且,则的最小值为()A. B. 1 C. D.【答案】A【解析】则当与同向时最大,最小,此时=,所以=-1,所以的最小值为,故选A点睛:本题考查平面向量数量积的性质及其运算律,考查向量模的求解,考查学生分析问题解决问题的能力,求出,表示出,由表达式可判断当与同向时,最小.8. 下列说法正确的是()A. 命题“若,则”的否命题为:“若,则”B. 命题“若,则”的逆否命题为假命题C. 命题“存在,使得”的否定是:“对任意,均有”D. 中,是的充要条件【答案】D【解析】命题“若,则”的否命题为:“若,则”故A错;命题“若,则”的逆否命题与原命题同真假,原命题为真命题,故B错;C. 命题“存在,使得”的否定是:“对任意,均有”故C错;D.中,是的充要条件,根据正弦定理可得故D对;故选D9. 若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.【答案】A【解析】由题意得,又单调递减,所以,选A.10. 已知非零向量满足,则的取值范围是()A. B. C. D.【答案】D【解析】非零向量满足,则由平行四边形法则可得,,令所以的取值范围是故选D点睛: 本题考查平面向量的运用,考查向量的运算的几何意义,考查运用基本不等式求最值,考查运算能力,非零向量满足,则由平行四边形法则可得,,令,则利用重要不等式可求解.11. ,,若,则的值是()A. -3B. -5C. 3D. 5【答案】A【解析】,,若,∴设lglog310=m,则lglg3=-lglog310=-m.∵f(lglog310)=5,,∴=5, ∴,∴f(lglg3)=f(-m)==-4+1=-3故答案为A12. 等差数列中,是一个与无关的常数,则该常数的可能值的集合为()A. B. C. D.【答案】A【解析】由题意可得:因为数列{a n}是等差数列,所以设数列{a n}的通项公式为:a n=a1+(n-1)d,则a 2n=a1+(2n-1)d,所以=,因为是一个与无关的常数,所以a1-d=0或d=0,所以可能是,故选A点睛:解决此类问题的关键是熟练掌握等差数列的通项公式,以及熟练掌握分式的性质,先根据等差数列的通项公式计算出a n=a1+(n-1)d与a2n=a1+(2n-1)d,进而表达出,再结合题中的条件以及分式的特征可得答案.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若不等式的解集,则__________.【答案】-10【解析】不等式的解集,是的两根,根据韦达定理得,解得所以故答案为-10.14. 已知,,则的最小值是__________.【答案】【解析】,当且仅当即b-1=2a,又,所以a=,b=时取等.故答案为.15. 已知满足,若是递增数列,则实数的取值范围是__________.【答案】【解析】,是递增数列,所以>0,所以,所以<n+2,所以<3故答案为点睛:本题考查了等差数列的通项公式与求和公式及其单调性、不等式的解法,考查了推理能力与计算能力,利用是递增数列,则恒成立,采用变量分离即得解.16. 已知函数的值域为,若关于的不等式的解集为,则实数的值为__________.【答案】9【解析】试题分析:∵函数的值域为,∴只有一个根,即则,不等式的解集为,即为解集为,则的两个根为,,∴,解得,故答案为:.考点:一元二次不等式的应用.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知集合,,. (1)求,;(2)若是的充分不必要条件,求实数的取值范围.【答案】(1),(2)【解析】试题分析: (1)解分式不等式,二次不等式得出集合A,B,进行交并补的运算. (2)是的充分不必要条件,,考虑,两种情况.试题解析:(1),,(2)由(1)知,是的充分不必要条件,,①当时,满足,此时,解得;②当时,要使,当且仅当解得.综上所述,实数的取值范围为.18. 解关于的不等式:,.【答案】当时,不等式解集;当时,不等式的解集;当时,不等式的解集;当时,不等式的解集;...............试题解析:由题意可知,(1)当时,,不等式无解;(2)当时,不等式的解是;(3)当时,不等式的解是;(4)当时,不等式的解是;综上所述:当时,不等式解集;当时,不等式的解集;当时,不等式的解集;当时,不等式的解集;19. 已知.(1)最小正周期及对称轴方程;(2)已知锐角的内角所对的边分别为,且,,求边上的高的最大值.【答案】(Ⅰ)的最小正周期为,(Ⅱ)【解析】试题分析:(1)先利用辅助角公式把化成形式,再求周期及增区间;(2)先利用已知条件得,再利用余弦定理及基本不等式得,最后由面积公式求得边上的高的最大值试题解析:(1),由所以单调增区间是6分(2)由得由余弦定理得设边上的高为,由三角形等面积法知,即的最大值为.12分考点:1.三角变换;2.余弦定理及面积公式;3.基本不等式.20. 已知满足.(1)求取到最值时的最优解;(2)求的取值范围;(3)若恒成立,求的取值范围.【答案】(1)C(3,2)和B(2,4)(2)(3)【解析】试题分析:(1)画出可行域,找出直线交点坐标,移动目标函数,找到最优解(2)目标函数表示(x,y)与(2,-1)间斜率;(3)由于直线恒过定点(0,3)时,恒成立. 试题解析:(1)由图可知:直线与直线交点A(1,1);直线与直线交点B(2,4);直线与直线交点C(3,2);目标函数在C(3,2)点取到最小值,B(2,4)点取到最大值取到最值时的最优解是C(3,2)和B(2,4)(2)目标函数,由图可知:.(3)由于直线恒过定点(0,3)时,恒成立,或由题意可知, .21. 已知数列满足,,数列且是等差数列.(1)求数列的通项公式;(2)若数列中位于中的项的个数记为,求数列的前项和.【答案】(1)(2)【解析】试题分析:(1),,可得,是等差数列得,从而得的通项公式(2)数列中位于中的项的个数记为,则,所以,即分组求和得出数列的前项和.试题解析:(1)由题意可知;,是等差数列,,.(2)由题意可知,,,,,22. 数列的前项和记为,,点在直线上,其中. (1)若数列是等比数列,求实数的值;(2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令(),在(1)的条件下,求数列的“积异号数”. 【答案】(1)(2)1【解析】试题分析:(1)由题意知,可得),相减得,所以,当时是等比数列,要使时是等比数列,则只需=3,得出t(2)由(1)得,∴,作差可得数列递增,由,得当时,,即得解.试题解析:(1)由题意,当时,有两式相减,得即,所以,当时是等比数列,要使时是等比数列,则只需从而得出(2)由(1)得,等比数列的首项为,公比,∴∴∵,,∴∵,∴数列递增.由,得当时,.∴数列的“积异号数”为1.点睛:本题考查数列与的关系,注意当,注意检验n=1时,,是否符合上式,第(2)问时信息给予题,写出通项,研究的单调性,得出数列递增.由,即得解.。

寿阳县第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

寿阳县第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

寿阳县第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB ∙ 的最小值为A 、4-B 、3-C 、4-+D 、3-+2. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,]6π B .[,)6ππ C. (0,]3π D .[,)3ππ 3. 已知11xyi i=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -4. 在△ABC 中,已知,则∠C=( )A .30°B .150°C .45°D .135°5. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .6. 不等式的解集为( )A .或B .C .或D .7. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣28. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 310.执行如图所示的一个程序框图,若f(x)在[﹣1,a]上的值域为[0,2],则实数a的取值范围是()A.(0,1] B.[1,] C.[1,2] D.[,2]11.已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2﹣x)的图象为()A.B.C.D.12.A={x|x<1},B={x|x<﹣2或x>0},则A∩B=()A.(0,1)B.(﹣∞,﹣2)C.(﹣2,0)D.(﹣∞,﹣2)∪(0,1)二、填空题13.i是虚数单位,若复数(1﹣2i)(a+i)是纯虚数,则实数a的值为.14.下列命题:①函数y=sinx和y=tanx在第一象限都是增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;④在△ABC中,A>B的充要条件是cos2A<cos2B;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是(把所有正确命题的序号都写上).15.曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为.16.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.18.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .三、解答题19.(本小题满分10分)求经过点()1,2P 的直线,且使()()2,3,0,5A B -到它的距离相等的直线 方程.20.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1). (Ⅰ) 讨论函数f (x )的单调性; (Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ). (1)若首项a 1=10,证明数列{a n }为递增数列;(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值.21.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.22.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点P ⎛ ⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.23.求同时满足下列两个条件的所有复数z :①z+是实数,且1<z+≤6;②z 的实部和虚部都是整数.24.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC ∆的面积取值范围为[2,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.寿阳县第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D.【解析】设PO t =,向量PA 与PB 的夹角为θ,PA PB ==,1sin2t θ=,222cos 12sin 12t θθ=-=-,∴222cos (1)(1)(1)PA PB PA PB t t t θ==-->,2223(1)PA PB t t t∴=+->,依不等式PA PB ∴的最小值为3.2. 【答案】C 【解析】考点:三角形中正余弦定理的运用. 3. 【答案】D【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D 4. 【答案】C【解析】解:∵a 2+b 2=c 2+ba ,即a 2+b 2﹣c 2=ab ,∴由余弦定理得:cosC==,∴∠C=45°. 故选:C .【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.5.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.6.【答案】A【解析】令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A7.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.8.【答案】A【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.9.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.10.【答案】B【解析】解:由程序框图知:算法的功能是求f(x)=的值,当a<0时,y=log2(1﹣x)+1在[﹣1,a]上为减函数,f(﹣1)=2,f(a)=0⇒1﹣a=,a=,不符合题意;当a≥0时,f′(x)=3x2﹣3>⇒x>1或x<﹣1,∴函数在[0,1]上单调递减,又f(1)=0,∴a≥1;又函数在[1,a]上单调递增,∴f(a)=a3﹣3a+2≤2⇒a≤.故实数a的取值范围是[1,].故选:B.【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值.11.【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.12.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.二、填空题13.【答案】﹣2.【解析】解:由(1﹣2i)(a+i)=(a+2)+(1﹣2a)i为纯虚数,得,解得:a=﹣2.故答案为:﹣2.14.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.15.【答案】.【解析】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)∴曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为S=()dx+dx=(x﹣x3)+(x3﹣x)=.故答案为:.16.【答案】.【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.17.【答案】714⎛⎤ ⎥⎝⎦,【解析】18.【答案】 [,4] .【解析】解:由题意知≤log2x ≤2,即log 2≤log 2x ≤log 24,∴≤x ≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f (x )的定义域是[,2],得到≤log 2x ≤2”是关键,考查理解与运算能力,属于中档题.三、解答题19.【答案】420x y --=或1x =. 【解析】20.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】21.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力22.【答案】(1)2212xy+=;(2)证明见解析.【解析】试题解析:(1)22PF QO =,∴212PF F F ⊥,∴1c =, 2222221121,1a b c b a b+==+=+, ∴221,2b a ==,即2212x y +=; (2)设AB 方程为y kx b =+代入椭圆方程22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22221,1122A B A B kb b x x x x k k --+==++,11,A B MA MB A B y y k k x x --==,∴()112A B A B A B A B MA MB A BA By x x y x x y y k k x x x x +-+--+=+==,∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 23.【答案】 【解析】解:设z+=t ,则 z 2﹣tz+10=0.∵1<t ≤6,∴△=t 2﹣40<0,解方程得 z=±i .又∵z 的实部和虚部都是整数,∴t=2或t=6, 故满足条件的复数共4个:z=1±3i 或 z=3±i .24.【答案】 【解析】(I )∵1cos )sin 3(cos 2cos 22=-+C B B A, ∴0cos sin 3cos cos cos =-+C B C B A , ∴0cos sin 3cos cos )cos(=-++-C B C B C B ,∴0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B , ∴0cos sin 3sin sin =-C B C B ,因为sin 0B >,所以3tan =C 又∵C 是三角形的内角,∴3π=C .。

寿阳县三中2018-2019学年高二上学期第二次月考试卷数学

寿阳县三中2018-2019学年高二上学期第二次月考试卷数学

寿阳县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π2. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )A .B .C .D .3. 某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力. 4. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)5. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于( )A .B .C .D .6. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]7. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .8. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .69. “双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件10.棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =11.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =12.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为( )(A )10 ( B ) 30 (C ) 45 (D ) 120二、填空题13.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.14.如图所示是y=f(x)的导函数的图象,有下列四个命题:①f(x)在(﹣3,1)上是增函数;②x=﹣1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f(x)的极小值点.其中真命题为(填写所有真命题的序号).15.设不等式组表示的平面区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是.16.抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为.17.已知双曲线的一条渐近线方程为y=x,则实数m等于.18.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值是.三、解答题19.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.20.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.21.根据下列条件,求圆的方程:(1)过点A(1,1),B(﹣1,3)且面积最小;(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).22.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))23.已知函数f(x)=(Ⅰ)求函数f(x)单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.24.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.寿阳县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】将函数()()sin 20y x ϕϕ=+>的图象沿x 轴向左平移8π个单位后,得到一个偶函数sin 2sin 284[()]()y x x ππϕϕ=++=++的图象,可得42ππϕ+=,求得ϕ的最小值为 4π,故选B .2. 【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.3. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 4. 【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢, 则k ≥﹣1. ∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.5. 【答案】D【解析】解:∵当x>0时,3f(x)﹣2f()=…①,∴3f()﹣2f(x)==…②,①×3+③×2得:5f(x)=,故f(x)=,又∵函数f(x)为偶函数,故f(﹣2)=f(2)=,故选:D.【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.6.【答案】D【解析】解:由A中不等式变形得:﹣2≤2x≤4,即﹣1≤x≤2,∴A=[﹣1,2],由B中y=lg(x﹣1),得到x﹣1>0,即x>1,∴B=(1,+∞),则A∩B=(1,2],故选:D.7.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).8.【答案】B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B.【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.9.【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x ,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C 的渐近线方程为y=±x ”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.10.【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:220()2()a S a hS a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩,解得=A . 考点:棱台的结构特征. 11.【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x=为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.12.【答案】C【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为2210C x ,系数为21045.C =故选C . 二、填空题13.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++. 14.【答案】 ①【解析】解:由图象得:f(x)在(1,3)上递减,在(﹣3,1),(3,+∞)递增,∴①f(x)在(﹣3,1)上是增函数,正确,x=3是f(x)的极小值点,②④不正确;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确,故答案为:①.15.【答案】.【解析】解:作出不等式组对应的平面区域,直线y=k(x+2)过定点D(﹣2,0),由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,由,解得,即A(1,3),此时k==,由,解得,即B(1,1),此时k==,故k的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.16.【答案】3x﹣y﹣11=0.【解析】解:设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),即有y12=6x1,y22=6x2,相减可得,(y1﹣y2)(y1+y2)=6(x1﹣x2),即有k AB====3,则直线方程为y﹣1=3(x﹣4),即为3x﹣y﹣11=0.将直线y=3x﹣11代入抛物线的方程,可得9x2﹣72x+121=0,判别式为722﹣4×9×121>0,故所求直线为3x﹣y﹣11=0.故答案为:3x﹣y﹣11=0.17.【答案】4.【解析】解:∵双曲线的渐近线方程为y=x,又已知一条渐近线方程为y=x,∴=2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.18.【答案】6.【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题三、解答题19.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…20.【答案】(1)a=12(2)(-∞,-1-1e].(3)827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥22ln xx. 令g (x )=22ln xx ,x >0,则g '(x )=()3212ln x x -.令g '(x )=0,解得x当x ∈(0g '(x )>0,所以g (x )在(0当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g (1e, 所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e].(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.②当53<a<2时,当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.因为h'(a)=3a2-6a+3=3(a-1)2≥0.所以h(a)在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.③当a≥2时,当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.21.【答案】【解析】解:(1)过A、B两点且面积最小的圆就是以线段AB为直径的圆,∴圆心坐标为(0,2),半径r=|AB|==×=,∴所求圆的方程为x2+(y﹣2)2=2;(2)由圆与y轴交于点A(0,﹣4),B(0,﹣2)可知,圆心在直线y=﹣3上,由,解得,∴圆心坐标为(2,﹣3),半径r=,∴所求圆的方程为(x﹣2)2+(y+3)2=5.22.【答案】【解析】解:(1)f(x)是R上的奇函数证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+1]<0恒成立,2+x2因此得到函数f(x)是R上的增函数.(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),∵函数f(x)是R上的增函数,∴m+1<3﹣2m,∴23.【答案】【解析】解:(Ⅰ)∵f(x)=sin cos+cos2=sin(+),∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.(Ⅱ)∵f(A)=sin(+),∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,∴则sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,∴cosB=,又0<B<π,∴B=.∴可得0<A<,∴<+<,∴sin(+)<1,故函数f(A)的取值范围是(1,).【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.24.【答案】【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,∴EC⊥平面ABCD,又BD⊂平面ABCD,∴EC⊥BD,∵底面ABCD为正方形,AC∩BD=N,∴AC⊥BD,又∵AC∩EC=C,AC,EC⊂平面AEC,∴BD⊥平面AEC,∴BD⊥AE,∴异面直线BD与AE所成角的为90°.(Ⅱ)∵底面ABCD为正方形,∴BC∥AD,∵BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD,∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,∴EC∥平面PAD,∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴∴平面BCE∥平面PAD,∵BE⊂平面BCE,∴BE∥平面PAD.(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,∴PD⊥CD,PD⊥AD,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寿阳县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A .20种B .22种C .24种D .36种2. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A∈3. 抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )A .1B .C .D .4. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( )A .1或﹣3B .﹣1或3C .1或3D .﹣1或﹣35. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为()A .1B .2C .3D .46. 从一个边长为的等边三角形的中心、各边中点及三个顶点这个点中任取两个点,则这两点间的距离小27于的概率是( )1A . B . C .D .717374767. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A .36种B .38种C .108种D .114种8. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为()A .6B .9C .12D .189. 已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为( )PAB ∆A . B.C. D. 10.已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣11.下列命题正确的是()A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.12.如图所示,阴影部分表示的集合是()A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )二、填空题13.已知函数是定义在R 上的奇函数,且当时,,则在R 上的解析式为()f x 0x ≥2()2f x x x =-()y f x =14.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为.1111]15.【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数()()21xf x ex ax a =--+1a <,使得,则的取值范围是0x ()00f x <a 16.【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经()32f x x x =-()f x ()()1,1f 过圆的圆心,则实数的值为__________.()22:2C x y a +-=a 17.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .18.对于映射f :A →B ,若A 中的不同元素有不同的象,且B 中的每一个元素都有原象,则称f :A →B 为一一映射,若存在对应关系Φ,使A 到B 成为一一映射,则称A 到B 具有相同的势,给出下列命题:①A 是奇数集,B 是偶数集,则A 和B 具有相同的势;②A 是平面直角坐标系内所有点形成的集合,B 是复数集,则A 和B 不具有相同的势;③若区间A=(﹣1,1),B=R ,则A 和B 具有相同的势.其中正确命题的序号是 .三、解答题19.已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.20.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.21.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.22.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x =+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.23.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *).(1)求a 2,a 3,a 4;(2)猜测数列{a n }的通项公式,并用数学归纳法证明.24.设函数,.()xf x e =()lng x x =(Ⅰ)证明:;()2e g x x≥-(Ⅱ)若对所有的,都有,求实数的取值范围.0x ≥()()f x f x ax --≥a寿阳县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C . 2. 【答案】A 【解析】试题分析:因为{}|5A x N x =∈< ,而,即B 、C 正确,又因为且,1.5,1,.5,1N N A A ∉-∉∴∉-∉0N ∈05<所以,即D 正确,故选A. 10A ∈考点:集合与元素的关系.3. 【答案】A【解析】解:因为抛物线y 2=8x ,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A .【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题. 4. 【答案】A【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得 a=﹣3,或a=1.故选:A . 5. 【答案】B【解析】解:∵M ∩{1,2,4}={1,4},∴1,4是M 中的元素,2不是M 中的元素.∵M ⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B . 6. 【答案】A【解析】两点间的距离小于共有3种情况,1分别为中心到三个中点的情况,故两点间的距离小于的概率.127317P C ==7. 【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A .【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法. 8. 【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a =18,选D.法二:a =6 102,b =2 016,r =54,a =2 016,b =54,r =18,a =54,b =18,r =0.∴输出a =18,故选D.9. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB∆的面积为,选C .1||2AB d '⋅=10.【答案】D【解析】【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D 11.【答案】D 【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D 是正确,故选D.考点:集合的概念;子集的概念.12.【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成,∴对应的集合表示为A ∩∁U B .故选:A . 二、填空题13.【答案】222,02,0x x x y x x x ⎧-≥⎪=⎨--<⎪⎩【解析】试题分析:令,则,所以,又因为奇函数满足,0x <0x ->()()()2222f x x x x x -=---=+()()f x f x -=-所以,所以在R 上的解析式为。

()()220f x x x x =--<()y f x =222,02,0x x x y x x x ⎧-≥⎪=⎨--<⎪⎩考点:函数的奇偶性。

14.【答案】8cm 【解析】考点:平面图形的直观图.15.【答案】【解析】试题分析:设,由题设可知存在唯一的整数,使得在直线0x的下方.因为,故当时,,函数单调递减;当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案.3,12e ⎡⎫⎪⎢⎣⎭考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点,使得为背景,设置了一道求函数解析式中的参数0x ()00f x <的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依0x 据题设建立不等式组求出解之得.16.【答案】2-【解析】结合函数的解析式可得:,()311211f =-⨯=-对函数求导可得:,故切线的斜率为,()2'32f x x =-()2'13121k f ==⨯-=则切线方程为:,即,()111y x +=⨯-2y x =-圆:的圆心为,则:.C ()222x y a +-=()0,a 022a =-=-17.【答案】 ①④ .【解析】解:由所给的正方体知,△PAC 在该正方体上下面上的射影是①,△PAC 在该正方体左右面上的射影是④,△PAC 在该正方体前后面上的射影是④故答案为:①④ 18.【答案】 ①③ .【解析】解:根据一一映射的定义,集合A={奇数}→B={偶数},不妨给出对应法则加1.则A →B 是一一映射,故①正确;对②设Z 点的坐标(a ,b ),则Z 点对应复数a+bi ,a 、b ∈R ,复合一一映射的定义,故②不正确;对③,给出对应法则y=tan x ,对于A ,B 两集合可形成f :A →B 的一一映射,则A 、B 具有相同的势;∴③正确.故选:①③【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力. 三、解答题19.【答案】【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0,△=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0解得:m=.(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根,由韦达定理可得:x1+x 2=﹣,x 1•x 2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题. 20.【答案】 【解析】解:∵方程表示焦点在x 轴上的双曲线,∴⇒m >2若p 为真时:m >2,∵曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点,则△=(2m ﹣3)2﹣4>0⇒m >或m ,若q 真得:或,由复合命题真值表得:若p ∧q 为假命题,p ∨q 为真命题,p ,q 命题一真一假 若p 真q 假:;若p 假q 真:∴实数m 的取值范围为:或.【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件. 21.【答案】【解析】解:依题意,由M=得|M|=1,故M ﹣1=从而由=得═=故A (2,﹣3)为所求.【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础. 22.【答案】(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭ ,,.【解析】试题分析:(1)由1a =⇒()22111'x f x x x x-=-+=.令()'0f x =⇒1x =.再利用导数工具可得:极小值和单调区间;(2)求导并令()'0f x =⇒1x a =,再将命题转化为()f x 在区间(0]e ,上的最小值小于.当10x a=<,即0a <时,()'0f x <恒成立,即()f x 在区间(0]e ,上单调递减,再利用导数工具对的取值进行分类讨论.111]①若1e a≤,则()'0f x ≤对(0]x e ∈,成立,所以()f x 在区间(0]e ,上单调递减,则()f x 在区间(0]e ,上的最小值为()11ln 0f e a e a e e =+=+>,显然,()f x 在区间(0]e ,的最小值小于0不成立.②若10e a <<,即1a e>时,则有10a ⎛⎫ ⎪⎝⎭,1a 1e a ⎛⎫ ⎪⎝⎭,()'f x -0+()f x ↘极小值↗所以()f x 在区间(0]e ,上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭,由()11ln 1ln 0f a a a a a a ⎛⎫=+=-< ⎪⎝⎭,得1ln 0a -<,解得a e >,即()a e ∈+∞,,综上,由①②可知,()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭ ,,符合题意.……………………………………12分考点:1、函数的极值;2、函数的单调性;3、函数与不等式.【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用.23.【答案】【解析】解:(1)由a n+1=,可得a 2==,a 3===,a 4===.(2)猜测a n =(n ∈N *).下面用数学归纳法证明:①当n=1时,左边=a 1=a ,右边==a ,猜测成立.②假设当n=k (k ∈N *)时猜测成立,即a k =.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n ∈N *都有a n =成立.24.【答案】 【解析】(Ⅰ)令,e e ()()2ln 2F x g x x x x =-+=-+221e e()x F x x x x-'∴=-=由 ∴在递减,在递增,()0e F x x '>⇒>()F x (0,e][e,)+∞∴ ∴ 即成立. …… 5分min e ()(e)ln e 20e F x F ==-+=()0F x ≥e()2g x x≥-(Ⅱ) 记, ∴ 在恒成立,()()()x xh x f x f x ax e e ax -=---=--()0h x ≥[0,)+∞ , ∵ ,()e x xh x e a -'=+-()()e 00x x h x e x -''=-≥≥ ∴ 在递增, 又, …… 7分()h x '[0,)+∞(0)2h a '=-∴ ① 当 时,成立, 即在递增,2a ≤()0h x '≥()h x [0,)+∞则,即 成立;…… 9分()(0)0h x h ≥=()()f x f x ax --≥ ② 当时,∵在递增,且,2a >()h x '[0,)+∞min ()20h x a '=-< ∴ 必存在使得.则时,,(0,)t ∈+∞()0h t '=(0,)x t ∈()0h t '< 即 时,与在恒成立矛盾,故舍去.(0,)x t ∈()(0)0h t h <=()0h x ≥[0,)+∞2a > 综上,实数的取值范围是. …… 12分a 2a ≤。

相关文档
最新文档