机械设计基础第十章 轮系
机械设计基础 轮系

2
2
两箭头同时指向啮合点
两箭头同时相背啮合点
2.定轴轮系传动比的计算
输入轴与输出轴之间的传动比为:
i15
轮系中各对啮合齿轮的传动比大小为:
1 n1 5 n5
1
1 z2 i12 , 2 z1 3 z4 i34 , 4 z3
2 z3 i23 3 z2
一对圆柱齿轮传动转向的表达
1 1
2 1
2 2
1
2
外啮合:两轮转向相反
内啮合:两轮转向相同
注:箭头表示可见侧圆周速度方向。
一对圆锥齿轮传动转向的表达
1 1
2
2
两箭头同时指向啮合点
两箭头同时相背啮合点
思考!
如何判断以下定轴轮系中各轮的转向?
2 1 4 3′
3
5
平行轴传动的定轴轮系
1、用标注箭头来确定; 2、因外啮合齿轮的对数为偶数(2对),则1、5 两轮转向相同。
一般情况下,一对圆柱齿轮的传 动比不大于5~7,对于各种不同 的机械来说,采用一对齿轮传动 往往不能满足工作要求。如:
钟表在12小时内
时针:1圈
分针:12圈
秒针:720圈
i = 12 i = 720
i = 60
大传动比传动是如何实现的?
机床的主轴转速是可以调节 的,这又是如何实现的呢?
像机床、钟表等,都是依靠一系 列彼此相互啮合的齿轮所组成的 齿轮机构来实现的。 这种用一系列彼此相互啮合的齿 轮将主动轴和从动轴连接起来的 传动装置称为齿轮系,简称轮系 。 轮系可由圆柱齿轮、圆锥齿轮、 蜗轮蜗杆等各种类型的齿轮所组 成。本章只讨论轴系传动比的计 算和轮系在机械传动中的作用。
机械设计基础轮系

机械设计基础轮系机械设计中的轮系是指由轴、轮、轴承等零部件组成的能够传递动力和承受载荷的机械装置。
轮系在众多机械设备和工业领域中广泛应用,具有重要的意义。
本文将介绍机械设计基础轮系的一些重要知识和要点。
一、轮系的定义和基本组成轮系是由轮、轴和轴承等零部件组成的。
轮是指机械装置上的圆盘形零部件,轴是指承载轮的长条形零部件,轴承是指连接轮和轴的支撑零部件。
轮系的基本组成主要有:轮、轴、轴承。
1. 轮:轮通常由金属等材料制成,有多种类型,如齿轮、带轮、链轮等。
轮可以传递动力和承受载荷,是轮系中起着重要作用的部件。
2. 轴:轴是承载轮和传递力矩的零部件,通常由金属等材料制成。
轴可以根据其用途和载荷的特点进行选择,有不同的形状和尺寸。
3. 轴承:轴承是连接轮和轴的支撑零部件,可以减小轮与轴之间的摩擦和磨损,保证轮的平稳运转。
轴承分为滚动轴承和滑动轴承两种类型,可以根据实际需求进行选择。
二、轮系的设计原则在机械设计中,轮系的设计需要遵循一些基本原则,以确保轮系的工作效果和安全性。
1. 传递效率:轮系的设计应该追求传递效率的最大化,使得输入的动力能够尽可能地转化为输出的动力。
传递效率和轮系的几何形状、材料、润滑等因素有关,需要综合考虑。
2. 轴心对称性:轮系的轴心应该保持对称,以减小不平衡力矩和振动。
轴心对称性有助于提高轮系的平稳性和稳定性。
3. 载荷分配:轮系的设计应该合理分配载荷,使得各个轴和轮承受的载荷均衡。
合理的载荷分配有助于减小零部件的磨损和延长轮系的使用寿命。
4. 强度和刚度:轮系的设计需要满足一定的强度和刚度要求,以承受正常工作条件下的载荷和冲击。
强度和刚度的设计需要考虑材料的选择、零部件的形状和尺寸等因素。
三、轮系的选择与应用在机械设计中,根据实际需求和具体情况,选择合适的轮系是非常重要的。
以下是一些常见的轮系选择与应用的案例。
1. 齿轮传动:齿轮传动是一种常见的轮系形式,广泛应用于各种机械设备中。
机械设计基础——轮系

现代机械中,为了满足不同的工作要求只用一对齿轮传动 往往是不够的,通常用一系列齿轮共同传动。这种由一系列齿 轮组成的传动系统称为齿轮系(简称轮系)。
本章主要讨论轮系的类型、传动比计算及轮系的功用。
齿轮系的类型
1.按组成轮系的齿轮(或构件)的 轴线是否相互平行可分为: 平面轮系和空间轮系
2.根据轮系运转时齿轮的轴线位置 相对于机架是否固定可分为两大类: 定轴轮系和周转轮系
3.对于差动轮系,必须给定n 1 、 n k 、n H中任意两个(F=2,
两个原动件),运动就可以确定。对于简单周转轮系,有一太
阳轮固定(n k=0),在n 1 、n H只需要给定一个(F=1,需要一
个原动件),运动就可以确定。
例:如图所示的周转轮系中,已知各 轮齿数为Z1=100, Z2=99, Z3=100, Z4=101 ,行星架H为原动件,试求传 动比iH1=?
齿数连 乘积 齿数连 乘积
注意:
1.公式只适用于平面周转轮系。正、负号可按画箭头的方法来 确定,也可根据外啮合次数还确定(-1)m。对于空间周转轮 系,当两太阳轮和行星架的轴线互相平行时,仍可用转化轮系 法来建立转速关系式,但正、负号应按画箭头的方法来确定。
2.公式中的“+”、“-”号表示输入和输出轮的转向相同或相反。
Z2 Z4 Z1 Z3
n H = - 50/6 r/min 负号表示行星架与齿轮1转向相反。
2.求n3
:(n3
i1H2
=
nn21)- n H
n
-
2
n
H
Z2 Z1
n 2 = - 133 r/min = n3
负号表示轮3与齿轮1转向相反。
混合轮系传动比的计算
机械设计基础总复习

整理ppt
3
二、 机器的组成 (以汽车为例)
1、动力部分 提供动力(发动机) 2、传动部分 提供变速、改变运动方向或运动形式等
(变速箱、传动轴、离合器) 3、工作部分 直接完成设计者的构想,代替或减轻人类的
工作(车轮,转向器) 4、控制部分 使机器各部分运动协调。可以是手控、
整理ppt
12
3、曲柄存在的条件 1)四杆机构中,最长杆和最短杆之和小于其余
两杆长度之和。 2)曲柄为最短杆,且是连架杆或机架。 4、对四杆机构的判断:
在四杆机构中,没有曲柄存在,就是双摇杆 机构,若存在曲柄,,哪一个是机架,就构成不 同的机构。
整理ppt
13
1)和最短杆相连的杆是机架,为曲柄摇杆机构。 2)最短杆是机架,为双曲柄机构。 3)最短杆对过的杆是机架,为双摇杆机构。
34
第十一章 联接
螺纹联接
1、大径 d:螺纹标准中的公称直径,螺纹的最大直径
2、小径 d1: 螺纹的最小直径,强度计算中螺杆危险断 面的计算直径。
3、中径 d2: 近似于螺纹的平均直径, d2 (d1 + d) / 2 4、螺距 p: 相邻两螺纹牙平行侧面间的轴向距离。
5、导程 s: 同一条螺纹线上两螺纹牙之间的距离。
Fx1 = - Ft2 切向力
整理ppt
28
已知:蜗杆的旋向和转向,画出蜗杆和 蜗轮三个分力的方向。
整理ppt
29
•第八章 带传动
普通V带已标准化:按GB/T 13575.1-2008标准, 按截面尺寸 的大小不同,由小到大,分为: Y、Z、A、B、C、D、E七种。
具体尺寸见表8—2。带的楔角 大于带轮沟槽 角。 • 带的节面宽度叫节宽bp , 当带弯曲时,此宽度不变,带的
机械设计基础轮系

机械设计基础轮系在机械设计中,轮系的设计和布局是至关重要的。
轮系,或者称为齿轮系,是由一系列齿轮和轴组成的,它们通过精确的配合和排列,将动力从一个轴传递到另一个轴,或者改变轴的转速。
这种设计广泛应用于各种机械设备中,如汽车、飞机、机床等。
一、轮系的基本类型根据轮系中齿轮的排列和组合方式,我们可以将其分为以下几种基本类型:1、定轴轮系:在这种轮系中,齿轮是固定在轴上的,因此轴的旋转速度是恒定的。
这种轮系主要用于改变动力的大小和方向。
2、行星轮系:在这种轮系中,有一个或多个齿轮是浮动的,它们可以随着轴一起旋转,也可以绕着轴旋转。
这种轮系主要用于平衡轴的转速和改变动力的方向。
3、差动轮系:在这种轮系中,有两个或多个齿轮的旋转速度是不一样的,它们之间存在一定的速度差。
这种轮系主要用于实现复杂的运动规律。
在设计轮系时,我们需要遵循以下原则:1、确定传递路径:根据机械设备的需要,确定动力从哪个轴输入,需要传递到哪个轴。
2、选择合适的齿轮类型:根据需要传递的动力大小、转速等因素,选择合适的齿轮类型(直齿、斜齿、锥齿等)。
3、确定齿轮的参数:根据需要传递的动力大小、转速等因素,确定齿轮的模数、齿数、压力角等参数。
4、确定齿轮的排列方式:根据需要实现的传动比、转速等因素,确定齿轮的排列方式(串联、并联等)。
5、确定轴的结构形式:根据需要传递的动力大小、转速等因素,确定轴的结构形式(实心轴、空心轴、悬臂轴等)。
6、确定支承形式:根据需要传递的动力大小、转速等因素,确定支承形式(滚动支承、滑动支承等)。
7、确定润滑方式:根据需要传递的动力大小、转速等因素,确定润滑方式(油润滑、脂润滑等)。
在满足设计要求的前提下,我们还可以通过优化设计来提高轮系的性能。
以下是一些常用的优化方法:1、优化齿轮参数:通过调整齿轮的模数、齿数、压力角等参数,来提高齿轮的承载能力和降低噪声。
2、优化齿轮排列:通过优化齿轮的排列方式,来提高传动效率、降低传动噪声和减少摩擦损失。
基础-机械设计基础轮系-(公开课)

作业
定轴轮系传动比计算 • 论轮系的功用
汽车后桥的差速器
差动轮系不仅能将两个独立地运动合成为一个运动,而且还可将 一个基本构件的主动转动,按所需比例分解成另两个基本构件的 不同运动。汽车后桥的差速器就利用了差动轮系的这一特性。
几种特殊形式的行星传动简介
一、渐开线少齿差行星传动
固定的太阳轮1、行星轮2、行星架H及输出机构3(等角速比机构) 组成。 输出机构转速=行星轮的转速
Z2 Z2 Z1
Z2 Z1 Z2
特点:传动比大,结构紧凑,效 率高,不需等角速比机构, 同时啮合的齿数多,传动 平稳,承载能力高,齿侧 间小,适于反向传动。 柔轮材料加工热处理要求 高;避免柔轮变形过大,传 动比一般要大于35。
钢轮1,柔轮2,波发生H 柔轮2比钢轮1少z2-z1个齿
iH 2
nH n2
(Z2
1 Z1) / Z2
惰轮(过轮):不影响传动比大小只起改变转向作用的齿轮
轮系的功用
1、传递相距较远的两轴之间的运动和动力;
2、获得大的传动比:
一对外啮合圆柱齿轮传动,其传动比一般可为i<=5-7。但是 行星轮系传动比可达i=1000,而且结构紧凑。
举例:图示为一大传动比的减速器,
Z1=100,Z2=101, Z2'=100,Z3=99
i
n1 n7
所有从动轮齿数的乘积 所有主动轮齿数的乘积
Z2Z3Z4Z5Z7 Z1Z 2 Z 3 Z 4 Z 6
• 某主轴箱中,已知各齿轮齿数分别为Z1=18、Z2=20,Z3=18、 Z4=19、Z5=20、Z6=20、Z7=21,Z8=22、Z9=22、Z10= 18、 Z11=30、Z12=26。且已知1轴的转速为n1=446.7转/分,方向 向上。问:该轮系可以输出几种转速?并求图示位置带轮轴的转 速和方向。
《机械设计基础》教学课件主题10 齿轮传动

单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
1、轮齿折断 轮齿就好像一个悬臂梁,在外载荷作用下,在其轮齿根部产生的 弯曲应力最大。同时,在齿根部位过渡尺寸发生急剧变化,以及加工时 沿齿宽方向留下加工刀痕而造成应力集中的作用,当轮齿重复受载,在 脉动循环或对称循环应力作用下,弯曲应力超过弯曲疲劳极限时,在齿 轮根部会产生疲劳裂纹,如图(a)所示。随着裂纹的逐步扩展,最终 引起断裂,如图(b)所示。
轮齿折断都是其弯曲应力超过了材料相应的极限应力,是最危险 的一种失效形式。一旦发生断齿,传动立即失效。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
2、齿面点蚀 在润滑良好的闭式齿轮传动中,由于齿面材料在交变接触应力 作用下,因为接触疲劳产生贝壳形状凹坑(麻点)的破坏形式称为点 蚀。点蚀也是常见的一种齿面破坏形式。齿面上最初出现的点蚀随材 料不同而不同,一般出现在靠近节线的齿根面上,如图所示,最初为 细小的尖状麻点。当齿面硬度较低、材料塑性良好,齿面经跑合后, 接触应力趋于均匀,麻点不再继续扩展,这是一种收敛性点蚀,不会 导致传动失效。但当齿面硬度较高、材料塑性较差时,点蚀就会不断 扩大,这是一种破坏性点蚀,是一种危险的失效形式。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
3、齿面胶合 对于某些高速重载的齿轮传动(如航空发动机的主传动齿轮), 齿面间的压力大,瞬时温度高,油变稀而降低了润滑效果,导致摩擦增 大,齿面温度升高,将会使某些齿面上接触的点熔合,焊在一起,在两 齿面间相对滑动时,焊在一起的地方又被撕开。于是,在齿面上沿相对 滑动的方向形成伤痕,如图所示,这种现象称为胶合。
机械设计基础
主题10 齿轮传动
单元1 单元2 单元3 单元4 单元5 单元6
机械设计基础之轮系详解

机械设计基础之轮系详解在机械工程中,轮系的设计与使用至关重要。
轮系主要由一系列相互啮合的齿轮组成,通过齿轮的旋转运动,可以实现动力的传输、速度的改变、方向的转换等功能。
本文将详细解析轮系的基本概念、类型及设计要点。
一、轮系的类型根据齿轮轴线的相对位置,轮系可以分为两大类:平面轮系和空间轮系。
1、平面轮系:所有齿轮的轴线都在同一平面内。
这种类型的轮系在机械设计中最为常见,包括定轴轮系、周转轮系和混合轮系。
2、空间轮系:齿轮的轴线不在同一平面内,而是相互交错。
这种类型的轮系相对复杂,包括差动轮系和行星轮系。
二、定轴轮系定轴轮系是最简单的轮系类型,所有齿轮的轴线都固定在同一轴线上。
这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变。
定轴轮系的传动比可以根据齿轮的齿数和转速计算得出。
三、周转轮系周转轮系的齿轮轴线可以绕着其他齿轮的轴线旋转。
这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。
周转轮系的传动比可以根据齿轮的齿数和转速计算得出。
四、混合轮系混合轮系是定轴轮系和周转轮系的组合。
这种轮系的优点是可以实现更复杂的运动和动力传输,同时具有较高的传动效率。
混合轮系的传动比可以根据定轴轮系和周转轮系的传动比计算得出。
五、差动轮系差动轮系是一种空间轮系,其特点是两个齿轮的轴线可以不在同一平面内。
这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。
差动轮系的传动比可以根据齿轮的齿数和转速计算得出。
六、行星轮系行星轮系是一种空间轮系,其特点是至少有一个齿轮的轴线可以绕着其他齿轮的轴线旋转。
这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。
行星轮系的传动比可以根据齿轮的齿数和转速计算得出。
七、设计要点在设计和使用轮系时,需要考虑以下几点:1、传动比:根据实际需求选择合适的传动比,以保证轮系的传动效率和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章部分题解参考
10-4 在图10-23所示的轮系中,已知各轮齿数,3'为单头右旋蜗杆,求传动比15i 。
解 9030
120306030431543432154325115-=⨯⨯⨯⨯-=-=-==''''z z z z z z z z z z z z z z n n i
10-6 图10-25所示轮系中,所有齿轮的模数相等,且均为标准齿轮,若n 1=200r/min ,n 3=50r/min 。
求齿
数2'z 及杆4的转速n 4。
当1)n 1、n 3同向时;2)n 1、n 3反向时。
解 ∵ )(2
)(22321'-=+z z m z z m ∴ 202515602132=--=--='z z z z
∵ 520
15602521324341413-=⨯⨯-=-=--='z z z z n n n n i ∴ 6/)5(314n n n +=
设 1n 为“+”
则 1)n 1、n 3同向时:756/)505200(6/)5(314+=⨯+=+=n n n r /min (n 4与n 1同向)
2)n 1、n 3反向时:33.86/)505200(6/)5(314-=⨯-=+=n n n r /min (n 4与n 1反向) 10-8 图10-27所示为卷扬机的减速器,各轮齿数在图中示出。
求传动比17i 。
解 1-2-3-4-7周转轮系,5-6-7定轴轮系
∵ 21
1692124785231427471714-=⨯⨯-=-=--=z z z z n n n n i 3
131878577557-=-=-==z z n n i 54n n = ∴ 92.4363
27677117===n n i (n 1与n 7同向) 10-9 图10-28所示轮系,各轮齿数如图所示。
求传动比14i 。
解 ∵ 518
90
133113-=-=-=--=z z n n n n i H H H 58
553687903324323443=⨯⨯==--='z z z z n n n n i H H H 03=n ∴ 611==H
H n n i 58344==
H H n n i 1163586414114=⨯===
H H i i n n i (n 1与n 4同向)
10-11 图10-30示减速器中,已知蜗杆1和5的头数均为1(右旋),1z '=101,2z =99,42z z =',4z '=100,
5z '=100,求传动比H i 1。
解 1-2定轴轮系,1'-5'-5-4定轴轮系,2'-3-4-H 周转轮系
∵ 99199
12
2112====z z n n i →99
12n
n =(↓)
10110000110110010051454141=⨯⨯==='''''''z z z
z n n i →10000
1011
4n n ='(↑)
1244242-==--='''z z n n n n i H H
H →)(2
1
42n n n H +='
∴ 1980000)1000010199(21)(211
1142n n n n n n H =-=+='
19800001
1==H
H n n
i。