15.1分式的定义教案
15.1.1从分数到分式(教案)

一、教学内容
本节课选自《数学》八年级上册第15章《分式》的第一节“15.1.1从分数到分式”。教学内容主要包括以下两部分:
1.分式的定义:通过复习分数的概念,引导学生理解分式的定义,即分母不为零的整式比值称为分式。
2.分式的性质:探讨分式的分子、分母与分式值的关系,总结分式的性质,如分子分母同乘(除)一个非零整式,分式的值不变。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的定义、性质和应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在数学学习和日常生活中灵活运用分式知识。如果有任何疑问或不明白的地方,请随时向我提问。
举例:分式2x/(x+1)与2x*2/(x的简单运算:学会分式的加减乘除运算,掌握运算规律。
举例:分式2x/(x+1)加上分式3/(x+1)时,只需将分子相加,分母保持不变,即(2x+3)/(x+1)。
2.教学难点
(1)分式与分数的区别:理解分式与分数在概念上的联系与区别,特别是分式的整式特性。
4.合作与交流:通过小组讨论、分享心得,培养学生团队合作和沟通交流的能力,促进学生共同成长。
三、教学难点与重点
1.教学重点
(1)分式的定义:理解分式的概念,明确分母不为零的整式比值是分式的核心。
举例:分数5/6可以看作分式,而表达式(2x+1)/(x-3)也是分式,但(x+2)/0不是分式。
(2)分式的性质:掌握分式的基本性质,如分子分母同乘(除)一个非零整式,分式的值不变。
人教版八年级数学第十五章《分式》全章教案

人教版八年级数学第十五章《分式》全章教案第十五章分式15.1.1从分数到分式教学目标1.了解分式的概念,能用分式表示实际问题中的数量关系.2.能确定分式有意义的条件.教学重、难点分式的概念教学过程设计一、创设问题,激发兴趣XXX:一艘轮船在静水中的最大航速为30km/h,它沿江以最大航速顺流航行90km所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?问题1顺流航行的速度、逆流航行的速度与轮船在静水中的速度、水流速度之间有什么关系?顺流航行的速度=轮船在静水中的速度+水流速度;逆流航行的速度=轮船在静水中的速度-水流速度.问题2这个问题的等量关系是什么?顺流航行90 km所用时间=逆流航行60 km所用时间.问题3应怎样设未知数?如何根据等量干系列出方程?解:设江水的流速为XXX.依题意得:追问式子与分数有甚么相同点和分歧点?它们与你学过的整式有甚么分歧?问题4填空:(1)长方形的面积为10 cm2,长为7 cm,宽应为cm;长方形的面积为S,长为a,宽应为cm.问题4填空:(2)把体积为200cm3的水倒入底面积为33cm2的圆柱描述器中,水面高度为cm;把体积为V的水倒入底面积为S 的圆柱描述器中,水面高度为.追问1上面问题中得到的式子,,,哪些不是我们学过的整式?追问2式子的特性?二、常识使用,巩固提高分式的定义:,,与以前学过的整式分歧,这些代数式有甚么配合一般地,如果A,B表示两个整式,并且B中含有字母,那末式子叫做分式(fraction).分式中,A叫做分子,B叫做分母.问题5我们知道,要使分数有意义,分数中的分母不能为.要使分式有意义,分式中的分母应满足什么条件?为什么?例1下列分式中的字母满足甚么条件时分式成心义?三、使用提高、拓展创新讲义128页操演1、2、3四、归纳小结(1)本节课研究了哪些主要内容?(2)你能举例说明什么是分式吗?(3)如何确定分式有意义的条件?五、布置作业:教科书题15.1第1、2、3题.教后反思:15.1.2分式的基本性质(1)教学目标1.了解分式的基本性质,体会类比的思想方法.2.掌握分式的约分,了解最简分式的概念.教学重、难点分式的基本性质和分式的约分教学过程设计一、创设问题,激起兴趣问题1下列分数是否相等?追问这些分数相等的依据是什么?问题2你能叙述分数的基本性质吗?分数的根本性质:一个分数的分子、分母乘(或除以)同一个不为的数,分数的值不变.问题3你能用字母的形式表示分数的基本性质吗?问题4类比分数的根本性质,你能想出分式有甚么性质吗?分式的根本性质:分式的分子与分母乘(或除以)同一个不等于的整式,分式的值不变.追问1如何用式子表示分式的基本性质?二、常识使用,巩固提高追问2应用分式的基本性质时需要注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.例2填空:问题5观察上例中(1)中的两个分式在变形前后的分子、分母有甚么变化?类比分数的相应变形,你联想到甚么?像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.例3约分:追问1由上例你能归纳出在分式中,找分子和分母的公因式的方法是什么吗?追问2如果分式的分子或分母是多项式,那么该如何思考呢?三、应用提高、拓展创新教科书132页操演1四、归结小结(1)本节课研究了哪些主要内容?(2)运用分式的根本性质时应注意甚么?(3)分式约分的关键是甚么?如何找公因式?(4)探究分式的基本性质和分式的约分的过程,你认为体现了哪些数学思想方法?五、布置作业:教科书题15.1第4、6题.教后反思:15.1.2分式的基本性质(2)教学目标1.了解最简公分母的概念,会确定最简公分母.2.经由进程类比分数的通分来探究分式的通分,能进行分式的通分,体会数式通性和类比的思想.教学重、难点正确确定分式的最简公分母教学过程设计一、创设问题,激起兴趣问题1通分:追问1分数通分的依据是什么?追问2如何确定异分母分数的最小公分母?问题2填空:像这样,根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.追问1你认为分式通分的关键是什么?分式通分的关键是找出分式各分母的公分母.追问2上面问题中的两个分式的公分母是甚么?为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.追问3两个分式的最简公分母是如何确定的?最简公分母的确定方法:取各分母系数的最小公倍数与各字母因式的最高次幂的乘积.分母是多项式时,最简公分母的确定方法是:先因式分解,再将每一个因式算作一个团体,最后确定最简公分母.二、知识应用,巩固提高例通分:三、应用提高、拓展创新教科书132页练1四、归结小结(1)本节课研究了哪些首要内容?(2)分式通分的关键是什么?(3)分式通分时,确定最简公分母的办法是甚么?五、布置作业:教科书题15.1第7题教后反思:15.2.1分式的乘除(1)教学目标1.理解分式的乘除法法则,体会类比的思想.2.会根据分式的乘除法法则进行简单的运算,并理解其算理教学重、难点分式的乘除法法则的运用教学过程设计一、创设问题,激发兴趣问题1一个水平放置的长方体,其容积为V,底面的长为a,宽为b,当内的水占容积的m时,水面的高度为多少?n(1)这个长方体的高怎么表示?(2)内水面的高与内的水所占容积间有何关系?内水面的高与高的比和内的水所占容积的比相等.问题2大拖拉机m天耕地ahm2,小拖拉机n天耕地bhm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1)本题中出现的“工作效率”的含义是什么?(2)大拖沓机和小拖沓机的事情效率怎样表示?观察上述两个问题中所列出的式子中,其中涉及到分式的有哪些运算?你能用学过的运算法则求出结果吗?问题3计较:在计算的过程中,你运用了分数的什么法则?你能叙述这个法则吗?如果将分数换成分式,那末你能类比分数的乘除法法则,说出分式的乘除法法则吗?怎样用字母来表示分式的乘除法法则呢?二、知识应用,巩固提高分式的乘除法法则如何用笔墨语言来描述?乘法法则:分式乘分式,用分子的积作为积的分子,分母的积为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.例1计算:三、应用提高、拓展创新教科书138页练2四、归纳小结(1)本节课研究了哪些首要内容?(2)分式的乘除法运算与分数的乘除法运算有甚么区别和联系?五、布置作业:讲义第144页第1题;第145页第10、11题.教后反思:15.2.1分式的乘除(2)教学目标1.能运用分式的乘除法法则进行复杂计算.2.能运用分式的乘除法解决一些简单的实际问题.教学重、难点用分式的乘除法法则进行计较,并解决一些实践问题.教学过程设计一、创设问题,激起兴趣问题1约分:分子与分母分别是多项式的分式如何约分?问题2计较:分子与分母都是单项式的两个分式如何乘除?二、知识应用,巩固提高例1计较:分子或分母是多项式的两个分式如何乘除呢?解题战略:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式.而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.例2“丰收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1 m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)m的正方形,两块试验田的小麦都收获了500 XXX.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?考虑以下问题:①你能说出小麦的“单位产量”的含义吗?②如何表示这两块试验田的单位产量?③怎样确定哪类小麦的单位产量高?④你能列式表示(2)的问题吗?归结解题步调:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后经由进程计较解决问题.三、使用提高、拓展创新教科书138页练3四、归纳小结运用分式的乘除法法则计算分子或分母含有多项式的分式主要步骤是什么?五、布置作业:教材第144页第2题.教后反思:15.2.1分式的乘方教学目标1.理解分式乘方的运算法则,能根据法则进行乘方运算,体会数式通性.2.能根据混合运算法则进行分式乘除、乘方混合运算.教学重、难点分式的乘方及分式乘除、乘方夹杂运算教学过程设计一、创设问题,激起兴趣例1计算:2x3x.5x-325x2-95x+3练1计算:2m2n5p2q5mnp()1;223q3pq4mn2m2-n2(n-m)m+n(2);222m(m-n)mn16-a2a-4a-2(3)2.2a+8a+2a+8a+16考虑你能结合有理数乘方的概念和分式乘法的法则写出结果吗?(a2a3a10)=?()=?()=?bbba猜测:n为正整数时?b你能写出推导过程吗?试试看.你能用笔墨语言叙述得到的结论吗?分式的乘方法则:一般地,当n是正整数时,n这就是说,分式乘方要把分子、分母分别乘方.二、常识使用,巩固提高例2计较:例3计算:分式的乘除、乘方混合运算与分数的乘除、乘方混合运算有什么联系和区别吗?练2计算:三、应用提高、拓展创新教科书139页练2四、归纳小结(1)本节课研究了哪些主要内容?(2)运用分式乘办法则计较的步调是甚么?它与整式的乘方运算有甚么区别和联系?(3)分式的乘方与乘除夹杂运算的运算顺序是甚么?五、布置作业:教科书题15.2第3(3)(4)题.教后反思:15.2.2分式的加减教学目标1.理解分式的加减法法则,体会类比思想.2.会运用法则进行分式的加减运算,体会化归思想.教学重、难点分式的加减法法则教学过程设计一、创设问题,激发兴趣问题1甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才干完成这项工程,两队配合事情一天完成这项工程的几分之几?(1)甲工程队一天完成这项工程的几分之几?(2)乙工程队一天完成这项工程的几分之几?(3)甲乙两队共同工作一天完成这项工程的几分之几?问题年、2010年、2011年某地的森林面积(单位:km2)分别是S1,S2,S3,2011年与2010年比拟,丛林面积增长率提高了多少?(1)甚么是增长率?(2)2010年、2011年的丛林面积增长率分别是多少?(3)2011年与2010年相比,森林面积增长率提高了多少?分式的加减法与分数的加减法类似,它们实质相同.观察下列分数加减运算的式子,你能将它们推广,得出分式的加减法法则吗?分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.二、常识使用,巩固提高例计算:11(2)+.2p+3q2p-3q三、应用提高、拓展创新讲义141页操演1、操演2练:你能应用本节课所学知识解决“问题1”和“问题2”吗?四、归结小结(1)本节课研究了哪些主要内容?(2)我们是怎么引出分式加减法法则的?(3)在进行分式的加减运算时要注意哪些问题?五、布置作业:教科书题15.2第4、5题.教后反思:15.2.2分式的夹杂运算教学目标1.理解分式混合运算的顺序.2.会正确进行分式的混合运算.3.体会类比方法在研究分式混合运算过程中的重要价值.教学重、难点分式的混合运算.教学过程设计一、创设问题,激起兴趣问题数的混合运算的顺序是什么?你能将它们推广,得出分式的混合运算顺序吗?分式的混合运算顺序:“从高到低、从左到右、括号从小到大”.例1计算:这道题的运算顺序是怎样的?经由进程对例1的解答,同学们有何播种?对于不带括号的分式混合运算:(1)运算顺序:先乘方,再乘除,然后加减;(2)计算结果要化为最简分式.二、常识使用,巩固提高例2计算:52m-4() 1m+2+3-m;2-mx+2x-1x-4(2)-.x2-2xx2-4x+4x通过对例2的解答,同学们有何收获?对于带括号的分式夹杂运算:(1)将各分式的分子、分母分解因式后,再进行计较;(2)注意处理好每一步运算中遇到的符号;(3)计算结果要化为最简分式.三、应用提高、拓展创新练1计算:四、归结小结(1)本节课研究了哪些主要内容?(2)分式混合运算的顺序是什么?我们是怎么得到它的?(3)在进行分式混合运算时要注意哪些问题?五、布置作业:教科书题15.2第6题.教后反思:15.2.3整数指数幂教学目标1.了解负整数指数幂的意义.2.了解整数指数幂的性质并能运用它进行计算.3.会利用10的负整数次幂,用科学记数法表示一些小于1的正数.教学重、难点幂的性质(指数为全体整数),并会用于计算,以及用科学记数法表示一些小于1的正数.教学过程设计一、创设问题,激发兴趣问题1你们还记得正整数指数幂的意义吗?正整数指数幂有哪些运算性质呢?将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗?问题2am中指数m可以是负整数吗?如果可以,那末负整数指数幂am表示甚么?(1)根据分式的约分,当a≠时,如何计较a(2)如果把正整数指数幂的运算性质中的条件m >n去掉,即假设这本性质对于像a数学中规定:当n是正整数时,a这就是说,XXXXXX33a5?(a≠,m,n是正整数,m >n)a5景遇也能使用,如何计较?1aaa是an的倒数.问题3引入负整数指数和指数后,am an am n(m,n是正整数)这条性质能否推广到m,n是任意整数的情形?问题4类似地,你可以用负整数指数幂或指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是不是还适用?(1)am an am n(m,n是整数);n(am)amn(m,n是整数)(2);(ab)ab(n是整数)(3);mnm n(4)a a a(m,n是整数);XXXa(5)bnann(n是整数).b二、知识应用,巩固提高例1计算:三、应用提高、拓展创新问题5能否将整数指数幂的5条性质进行适当合并?这样,整数指数幂的运算性质可以归结为:(1)am an am n(m,n是整数);n(am)amn(m,n是整数)(2);(ab)ab(n是整数)(3);探索:XXX110 1101.0110 21001.00110 310001.000110 40.1归纳:如何用科学记数法表示0.003 5和0.000 098 2呢?规律:对于一个小于1的正小数,从小数点前的第一个算起至小数点后第一个非数字前有几个,用科学记数法表示这个数时,10的指数就是负几.例2用科学记数法表示下列各数:(1)0.3;(2)-0.000 78;(3)0.000 020 09.例3纳米(nm)是非常小的长度单位,1 nm =10-9m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?四、归结小结(1)本节课研究了哪些首要内容?(2)整数指数幂的运算性质与正整数指数幂的运算性质有什么区别和联系?五、布置作业:教科书题15.2第7、8、9题教后反思:15.3分式方程(1)教学目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.教学重、难点利用去分母的方法解分式方程教学过程设计一、创设问题,激发兴趣问题1为了解决弁言中的问题,我们得到了方程程,未知数的位置有甚么特点?追问1方程9060.仔细观察这个XXX30v30vx2x;2;1与上面的方程有甚么共2xx3x5x25x13x 3同特征?分母中含有未知数.分式方程的概念:分母中含有未知数的方程叫做分式方程.追问2你能再写出几个分式方程吗?注意:我们以前研究的方程都是整式方程,它们的未知数不在分母中.9060吗?30v30v问题3这些解法有什么共同特点?总结:这些解法的共同特点是先去分母,将分式方程转化为整式方程,再解整式方程.思考:(1)如何把分式方程转化为整式方程呢?问题2你能试着解分式方程(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了.(2)利用等式的性质2可以在方程双方都乘同一个式子——各分母的最简公分母.追问你得到的解v=6是分式方程二、常识使用,巩固提高问题4解分式方程:9060的解吗?30v30v110=2.x-5x-25110的解吗?该如何验证呢?x=5是原2x5x25分式方程变形后的整式方程的解,但不是原分式方程的解.追问2上面两个分式方程的求解进程当中,同样是去分母将分式方程化为整式方程,为追问1你得到的解x=5是分式方程(30-v)=60(30+v)甚么整式方程90的解v=6是分式方程整式方程x+5=10的解x=5却不是分式方程9060的解,而30v30v110的解?2x5x25原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右双方是不是相等;(2)将整式方程的解代入最简公分母,看是否为.显然,第2种方法比较简便!问题5你能概括出解分式方程的基本思路和一般步骤吗?解分式方程应该注意什么?根本思绪将分式方程化为整式方程一般步调:(1)去分母;(2)解整式方程;(3)检验.注意:因为去分母后解得的整式方程的解不一定是原分式方程的解,以是需要检修.三、使用提高、拓展创新例解下列方程:四、归纳小结(1)本节课研究了哪些主要内容?(2)解分式方程的基本思路和一般步骤是什么?解分式方程应该注意什么?五、布置作业:教科书题15.3第1(1)~(4)题.教后反思:15.3分式方程(2)教学目标1.会解较复杂的分式方程和较简朴的含有字母系数的分式方程.2.能够列分式方程解决简朴的实践问题.3.经由进程研究分式方程的解法,体会转化的数学思想.教学重、难点分式方程的解法教学过程设计一、创设问题,激发兴趣例1解方程x3-1=.x-1(x-1)(x+2)解分式方程的步骤:(1)去分母,将分式方程转化为整式方程;(2)解这个整式方程;(3)检验.用框图的方式总结为:二、知识应用,巩固提高例2解关于x的方程a+b=1(b1).x-a例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?三、应用提高、拓展创新某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2000个零件所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?四、归结小结(1)本节课研究了哪些主要内容?(2)解分式方程的一般步调有哪些?关键是甚么?解方程的进程当中要注意的问题有哪些?(3)列分式方程解使用题的步调是甚么?与列整式方程解使用题的进程有甚么区别和联系?五、布置作业:教科书题15.3第1(2)(4)(6)(8)、4、5题.教后反思:。
人教版八年级上册 15.1从分数到分式 说课讲稿

15.1 分式 (1) 《从分数到分式》说课稿一、教材分析1.地位和作用“从分数到分式”是人教版九年制义务教育课本中八年级第一学期第十五章的第一节内容,是中学知识体系的重要组成部分。
分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。
学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。
学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
2.学情分析我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。
为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标(1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3) 能力目标:学习观察类比和转化的思想方法,培养学生分析、归纳、概括的能力。
(4) 情感目标:通过类比学习分式的的意义,培养学生认识事物之间普遍联系的辩证唯物主义观点,并在探索学习的过程中体会成功的喜悦,从而提高学生学习数学的兴趣。
4.教学重点与难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点(1)重点:分式的意义;分式有意义的条件;(2)难点:分式无意义、分式的值为零的条件。
二、教学方法与学法本节课运用启发类比的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力以及类比归纳能力的培养,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
初中分式定义的教案

初中分式定义的教案【教学目标】1. 让学生理解分式的定义,掌握分式与整式的区别。
2. 培养学生运用分式解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
【教学内容】1. 分式的定义及表示方法。
2. 分式与整式的关系。
3. 分式的基本性质。
【教学过程】一、导入(5分钟)1. 引导学生回顾整式的知识,复习整式的四则运算。
2. 提问:我们已经学习了整式,那么除了整式,还有其他形式的表达式吗?二、新课讲解(15分钟)1. 讲解分式的定义:分式是两个整式的比,其中分母不能为零。
2. 举例说明分式的表示方法,如a/b,其中a为分子,b为分母。
3. 分析分式与整式的关系:整式是没有分母的代数表达式,而分式是有分母的代数表达式。
4. 讲解分式的基本性质:分式的分子和分母同时乘以或除以同一个非零整式,分式的值不变。
三、课堂练习(15分钟)1. 让学生独立完成一些简单的分式题目,如分子、分母的加减乘除等。
2. 引导学生运用分式解决实际问题,如面积、体积的计算等。
四、总结与拓展(5分钟)1. 让学生总结本节课所学的分式的定义、表示方法和基本性质。
2. 提问:分式在实际生活中有哪些应用?3. 引导学生思考分式与整式之间的关系,探讨分式在数学中的地位和作用。
五、作业布置(5分钟)1. 让学生完成课后练习,巩固分式的基本运算。
2. 布置一些实际问题,让学生运用分式解决。
【教学反思】本节课通过讲解分式的定义、表示方法和基本性质,让学生掌握了分式的基础知识。
在课堂练习环节,学生能够独立完成一些简单的分式题目,并能运用分式解决实际问题。
但在拓展环节,学生对分式在实际生活中的应用还不够了解,需要在今后的教学中进一步加强。
总的来说,本节课达到了预期的教学目标,学生对分式有了基本的认识和理解。
人教版八年级上册数学教案:15.1.1分式的概念

1.理论介绍:首先,我们要了解分式的基本概念。分式是由两个整式相除得到的一种数学表达形式,其中上面的整式叫做分子,下面的整式叫做分母。分式在解决比例问题和各类比例关系中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有3个苹果和2个橙子,我们如何表示每个水果的平均数量?通过分式3/5,我们可以表示每个水果的平均数量是3个苹果分给5个水果。
2.多设计一些与实际生活相关的案例和实践活动,提高学生们应用分式解决问题的能力。
3.对于约分和通分这两个难点,可以通过课后辅导、小组讨论等形式,帮助学生们更好地突破。
4.鼓励学生们提问,培养他们的探究精神和独立思考能力。
五、教学反思
在今天的课堂中,我们探讨了分式的概念及其在实际生活中的应用。整个教学过程下来,我发现学生们对于分式的定义和基本性质掌握得还不错,但在具体的运算和应用过程中,还存在一些问题。
首先,约分和通分这两个环节是学生们普遍觉得有难度的部分。在讲解时,我尽量通过具体的例子和步骤来阐述,但可能还需要在课后加强个别辅导,让学生们更加熟练地掌握这一技巧。同时,我注意到有的学生在分式运算时容易混淆运算法则,这说明我在教学中还需要进一步强化对运算规则的解释和练习。
4.培养学生的数学运算能力:通过分式的运算练习,提高学生准确、熟练地进行分式计算的能力,增强数学运算技巧。
5.培养学生的数学应用意识:使学生能够将所学分式知识应用于实际情境,体会数学在生活中的广泛应用,增强数学应用意识。
三、教学难点与重点
1.教学重点
(1)分式的概念:理解分式的定义,掌握分子、分母、分数线的组成,明确分式的性质。
-难点解析:学生在面对复杂的分式运算时,容易混淆运算顺序和法则。
分式的概念教案 (教案)

分式的概念教案 (教案)教案:分式的概念概述:本教案介绍了分式的基本概念和相关术语,帮助学生理解分式的含义和用途,并通过实例演示以及练习题目巩固学生的学习成果。
学习目标:1. 理解分式的定义;2. 掌握分子、分母、真分数和假分数的含义;3. 把分数转化为小数,并能够进行相互转换;4. 通过实例和练习题目,运用分式进行简单计算和问题解决。
教学资源:1. 黑板和白板;2. 教学文稿及练习题。
教学过程:Step 1:引入和概念明确(5分钟)老师介绍分式的概念,简单解释分子、分母和分式的符号表示,鼓励学生提问并澄清疑惑。
Step 2:分式的定义及示例(10分钟)老师在黑板上写出分式的定义,并给出一些示例,如1/2、3/4等。
请学生举一些自己能够想到的分数示例。
Step 3:真分数和假分数(10分钟)老师解释真分数和假分数的概念,并通过具体例子说明两者的区别。
鼓励学生用自己的言语解释这两个概念。
Step 4:分数的转换(15分钟)老师教授如何将分数转化为小数,以及如何将小数转化为分数,并通过例题示范。
学生可以参与转换过程,进一步理解转换规则。
Step 5:分式的加减(15分钟)老师在黑板上写出相应的分式加法和减法算式,并步骤演示,引导学生理解分式的加减原理和运算法则。
Step 6:分式的乘除(15分钟)老师在黑板上写出相应的分式乘法和除法算式,并步骤演示,引导学生理解分式的乘除原理和运算法则。
Step 7:问题解决练习(15分钟)老师提供一些与实际问题相关的练习题目,要求学生应用所学的知识解决问题。
鼓励学生相互合作,互相讨论解决方法。
Step 8:总结与复习(10分钟)老师对本节课所学的内容进行总结回顾,并与学生一起复习重点知识点。
鼓励学生提问,并解答他们的问题。
扩展内容:1. 可以引入分式的乘方概念,介绍如何进行分式的乘方运算;2. 可以给学生一些更复杂的问题,如解决实际生活中的分式应用问题,激发学生运用知识解决实际问题的能力。
人教版数学八年级上册教学设计15.1《分式》

人教版数学八年级上册教学设计15.1《分式》一. 教材分析人教版数学八年级上册第15.1节《分式》是初中数学的重要内容,主要让学生了解分式的概念、性质和分式的运算。
本节内容为后续的分式方程和不等式的学习打下基础。
教材通过丰富的实例引入分式,让学生在具体的情境中感受分式的意义,进而总结出分式的概念。
本节课的内容包括分式的定义、分式的基本性质、分式的运算以及分式的化简。
二. 学情分析八年级的学生已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维能力和抽象思维能力。
但是,对于分式的理解还需要通过具体的实例来帮助学生建立直观的认识。
学生在学习过程中可能对分式的运算规则和分式的化简部分存在一定的困难,因此需要教师在教学过程中进行详细的讲解和引导。
三. 教学目标1.知识与技能:让学生掌握分式的概念、性质和分式的运算方法,能够正确进行分式的化简。
2.过程与方法:通过实例引入分式,让学生在具体的情境中感受分式的意义,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生能够自主探究、合作交流。
四. 教学重难点1.重点:分式的概念、性质和分式的运算。
2.难点:分式的化简以及分式运算的灵活运用。
五. 教学方法1.情境教学法:通过具体的实例引入分式,让学生在实际情境中感受分式的意义。
2.启发式教学法:引导学生主动探究分式的性质和运算规律,培养学生的抽象思维能力。
3.小组合作学习:学生进行小组讨论,培养学生的团队合作精神,提高学生的交流能力。
六. 教学准备1.准备相关的实例和图片,用于引入分式和解释分式的概念。
2.准备分式的运算练习题,用于巩固学生的运算能力。
3.准备分式的化简示例,用于引导学生掌握分式的化简方法。
七. 教学过程1.导入(5分钟)利用实例引入分式,如“一块土地的长是宽的2倍,若长方形土地的面积为36平方米,求这块土地的宽是多少米?”让学生在具体的情境中感受分式的意义。
新人教版 数学 八年级上册 第十五章 分式 15.1.1从分数到分式1教案2

15.1.1 从分数到分式课标依据1、借助现实情境了解分式,进一步理解用字母表示数的意义。
2、能分析简单问题中的数量关系,并用代数式(分式)表示。
一、教材分析“从分数到分式”是人教版九年制义务教育课本中八年级上第十五章的第一节内容,是中学知识体系的重要组成部分。
分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。
学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。
学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.二、学情分析我校是农村初中,学习基础有较大的差异,大部分学生数学基础比较薄弱,对数学学习感觉很困难,导致学习兴趣低下。
为了激发学生的学习数学的兴趣,平时我在课堂上鼓励学生积极发言、小组讨论、合作探究等多种形式调动学生学习的积极性。
三、教学目标知识与技能1.理解分式的概念,会辨别分式与整式.2.会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.过程与方法能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.情感态度与价值观通过生活中的实例让学生体验发现身边的数学,激发学生对数学的学习兴趣,进一步引导探究,培养学生严谨创新的思维能力.四、教学重点难点教学重点准确理解分式的概念;教学难点会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.五、教法学法本节课运用启发类比的教学方法,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的定义教案
万全县第一初级中学 李德明
教学目标
(一)教学知识点
1.进一步理解用字母表示数的意义,发展符号感.
2.了解分式的概念,了解分式与整式概念的区别与联系.
3.掌握分式有意义的条件,
(二)能力训练要求
.能从具体情境中抽象出数量关系和变化规律,经历对具体问题的探索过程,进一步培养符号感.
(三)情感与价值观要求
通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值。
教学重点
1.了解分式的形式 (A 、B 是整式),并理解分式概念中的一个特点:分母中含有字母;
2.一个要求:字母的取值限制于使分母的值不得为零.
教学难点
分式的一个特点:分母含有字母;一个要求:字母的取值限制于使分母的值不能为零. 教学方法
讲练相结合
教学过程
Ⅰ.创设问题情境,引入新课
思考 我们先试着解答下面的问题:
1.长方形的面积为10cm²,长为7cm 。
宽应为____cm;长方形的面积为10,长为a,宽应为______;
2、把体积为200cm³的水倒入底面积为 33cm² 的圆柱形容器中,水面高度为_____cm; 把体积为200cm ³的水倒入底面积为S 的圆柱形容器中,水面高度为______。
观察:
有什么相同点?不同点? 相同点: 都是 (即A ÷B )的形式
并且A ,B 都是整式。
不同点 : 前两个的式子分母中都是字母,后两个的式子分母中没有字母.
Ⅱ.讲授新课
分式定义:
一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子就叫做分式。
a 10S 20071033200B A
考 考 你
1.判断:下面的式子哪些是分式?
思考:
1、分式 的分母有什么条件限制? 当B=0时,分式 无意义。
当B ≠0时,分式 有意义。
2、当 =0时分子和分母应满足什么条件?当A=0而 B ≠0时,分式
的值为零。
例题 1 : 分式中的字母满足什么条件时,分式有意义?
解:(1)当分母a ≠0时,原分式有意义。
(2)当分母x-1≠0即x ≠1时,原分式有意义。
(3)当分母3m+2≠0即m ≠ 时,原分式有意义。
练习1、下列分式中的字母满足什么条件时分式有意义?
a ≠0 x ≠1 x ≠y
b ≠3a x ≠±1
例2、当 x 取什么值时,下列分式的值为零 ?
解⑴:由分子x +2=0,得 x =-2。
而当 x =-2时,分母 2x -5 ≠
所以当x=-2时,分式 的值是零。
解⑵ :由分子|x |-2=0,得 x =±2。
当x =2时,分母 2x +4=4+4≠0。
当x =-2时,分母 2x +4=-4+4=0。
所以当x=2时,分式的值是零。
练习2
当x 取什么值时,下列分式的值为零? s b -2a -300300072S V 32S 5122+x c
b +5475-x 122
2
-+-x y xy x 132-x B A
B A B A B A B A a
2
)1(11)2(-+x x 232)
3(+m m 32-a 211-+x x 232+m m y x -1b a b a -+321
2
2-x 3
2-≠m ,522-+x x .422||+-x x
巩固练习: (1)当 时,分式 有意义;(2)当 时,分式 有意义; (3)当 时,分式 无意义;(4)当 时,分式 的值为零; (5)分式 有意义的条件: 当x= -1时,分式 的值为 ;
Ⅳ.课时小结
1.分式的定义
2.分式有意义
3. 分式的值为0
巧学速记:
分式形状像分数,分母为零无意义,分式的值要为零,分子为零母不零,二者缺一都不行。
Ⅴ.课后作业
习题15.1
第2题、第3题
x x 5-2-x x 1
1222+++x x x 36--x x 121
+x 44-+x x 392--x x 392--x x 112++-x x 112++-x x。