人教版初中数学九年级《 相似三角形》单元测试题

合集下载

(完整word版)相似三角形单元测试卷(含答案)

(完整word版)相似三角形单元测试卷(含答案)

相似三角形单元测试卷(共100分)一、填空题:(每题5分,共35分)1、已知a =4,b =9,c 是a b 、的比例中项,则c = .2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则S S ADE ∆=四边形DBCE : .图1 图2 图34、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.图4 图5 图66、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)8、若k bac a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21 B 、31 C 、32 D 、41 图7 图8 图910、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,则FG 的长为( )A 、8cmB 、6cmC 、64cmD 、26cm 11、下列说法中不正确的是( )A .有一个角是30°的两个等腰三角形相似;B .有一个角是60°的两个等腰三角形相似;C .有一个角是90°的两个等腰三角形相似;D .有一个角是120°的两个等腰三角形相似.12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:413、两个相似多边形的面积之比为1∶3,则它们周长之比为( )A .1∶3B .1∶9C .1D .2∶314、下列3个图形中是位似图形的有( )A 、0个B 、1个C 、2个D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、BE 是△ABC 的两条高,试说明AD ·BC=BE ·AC16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;(2)当小华走到路灯B时,他在路灯A 下的影长是多少?17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.AB C ED参考答案一、 填空题:(1)、1或4或16;(2)、±6;(3)、-94;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2三、作图题: 23、(略) 四、解答题:24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2∴△ABC ∽△DEF26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4∴AB=2.4+2=4.4答:这棵树高4.4m 。

《-相似三角形》单元测试题(含答案)

《-相似三角形》单元测试题(含答案)

《相似三角形》单元测试题一、精心选一选(每小题4分,共32分)1、下列各组图形有可能不相似得就就是()、(A)各有一个角就就是50°得两个等腰三角形(B)各有一个角就就是100°得两个等腰三角形(C)各有一个角就就是50°得两个直角三角形(D)两个等腰直角三角形2、如图,D就就是⊿ABC得边AB上一点,在条件(1)△ACD=∠B,(2)AC2=AD·AB,(3)AB边上与点C距离相等得点D有两个,(4)∠B=△ACB中,一定使⊿ABC∽⊿ACD得个数就就是( )(A)1(B)2(C)3 (D)43、如图,∠ABD=∠ACD,图中相似三角形得对数就就是( )(A)2(B)3 (C)4 (D)54、如图,在矩形ABCD中,点E就就是AD上任意一点,则有( )(A)△ABE得周长+△CDE得周长=△BCE得周长(B)△ABE得面积+△CDE得面积=△BCE得面积(C)△ABE∽△DEC(D)△ABE∽△EBC5、如果两个相似多边形得面积比为9:4,那么这两个相似多边形得相似比为()A、9:4B、2:3C、3:2D、81:166、下列两个三角形不一定相似得就就是( )。

A、两个等边三角形B、两个全等三角形C、两个直角三角形D、两个等腰直角三角形7、若⊿ABC∽⊿,∠A=40°,∠B=110°,则∠=()A、40°B110°C70°D30°8、如图,在ΔABC中,AB=30,BC=24,CA=27, AE=EF=FB,EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分得三个三角形得周长之与为( )A、70B、75C、81D、80二、细心填一填(每小题3分,共24分)9、如图,在△ABC中,△BAC=90°,D就就是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于______、10、在一张比例尺为1:10000得地图上,我校得周长为18cm,则我校得实际周长为。

九年级数学相似三角形单元测试的题目及答案详解

九年级数学相似三角形单元测试的题目及答案详解

九年级数学相似单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432c b a ,则c b a的值为( )A.54B.45C.2D.213.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( )A.2B.22C.26D.334.在相同时刻,物高与影长成正比。

如果高为 1.5米的标杆影长为 2.5米,那么影长为30米的旗杆的高为( ) A 20米 B 18米 C 16米 D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于( ) A.cb2B.ab2C.cabD.ca26.一个钢筋三角架三长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长()A .163B .8C .10D .169.已知a 、b 、c 为非零实数,设k=c ba bca a cb ,则k 的值为()A .2B .-1C .2或-1D .110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m二.填空题(每小题3分,共30分)11、已知43yx,则._____yy x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= . 13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC中,D,E分别是AB,AC上的点(DE BC),当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且2·,则∠BCA的度数为____________。

相似三角形单元测试题

相似三角形单元测试题

相似三角形单元检测题一填空:(3分×14=42分) (90分钟完卷)1.如图1,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,那么AD=______.2。

如图2,AD∥EF∥BC,那么图的相似三角形共有_____对。

3。

如图3,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,那么BM=______.4。

ΔABC的三边长为,,2,ΔA'B’C'的两边为1和,假设ΔABC∽ΔA'B'C',那么ΔA'B’C’的笫三边长为________.5.两个相似三角形的面积之比为1∶5,小三角形的周长为4,那么另一个三角形的周长为_____.6。

如图4,RtΔABC中,∠C=900,D为AB的中点,DE⊥AB,AB=20,AC=12,那么四边形ADEC的面积为__________.7.如图5,RtΔABC中,∠ACB=900,CD⊥AB,AC=8,BC=6,那么AD=____,CD=_______。

8.如图6,矩形ABCD中,AB=8,AD=6,EF垂直平分BD,那么EF=_________.9。

如图7,ΔABC中,∠A=∠DBC,BC=,S ΔBCD∶SΔABC=2∶3,-那么CD=______。

10.如图8,梯形ABCD中,AD∥BC,两腰BA和CD的延长线相交于P,PF⊥BC,AD=3.6,BC=6,EF=3,那么PF=_____.11。

如图9,ΔABC中,DE∥BC,AD∶DB=2∶3,那么SΔADE∶SΔ=___________.ABE12.如图10,正方形ABCD内接于等腰ΔPQR,∠P=900,那么PA∶AQ=__________.13。

如图11,ΔABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,-那么S四边形DFGE∶S四边形FBCG=_________.14.如图12,ΔABC中,中线BD和CE相交于O点,SΔADE=1,那么S四=________。

初中数学相似三角形单元测试卷

初中数学相似三角形单元测试卷

相似三角形单元测试卷(满分120分,考试时间90分钟)一.选择题【本题共6题,每小题3分,共18分】1.在△ABC 中,点D 、E 分别在边AB 、AC 上,AD :BD =1:2,那么下列条件中能够判断DE//BC 的是……………………………………………………………………( ) (A) 21=BCDE ; (B) 31=BC DE ; (C) 21=AC AE ; (D) 31=AC AE2.如图,123//// ,下列比例式中正确的是…………………………………( ) (A )AD CE BC DF =; (B )AD DF BC CE =; (C )AB CD CD EF =; (D )AD BCBE AF =. 3.已知a ,b ,c 是非零向量,不能判定a ∥b的是……………………………( )(A )a ∥c ,b ∥c ;(B ) a =3b ;(C )a =b ;(D )a =12c ,b =-2c. 4.如图,△ABC 中,DE //BC 交AB 于点D ,交AC 于点E ,如果ADE BCED S S ∆=四边形,那么下列等式成立的是 ……………………………………………………………( ) (A ):1:2DE BC =;(B ):1:3DE BC =;(C ):1:4DE BC =;(D ):DE BC = 5.在Rt △ABC 和Rt △DEF 中,90C F ∠=∠=°,下列条件中不能判定这两个三角形相似的是…………………………………………………………………………………( )(A )55,35A D ∠=°∠=°; (B )9,12,6,8AC BC DF EF ====; (C )3,4,6,8AC BC DF DE ====;(D )10,8,15,9AB AC DE EF ====. 6.如图,在三角形纸片ABC 中,AB=AC ,∠A=36°。

九年级数学相似三角形单元测试题(卷)和答案

九年级数学相似三角形单元测试题(卷)和答案

九年级数学 相似 单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432≠==c b a ,则cb a +的值为( )A.54B.45C.2D.213.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( )A.2B.22C.26D.334.在相同时刻,物高与影长成正比。

如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( ) A 20米 B 18米 C 16米 D 15米 5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ( )A.cb 2B.ab 2C.cabD.ca 2 6.一个钢筋三角架三 长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置 8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长( )A .163B .8C .10D .169.已知a 、b 、c 为非零实数,设k=cba b c a a c b +=+=+,则k 的值为() A .2 B .-1 C .2或-1 D .110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二.填空题(每小题3分,共30分) 11、已知43=y x ,则._____=-yy x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC中,D,E分别是AB,AC上的点(DE BC),当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ·,则∠BCA的度数为____________。

第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册

第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册

人教新版九年级下册《第27章相似三角形》2022年单元测试卷一、单选题(本大题共10小题,共44分)1.(5分)选项图形与如图所示图形相似的是()A. B.C. D.2.(5分)若ΔABC∽ΔDEF,相似比为1:2,则ΔABC与ΔDEF的周长比为()A. 2:1B. 1:2C. 4:1D. 1:43.(5分)如图,点P是△ABC的边AB上的一点,若添加一个条件,使△ABC与△CBP相似,则下列所添加的条件错误的是()A. ∠BPC=∠ACBB. ∠A=∠BCPC. AB:BC=BC:PBD. AC:CP=AB:BC4.(5分)将一个直角三角形的三边扩大3倍,得到的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5.(4分)如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两个端点上,若CD=3cm,则AB的长是()A. 9cmB. 12cmC. 15cmD. 18cm6.(4分)如图,在平面直角坐标系中的第一象限内,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点O为位似中心,作出△ABC的位似图形△DEF.若△DEF与△ABC的相似比为2:1.则点F的坐标为()A. (2,4)B. (2,2)C. (6,2)D. (7,2)7.(4分)如图,在正方形ABCD中,E是边AD中点,F是边AB上一动点,G是EF延长线上一点,且GF=EF.若AD=4,则线段CG长度的最小值和最大值分别为()A. 4,4√2B. 2√5,4√2C. 2√5,2√13D. 6,2√138.(4分)如图,在RtΔABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. 125B. 4 C. 245D. 59.(4分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P 等于()A. 65°B. 130°C. 50°D. 45°10.(4分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②SΔFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;①A D2=FQ⋅AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共7小题,共28分)11.(4分)如图,已知ADDB =AEEC,AD=6.4cm,DB=4.8cm,EC=4.2cm,则AC=______ cm.12.(4分)如图,表示ΔAOB为O为位似中心,扩大到ΔCOD,各点坐标分别为:A(1,2),B(3,0),D(4,0),则点C坐标为 ______ .13.(4分)如图,已知CB平分∠ACD,CB⊥AB垂足为点B,CD⊥BD垂足为点D,AC=5cm,BC=4cm,则BD=______.14.(4分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE、AF于M、N,下列结论:①AF⊥BG;②BN=43NF;③S四边形CGNF=S△ABN;④BMMG=38.其中正确结论的序号有 ______.15.(4分)如图,平行四边形ABCD中,E为AD的中点,已知ΔDEF的面积为1,则四边形ABFE的面积为______.16.(4分)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为______m.17.(4分)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4.若点P1,P2的坐标分别为(0,−1),(−2,0),则点P4的坐标为________.三、解答题(本大题共7小题,共28分)18.(4分)如图,一个木框,内外是两个矩形ABCD和EFGH,问按图中所示尺寸,满足什么条件这两个矩形相似?19.(4分)如图所示,在△ABC中,∠ACB=90°,AM是BC边的中线,CN⊥AM于N 点,连接BN.求证:(1)△MCN∽△MAC;(2)∠NBM=∠BAM.20.(4分)如图所示,在△ABC中,DE//BC,EF//CD,AF=4,AB=6.求AD的长.21.(4分)如图,在四边形ABCD中,点E是对角线AC上一点,且ABAC =AEAD=BECD.(1)若∠DAE=22°,求∠BAD的度数;(2)判断△ADE与△ACB是否相似,并说明理由.22.(4分)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.(1)求证:CE是⊙O的切线.(2)连接OE,已知BD=3√5,CD=5,求OE的长.23.(4分)将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(−√3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设AM=m,折叠后的△A′NM与四边形OBNM重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅰ)如图②,当点A′落在第一象限时,A′M与OB相交于点C,试用含m的式子表示S,并直接写出m的取值范围;(Ⅰ)当1⩽m<√3时,求S的取值范围(直接写出结果即可).24.(4分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E.AD交BE 于点F,点G为BC边的中点,作BH⊥AB交直线FG于点H.(1)如图1,当∠ABC=60°,AF=3时,CF=______,BH=______.(2)如图2,当∠ABC=45°时,试探索AF与BH的数量关系,并证明.(3)如图3,当∠ABC=α(0°<α<60°)时,(2)中AF与BH的数量关系 ______成立(填“仍然”或“不再”),请说明理由.答案和解析1.【答案】D;【解析】解:因为相似图形的形状相同,所以A、B、C中形状不同,故选:D.根据相似图形的性质,根据形状相同排除A、B、C,可得出答案.此题主要考查相似图形的性质,掌握相似图形的对应角相等、对应边成比例是解答该题的关键.2.【答案】B;【解析】解:∵ΔABC∽ΔDEF,ΔABC与ΔDEF的相似比为1:2,∴ΔABC与ΔDEF的周长比为1:2.故选:B.根据相似三角形的周长的比等于相似比得出.这道题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.3.【答案】D;【解析】解:A、已知∠B=∠B,若∠BPC=∠ACB,则△ABC与△CBP相似,故A不符合题意;B、已知∠B=∠B,若∠A=∠BCP,则△ABC与△CBP相似,故B不符合题意;C、已知∠B=∠B,若AB:BC=BC:PB,则△ABC与△CBP相似,故C不符合题意;D、若AC:CP=AB:BC,但夹角不是公共等角∠B,则不能证明△ABC与△CBP相似,故D符合题意,故选:D.根据相似三角形的判定逐一进行判断即可.此题主要考查了相似三角形的性质,熟练掌握相似三角形的判定是解答该题的关键.4.【答案】A;【解析】解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形故选A.根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.这道题主要考查相似三角形的判定以及性质,得出两三角形相似是解答该题的关键,是基础题,难度不大.5.【答案】A;【解析】解:∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴ΔAOB∽ΔDOC,∴AOOD =ABCD=31,∴AB=3CD,∵CD=3cm,∴AB=9cm,故选:A.首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.此题主要考查相似三角形的应用,解答该题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.6.【答案】C;【解析】解:∵△ABC与△DEF位似.△DEF与△ABC的相似比为2:1,∴△ABC与△DEF位似比为1:2,∵点C的坐标为(3,1),∴点F的坐标为(3×2,1×2),即(6,2),故选:C.根据位似变换的性质解答即可.此题主要考查的是位似变换的性质、相似三角形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.7.【答案】D;【解析】解:如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,则∠GHF=∠GHB=∠K=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AD=AB=BC=4,∵E是边AD中点,∴AE=2,在△AFE和△HFG中,{∠A=∠GHF∠AFE=∠GFHEF=GF,∴△AFE≌△HFG(AAS),∴AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,∵∠HBK=180°−90°=90°=∠K=∠GHB,∴四边形BHGK是矩形,∴GK=BH=|4−2x|,BK=GH=2,∴CK=CB+BK=4+2=6,∴CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,∵4>0,∴当x=2时,CG2有最小值36,即CG的最小值为6,∵0⩽x⩽4,∴当x=0或4时,CG2有最大值52,即CG的最大值为√52=2√13,故选:D.如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,结合正方形的性质可证△AFE≌△HFG(AAS),得出:AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,由勾股定理可得CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,再运用二次函数的性质即可求得答案.本题是几何综合题,考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理,二次函数的性质等,解答该题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.【答案】C;【解析】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB=√AC2+BC2=√62+82=10.∵SΔABC=12AB⋅CM=12AC⋅BC,∴CM=AC.BCAB =6×810=245,即PC+PQ的最小值为245.故选:C.过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SΔABC=12AB⋅CM=12AC⋅BC,得出CM的值,即PC+PQ的最小值.这道题主要考查了轴对称问题,解答该题的关键是找出满足PC+PQ有最小值时点P和Q的位置.9.【答案】C;【解析】解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°−∠AOB=50°.故选:C.连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解,是中考常见题型.10.【答案】D;【解析】该题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、三角形的面积,矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明ΔFGA≌ΔACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出SΔFAB=1 2FB.FG=12S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出ΔACD∽ΔFEQ,得出对应边成比例,得出AD.FE=AD2=FQ.AC,④正确.解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在ΔFGA和ΔACD中,{∠G=∠C∠AFG=∠CADAF=AD∴ΔFGA≌ΔACD(AAS),∴FG=AC,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG//BC,∵FG=BC,FG//BC,∴四边形CBFG是平行四边形,又∵FG⊥CA,∴四边形CBFG是矩形,∴∠CBF=90°,SΔFAB=12FB.FG=12S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;易证∠DQB=∠ADC,∴∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴ΔACD∽ΔFEQ,∴ACEF =ADFQ,∴AD.FE=AD2=FQ.AC,④正确;故选D.11.【答案】9.8;【解析】解:∵ADDB =AEEC,∴6.44.8=AE4.2,解得:AE=5.6(cm),则AC=AE+EC=5.6+4.2=9.8(cm),故答案为:9.8.根据ADDB =AEEC,可以先求出AE的长,即可得到AC的长.此题主要考查了比例的基本性质,在比例式中,已知三个就可求得第四个的量.12.【答案】(43,83); 【解析】解:∵ΔAOB 与ΔCOD 是位似图形,OB =3,OD =4,所以其位似比为3:4.∵点A 的坐标为A(1,2),所以点C 的坐标为(43,83).故答案为:(43,83).由图中数据可得两个三角形的位似比,进而由点A 的坐标,结合位似比即可得出点C 的坐标.此题主要考查了位似变换以及坐标与图形结合的问题,能够利用位似比求解一些简单的计算问题.13.【答案】125; 【解析】解:∵CB ⊥AB 垂足为点B ,∴∠ABC =90°,∵AC =5cm ,BC =4cm ,∴AB =√AC 2−BC 2=3(cm ),∵CD ⊥BD 垂足为点D ,∴∠ABC =∠D =90°,∵CB 平分∠ACD ,∴∠ACB =∠BCD ,∴ΔACB ∽ΔBCD ,∴AC BC=AB BD , ∴54=3BD ,∴BD =125,故答案为:125.根据勾股定理得到AB =√AC 2−BC 2=3(cm ),根据角平分线的定义得到∠ACB =∠BCD ,根据相似三角形的性质即可得到结论.此题主要考查了相似三角形的判定和性质,角平分线的定义,垂直的定义,勾股定理,熟练掌握相似三角形的判定和性质定理是解答该题的关键.14.【答案】①③④;【解析】解:过点G 作GH ⊥AB ,垂足为H ,交AE 于点O ,∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,∵BE=EF=FC,CG=2GD,∴BF=23BC,CG=23CD,∴BF=CG,∴△ABF≌△BCG(SAS),∴∠AFB=∠CGB,∵∠CGB+∠CBG=90°,∴∠AFB+∠CBG=90°,∴∠BNF=180°−(∠AFB+∠CBG)=90°,∴AF⊥BG,故①正确;在Rt△ABF中,tan∠AFB=ABBF =AB23BC=32,∴在Rt△BNF中,tan∠AFB=BNNF =32,∴BN=32NF,故②不正确;∵△ABF≌△BCG,∴S△ABF=S△BCG,∴S△ABF−S△BNF=S△BCG−S△BNF,∴S四边形CGNF=S△ABN,故③正确;∵∠DAB=∠D=∠AHG=90°,∴四边形ADGH是矩形,∴AD=GH,DG=AH,AD//GH,∴GH//BC,设DG=AH=a,∴CD=3DG=3a,∴AB=AD=BC=3a,∴BE=13BC=a,∵∠AHO=∠ABE=90°,∠HAO=∠BAE,∴△AHO∽△ABE,∴AHAB =OHBE,∴a3a =OHa,∴OH=13a,∴GO=GH−OH=3a−13a=83a,∵GH//BC,∴∠OGM=∠GBE,∠GOM=∠OEB,∴△GOM∽△BEM,∴GOBE =GMBM=83aa=83,∴BMMG =38,故④正确,所以,正确结论的序号有:①③④,故答案为:①③④.过点G作GH⊥AB,垂足为H,交AE于点O,根据正方形的性质可得AD=AB=BC= CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,再根据BE=EF=FC,CG=2GD,从而可得BF=CG,进而可证△ABF≌△BCG,然后利用全等三角形的性质可得∠AFB=∠CGB,从而可得∠AFB+∠CBG=90°,即可判断①;在Rt△ABF中,利用锐角三角函数的定义求出tan∠AFB=32,然后在Rt△BNF中,利用锐角三角函数的定义可得BNNF =32,即可判断②,由①可得△ABF≌△BCG,从而可得S△ABF=S△BCG,即可判断③,根据题意易证四边形ADGH是矩形,从而可得AD=GH,DG=AH,AD//GH,进而可得GH//BC,然后设DG=AH=a,再证明A字模型相似三角形△AHO∽△ABE,从而利用相似三角形的性质求出OH的长,进而求出GO的长,最后再证明8字模型相似三角形△GOM∽△BEM,利用相似三角形的性质即可判断④.此题主要考查了正方形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,相似三角形的判定与性质,以及正方形的十字架模型是解答该题的关键.15.【答案】5;【解析】解:∵四边形ABCD是平行四边形,∴AD//BC,∴DE:BC=EF:FC=DF:FB=1:2,ΔBFC∽ΔDFE,∴SΔBFC=4⋅SΔDEF=4,SΔDFC=2⋅SΔDEF=2,SΔBDC=SΔABD=6,∴S四边形ABFE=SΔABD−SΔDEF=6−1=5,故答案为5.由于四边形ABCD是平行四边形,那么AD//BC,AD=BC,根据平行线分线段成比例定理的推论可得ΔDEF∽ΔBCF,再根据E是AD中点,易求出相似比,从而可求ΔBCF的面积,再利用ΔBCF与ΔDEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求ΔDCF的面积,由此即可解决问题;该题考查了平行四边形的性质、平行线分线段成比例定理的推论、相似三角形的判定和性质.解答该题的关键是知道相似三角形的面积比等于相似比的平方、同高两个三角形面积比等于底之比,先求出ΔBCF的面积.16.【答案】9;【解析】解:由题意得,CD//AB,∴ΔOCD∽ΔOAB,∴CDAB =ODOB,即3AB =66+12,解得AB=9.故答案为:9.根据ΔOCD和ΔOAB相似,利用相似三角形对应边成比例列式求解即可.该题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解答该题的关键.17.【答案】(8,0);【解析】该题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解答该题的关键.根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.解:∵点P1,P2的坐标分别为(0,−1),(−2,0),∴OP1=1,OP2=2.∵RtΔP1OP2∽RtΔP2OP3,∴OP1OP2=OP2OP3,即12=2OP3,解得OP3=4.∵RtΔP2OP3∽RtΔP3OP4,∴OP2OP3=OP3OP4,即24=4OP4,解得OP4=8,则点P4的坐标为(8,0).故答案为(8,0).18.【答案】解:当两个矩形ABCD和EFGH相似时,ADEH =CDGH,即:mm−2b =nn−2a,整理得:ab =nm,故当ab =nm时两个矩形相似.;【解析】利用相似多边形的对应边的比相等列出比例式即可求得尺寸满足的条件.此题主要考查了相似多边形的性质,解答该题的关键是根据题意列出比例式,难度不大.19.【答案】证明:(1)∵∠ACB=90°,CN⊥AM,∴∠ACB=∠MNC,∵∠NMC=∠CMA,∴△MCN∽△MAC;(2)由(1)得:△MCN∽△MAC,∴MCMA =MNMC,∴MC2=MN•MA,∵AM是BC边的中线,∴MB=MC,∴MB2=MN•MA,∵∠BMN=∠AMB,∴△MNB∽△MBA,∴∠NBM=∠BAM.;【解析】(1)根据两个角相等的两个三角形相似可直接证明;(2)由(1)得:△MCN∽△MAC,则MCMA =MNMC,再根据BM=CM,以及∠BMN=∠AMB,可证△MNB∽△MBA,从而解决问题.此题主要考查了相似三角形的判定与性质,利用两边成比例且夹角相等证明△MNB∽△MBA是解答该题的关键.20.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB =AEAC①.∵EF∥CD,∴△AEF∽△ACD.∴AFAD =AEAC②.由①与②,得AFAD =AD AB,∴AD2=AF•AB=4×6=24.∴AD=2√6.;【解析】由DE//BC,EF//CD,得△AEF∽△ACD,可得△ADE∽△ABC分别得AFAD =AEAC,ADAB=AE AC ,进而可证得AFAD=ADAB,便可求得答案.此题主要考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.【答案】解:(1)∵ABAC =AEAD=BECD.∴△ABE∽△ACD,∴∠DAE=∠BAE=22°,∴∠BAD=44°;(2)△ADE∽△ACB,理由如下:∵ABAC =AEAD,∴ABAE =ACAD,又∵∠DAC=∠BAE,∴△ADE∽△ACB.;【解析】(1)通过证明△ABE∽△ACD,可得∠DAE=∠BAE=22°,即可求解;(2)由两组对应边的比相等且夹角对应相等的两个三角形相似,可证明△ADE∽△ACB.此题主要考查了相似三角形的判定,掌握相似三角形的判定方法是解答该题的关键.22.【答案】(1)证明:如图,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∵E为BD的中点,∴BE=CE=DE,∴∠ECB=∠EBC,∵BD与⊙O相切于点B,∴∠ABD=90°,∴∠OBC+∠EBC=90°,∴∠OCB+∠ECB=90°,∴∠OCE=90°∴OC ⊥CE ,又∵OC 为半径,∴CE 是⊙O 的切线;(2)解:连接OE ,∵∠D=∠D ,∠BCD=∠ABD ,∴△BCD ∽△ABD ,∴BD AD =CD BD ,∴BD 2=AD•CD ,∴(3√5)2=5AD ,∴AD=9,∵E 为BD 的中点,AO=BO ,∴OE=12AD=92.; 【解析】(1)由等腰三角形的性质可得∠OBC =∠OCB ,由圆周角定理可得∠ACB =90°,由直角三角形的性质可得BE =CE =DE ,可得∠ECB =∠EBC ,由切线的性质可得∠ABD =90°,可证OC ⊥CE ,可得结论;(2)通过证明△BCD ∽△ABD ,可得BD AD =CD BD ,可求AD 的长,由三角形中位线定理可求解.此题主要考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,利用相似三角形的性质求出AD 的长是本题的关键.23.【答案】解:(Ⅰ)由题意得BM=AM=m ,∵A (-√3,0),B (0,1),∴OB=1,OA=√3,∴OM=√3-m ,由勾股定理得:BM 2=OB 2+OM 2,∴m 2=12+(√3-m )2,即m2=1+3-2√3m+m2,m=2√33,∴OM=√3−2√33=√33,∴M(-√33,0);(Ⅱ)S=5√38m2+3m−√3,2√33<m≤√3,由(1)知,使A'落在第一象限,则m>2√33,∵OA=√3,∴2√33<m≤√3,∵△MNA'是由△AMN翻折得到,∴S=S△AOB-S△AMN-S△MOC∵OA=√3,OB=1,∴S△AOB=12×√3×1=√32,AB=√OA2+OB2=2,∵AM=m,∴M(-√3+m,0),∵MN⊥AB,∴Sin∠BAO=BOAB =MNAM,∴12=MNm,∴MN=m2,∴AN=√MA2−MN2=√32m,∴S△AMN=12×√32m×m2=√38m2,∵sin∠BAO=12,∴∠BAO=30°,∴∠AMN=∠A′MN=60°,∴∠CMO=180°-∠AMN-∠A′MN=60°,tan60°=√3=COMO,∵MO=√3-m,∴CO=√3(√3−m),∴S△CMO=12×CO×OM=12×√3(√3−m)(√3−m)=√32(√3−m)2∴S=√32−√38m2−√32(√3−m)2=√3 2−√38m2−√32(3−2√3m+m2)=√32−√38m 2−3√32+3m −√32m 2 =-5√38m 2+3m-√3,(Ⅲ)√38<S ≤√35, 由(2)得:S=-5√38m 2+3m-√3, 当m=-2×(−5√38)=4√35时S 取最大值,4√35<m <√3单调递减, ∵4√35>1, ∴顶点为抛物线的最高点,顶点的纵坐标为S 的最大值,S max =4ac−b 24a =4×(−5√38)×√3−94×(−5√38)=√35,S (m=1)=-5√38+3−√3=3−13√38,S (m=√3)=-5√38×(√3)2+3×√3−√3=√38, ∵S (m=√3)<S (m=1),∴√38<S ≤√35.; 【解析】(Ⅰ)由坐标得OA 、OB 的长,再根据勾股定理得m 的值,从而求出OM 的长,得到M 坐标; (Ⅰ)因为使A ′落在第一象限,OA =√3,所以可以确定m 的取值范围;由图可得S =S △AOB −S △AMN −S △MOC ,所以分别求出三个三角形面积(用含m 的式子表示),其中用到三角函数、勾股定理等;(Ⅰ)根据(2)得到的关于S 的二次函数解析式可知,抛物线开口向下,顶点在1⩽m <√3部分,所以顶点的纵坐标是S 的最大值;再分别计算m =1和m =√3时函数值,比较大小,从而求解.本题属于几何代数综合题,考查勾股定理、三角函数、待定系数法求二次函数解析式及最值,解题关键是结合图形,分析题意综合运用以上知识点,计算比较繁琐.24.【答案】3 3 仍然;【解析】解:(1)∵AB =AC ,∠ABC =60°,∴△ABC 是等边三角形,BE ⊥AC ,∴BE 垂直平分AC ,∠CBE =30°,∴AF =CF =3,∵BH ⊥AB ,∴∠HBC =30°,∵AD ⊥BC ,∴∠H =∠BFH =60°,BF =CF ,∴BF=BH=CF=3,故答案为:3,3;(2)AF=BH,理由如下:连接CF,∵∠ABD=45°,AD⊥BC,∴AD=BD,∵BE⊥AC,∴∠AEF=∠BDF=90°,∵∠AFE=∠BFD,∴∠EAF=∠DBF,∴△ADC≌△BDF(ASA),∴DF=DC,∴∠DCF=45°,∵BH⊥AB,∴∠HBG=45°,∴∠HBG=∠FCD,∵BG=CG,∠BGH=∠CGF,∴△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH;(3)仍然成立,理由如下:连接CF,由(2)同理可得,△ADC∽△BDF,∴ADBD =DCDF,∴∠ABD=∠CFD,∵BH⊥AB,∴∠BHG+∠ABD=90°,∴∠HBG=∠FCG,由(2)同理可得,△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH,故答案为:仍然.(1)根据等边三角形的性质可得AF=CF=BF=3,再说明BF=BH,可得答案;(2)连接CF,首先利用ASA证明△ADC≌△BDF,得DF=DC,则∠DCF=45°,再证明△CGF≌△BGH,得BH=CF,从而证明结论;(3)连接CF,首先证明△ADC∽△BDF,得ADBD =DCDF,则有∠ABD=∠CFD,由(2)同理可得,△CGF≌△BGH(ASA),从而解决问题.本题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,证明△CGF≌△BGH是解答该题的关键.。

人教版九年级数学下册《相似三角形》单元测试题

人教版九年级数学下册《相似三角形》单元测试题

初中数学试卷《相似三角形》单元测试题一、选择题1、如图,已知AB ∥CD ∥EF ,那么下列结论正确的是( )A .AD DF =BC CEB .BC CE =DF AD C .CD EF =BC BE D .CD EF =AD AF2、已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( ) (A)1:2 (B)1:4 (C)2:1 (D)4:13、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )4、如图,△ABC中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+5、如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C . 8 cm 2D .16 cm 26、如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,若S △BDE :S △CDE =1:4,则S △BDE :S △ACD =( ) A . 1:16 B . 1:18 C . 1:20 D . 1:247、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32B .76C .256D .28、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ) A .4cm B .6cm C .8cm D .10cm9、正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则 AODO等于( )A .2 5 3B .13C .23D .1210、一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A .第4张 B .第5张 C .第6张 D .第7张 二、填空题11、在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为 .12、如图,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .13、如图,小明用长为3m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB=12m ,则旗杆AB 的高为 m 14、如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD= . 15、将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 . 16、如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号).第4题第11题 ADE CB 第12题 EAB ′ CFBF C DO 第13题 第10题第1题 B . C . D . A B C A 第2题三、17、如图,在矩形ABCD 中,点E F 、分别在边AD DC 、上,A B E D E F △∽△,692AB AE DE ===,,,求EF 的长.18、如图,⊙O 的半径为4,B 是⊙O 外一点,连接OB ,且OB=6,过点B 作⊙O 的切线BD ,切点为D ,延长BO 交⊙O 于点A ,过点A 作切线BD 的垂线,垂足为C . (1)求证:AD 平分∠BAC ;(2)求AC 的长.19、小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD =1.2m ,CE =0.8m ,CA =30m (点A E C 、、在同一直线上).已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).20、如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O .M 为AD 中点,连接CM 交BD 于点N ,且ON=1.(1)求BD 的长;(2)若△DCN 的面积为2,求四边形ABCM 的面积.21、△ABC 在方格纸中(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′;(3)计算△A ′B ′C ′的面积S .22、如图,△ABC 中,∠C =90°,AC =4,BC =3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七章《相似三角形》单元测试题
一、 精心选一选(每小题4分,共32分)
1. 下列各组图形有可能不相似的是( ).
(A)各有一个角是50°的两个等腰三角形
(B)各有一个角是100°的两个等腰三角形
(C)各有一个角是50°的两个直角三角形
(D)两个等腰直角三角形
2. 如图,D 是⊿ABC 的边AB 上一点,在条件(1)△ACD =∠B ,(2)AC 2=AD·AB,(3)AB
边上与点C 距离相等的点D 有两个,(4)∠B =△ACB 中,一定使⊿ABC ∽⊿ACD 的个数是( )
(A )1 (B )2 (C )3 (D )4
3.如图,∠ABD =∠ACD ,图中相似三角形的对数是( )
(A )2 (B )3 (C )4 (D )5
4.如图,在矩形ABCD 中,点E 是AD 上任意一点,则有( )
(A )△ABE 的周长+△CDE 的周长=△BCE 的周长
(B )△ABE 的面积+△CDE 的面积=△BCE 的面积
(C )△ABE ∽△DEC
(D )△ABE ∽△EBC
5.如果两个相似多边形的面积比为9:4,那么这两个相似多边
形的相似比为( )
A.9:4
B.2:3
C.3:2
D.81:16
6. 下列两个三角形不一定相似的是( )。

A. 两个等边三角形
B. 两个全等三角形
C. 两个直角三角形
D. 两个等腰直角三角形
7. 若⊿ABC ∽⊿C B A '',∠A=40°, ∠B=110°,则∠C '=( )
A. 40° B110° C70° D30°
8.如图,在ΔABC中,AB=30,BC=24,CA=27, AE=EF=FB,
EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形的周
长之和为()
A、70
B、75
C、81
D、80
二、细心填一填(每小题3分,共24分)
9.如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于______.
10、在一张比例尺为1:10000的地图上,我校的周长为18cm,则我校的实际
周长为。

11、如果两个相似三角形对应高的比为4:5,则这两个三角形的相似比是
,它们的面积的比是。

12、已知⊿ABC∽⊿DEF,AB=21cm,DE=28cm,则⊿ABC和⊿DEF的相似比为
13、某同学利用影子长度测量操场上旗杆的高度,在同一时刻,他测得自己影子长为0.8m,旗杆的影子长为7m,已知他的身高为1.6m,则旗杆的高度为
m.
14. 在长8cm,宽6cm的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是_______cm2
15.如图,由边长为1的25个小正方形网格上有一个与⊿ABC相似且面积最大的⊿A1B1C1,使它的三个顶点都落在小正方形的顶点上,则⊿A1B1C1的面积为___________
16. 如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距地面1米,灯泡距地面3米,则地上阴影部分的面积是______.
三、小试牛刀(17题10分、18题8分,19、20题7分,共32分)
17. 如图,点C、D在线段AB上,⊿PCD是等边三角形.
(1)当AC、CD、DB满足怎样的关系时,⊿ACP∽⊿PDB?
(2)当⊿ACP∽⊿PDB时,求⊿APB的度数.
18.如图,BD、CE为⊿ABC的高,求证⊿AED=⊿ACB.
19.已知一矩形稻田可产稻谷100公斤,按此规律计算,若将此稻田长宽分别扩大两倍,则可产稻谷多少公斤?
20.已知:如图,BC为半圆的直径,O为圆心,D是弧AD的中点,四边形ABCD的对角线AC、BD交于点E。

求证:⊿ABE∽⊿DBC。

四、创新与应用(12分)
21. (本题7分)如图,四边形DEFG是ΔABC的内接矩形,如果ΔABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,求y关于x的函数关系式.
五、科学与探究(20分)
22. 在△OAB中,O为坐标原点,横、纵轴的单位长度相同,A、B的坐标分别为(8,6),(16,0),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果P、Q同时出发,用t(秒)表示移动时间,当这两点中有一点到达自己的终点时,另一点也停止运动。

求(1)几秒时PQ∥AB
(2)设△OPQ 的面积为y ,求y 与t 的函数关系式
(3)△OPQ 与△OAB 能否相似,若能,求出点P 的坐标,
若不能,试说明理由
参考答案
一、1.A 2.B 3.C 4. B 5. C 6. C 7 D 8 C
二、9. ⊿ACE 10 1800米 11. 4:5,16:25 12. 3:4 13.14 14. 27 15. 5
16. 0.81π米2
三、17. (1)CD 2=A C ·DB (2)1200
18.先证⊿AB D ∽⊿ACE 可得A E :AD=AC :AB,加上∠A=∠A 可证⊿ADE ∽⊿ABC 得⊿AED =⊿ACB
19. 400 20. 提示:∠BAE=∠BDC ,弧AD=弧DC ,∠ABE=∠DBC ,可证结论。

四、21.Y=-0.8x+8 (0<x<10)
五、22. (1)由已知得106822=+=OA ,当PQ ∥AB 时OB OQ OA OP =,则:1621610
t t -=,得:t=40/9
(2) 过P 作PC ⊥OB, 垂足为C, 过A 作AD ⊥OB, 垂足为D t PC t PC OA OP AD PC 53,106
,=∴== t t t t PC OQ y 5245353)216(21212+-=•-=•=
(3)能相似。

PQ ∥AB, △OPQ ∽△OAB
∵t=409 ∴OP= 40
9, ∵OD OC OA OP AD PC == 其中AD=6,OA=10,OD=8 ∴OC=329,PC=83,∴P 点坐标是(329,8
3 ).。

相关文档
最新文档