七年级下学期数学第六章实数复习

合集下载

七年级下册数学第六章实数主要知识点归纳总结

七年级下册数学第六章实数主要知识点归纳总结

第六章 实数主要知识点6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根(除0外,x 的值一正一负互为相反数)a 的平方根是x(除0外,x 的值一正一负互为相反数)2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小(5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根(x 的取值为非负数) a 的算术平方根是x(x 的取值为非负数)(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)

人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)

第六章 实数6.4 《实数》章末复习(基础巩固)【要点梳理】要点一:平方根和立方根要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等; ②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的. 2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥). 非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、有关方根的问题例1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( )A.2个B.3 个C.4 个D.5个 【答案】B ;【解析】①负数有立方根;②0的算术平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式】下列运算正确的是( )A 2=±B =2=- D .|2|2--= 【答案】C ;例210.1== 若7160.03670.03=,542.1670.33=,则_____________3673= 【答案】±1.01;7.16;【解析】102.01的小数点向左移动2位变成1.0201,它的平方根的小数点向左移动1位,变成1.01,注意符号;0.3670的小数点向右移动3位变成367,它的立方根的小数点向右移动1位,变成7.16【总结升华】一个数的小数点向左移动2位,它的平方根的小数点向左移动1位;一个数的小数点向右移动3位,它的立方根的小数点向右移动1位.类型二、与实数有关的问题 例3、把下列各数填入相应的集合: -1、3、π、-3.14、9、26-、22-、7.0 . (1)有理数集合{ }; (2)无理数集合{ }; (3)正实数集合{ };(4)负实数集合{ }.【思路点拨】首先把能化简的数都化简,然后对照概念填到对应的括号里. 【答案与解析】(1)有理数集合{-1、-3.14、9、7.0 };(2)无理数集合{ 3、π、26-、22-}; (3)正实数集合{ 3、π、9、26-、7.0 };(4)负实数集合{ -1、-3.14、22-}. 【总结升华】有理数是有限小数和无限循环小数,无理数是无限不循环小数.总结常见的无理数形式.举一反三:【变式】在实数0、π、、、﹣中,无理数的个数有( )A .1个B .2个C .3个D .4个 【答案】B ;例4、计算(1)233)32(1000216-++(2)23)451(12726-+- (3)32)131)(951()31(--+【思路点拨】先逐个化简后,再按照计算法则进行计算. 【答案与解析】解:(1)233)32(1000216-++=226101633++= (2)23)451(12726-+-23111112743412⎛⎫--=-+=- ⎪⎝⎭ (3)32)131)(951()31(--+=3314218121393327333⎛⎫⨯-=-=-=- ⎪⎝⎭.【总结升华】根据开立方和立方,开平方和平方互逆运算的关系,可以通过立方、平方的方法去求一个数的立方根、平方根.举一反三: 【变式】计算(1) 333000216.0008.012726---- (2) ()223323)3()21()4()4(2--⨯-+-⨯-【答案】 解:(1) 333000216.0008.012726---- ()310.20.0627=---- 29150=-(2) ()223323)3()21()4()4(2--⨯-+-⨯-()184434=-⨯+-⨯- 321336=---=-. 例5、已知:(a+6)2+=0,则2b 2﹣4b ﹣a 的值为 .【答案】12. 【解析】 解:∵(a+6)2+=0,∴a+6=0,b 2﹣2b ﹣3=0, 解得,a=﹣6,b 2﹣2b=3, 可得2b 2﹣4b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12, 故答案为:12.【总结升华】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.举一反三:【变式1】实数a 、b 在数轴上所对应的点的位置如图所示: 化简2a +∣a -b ∣= .【答案】 解:∵a <0<b , ∴a -b <0∴2a +∣a -b ∣=-a -(a -b )=b -2a .【变式2】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是: ;-1a【答案】21a a a a<<<-; 类型三、实数综合应用例6、现有一面积为150平方米的正方形鱼池,为了增加养鱼量,欲把鱼池的边长增加6米,那么扩建鱼池的面积为多少(最后结果保留4个有效数字)?【答案与解析】解:因为原正方形鱼池的面积为150平方米,根据面积公式, 15012.247≈ (米).由题意可得扩建后的正方形鱼池的边长为(12.247+6)米, 所以扩建后鱼池的面积为218.247≈333.0(平方米). 答:扩建后的鱼池的面积约为333.0(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150平方米,由此可得原鱼池的边长,再加上增加的6米,故新鱼池面积可求.举一反三:【变式】一个底为正方形的水池的容积是4863m ,池深1.5m ,求这个水池的底边长. 【答案】解:设水池的底边长为x ,由题意得2 1.5486x ⨯=2324x =18x =答:这个水池的底边长为18m .【巩固练习】一.选择题1. 下列说法正确的是( ) A .数轴上任一点表示唯一的有理数 B .数轴上任一点表示唯一的无理数 C .两个无理数之和一定是无理数 D .数轴上任意两点之间都有无数个点2.的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b4. 3387=-a ,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( )A.3a 中的a 可以是正数、负数或零.B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个. 7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( ) A.0>+b a B. 0ab > C.0a b -> D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间 二.填空题9. 若2005的整数部分是a ,则其小数部分用a 表示为 . 10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 . 14.﹣64的立方根与的平方根之和是 .15. 2112- ,5- 22 , 33 216. 数轴上离原点距离是5的点表示的数是 . 三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18. 已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根.19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】 一.选择题 1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数. 2. 【答案】C 3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 4. 【答案】B ; 【解析】33378a a ⎛⎫-=-=-- ⎪⎝⎭.5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根. 7. 【答案】C ; 8. 【答案】B ;【解析】4195<<,61927<+<. 二.填空题9. 【答案】2005a -; 10.【答案】为任意实数 ; 【解析】任何实数都有立方根. 11.【答案】25.0-;【解析】3233(0.125)0.250.25--=-=-. 12.【答案】3;【解析】x -12=15, x =27,3273=. 13.【答案】7±;【解析】 3343=7,7的平方根是7±.14.【答案】﹣2或﹣6. 【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】5【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=- 20.【解析】解:∵11<10+3<12∴x =11,y =10+3-11=31∴()3111312x y y x --=-=-=.。

七年级数学下册第六章实数知识集锦(带答案)

七年级数学下册第六章实数知识集锦(带答案)

七年级数学下册第六章实数知识集锦单选题1、如图,若数轴上的点A,B,C,D表示数−1,1,2,3,则表示数4−√11的点应在()A.A,O之间B.B,C之间C.C,D之间D.O,B之间答案:D分析:先估算出4−√11的值,再确定出其位置即可.解:∵9<11<16,∴3<√11<4,∴−4<−√11<−3,∴4−4<4−√11<4−3,即0<4−√11<1∴表示数4−√11的点应在O,B之间.故选:D.小提示:本题考查的是实数与数轴.熟知实数与数轴上各点是一一对应关系,能够正确估算出√11的值是解答此题的关键.2、若一个正方形的面积是12,则它的边长是()A.2√3B.3C.3√2D.4答案:A分析:根据正方形的面积公式即可求解.解:由题意知:正方形的面积等于边长×边长,设边长为a,故a²=12,∴a=±2√3,又边长大于0∴边长a=2√3.故选:A.小提示:本题考查了正方形的面积公式,开平方运算等,属于基础题.3、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x-(y-z)-m-n=x-y+z-m-n;第3种:x-(y-z)-(m-n)=x-y+z-m+n;第4种:x-(y-z-m)-n=x-y+z+m-n;第5种:x-(y-z-m-n)=x-y+z+m+n;第6种:x-y-(z-m)-n=x-y-z+m-n;第7种:x-y-(z-m-n)=x-y-z+m+n;第8种:x-y-z-(m-n)=x-y-z-m+n;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.4、已知min {a,b,c }表示取三个数中最小的那个数,例加:min{−1,−2,−3}=−3,当min{√x,x 2,x}=181时,则x 的值为( )A .181B .127C .13D .19 答案:D分析:根据题意可知√x,x 2,x 都小于1且大于0,根据平方根求得x 的值即可求解.解:∵min{√x,x 2,x}=181∴√x,x 2,x 都小于1且大于0∴x 2<x <√x∴x 2=181∴x =19(负值舍去)故选D小提示:本题考查了求一个数的平方根,判断√x,x 2,x 的范围是解题的关键.5、定义:若10x =N ,则x =log 10N ,x 称为以10为底的N 的对数,简记为lgN ,其满足运算法则:lgM +lgN =lg(M ⋅N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2⋅lg5+lg5的结果为( )A .5B .2C .1D .0答案:C分析:根据新运算的定义和法则进行计算即可得.解:原式=lg2⋅(lg2+lg5)+lg5,=lg2⋅lg10+lg5,=lg2+lg5,=1,故选:C.小提示:本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.6、在四个实数−2,0,−√3,−1中,最小的实数是()A.−2B.0C.−√3D.−1答案:A分析:根据实数比较大小的方法直接求解即可.解:∵−2<−√3<−1<0,∴四个实数−2,0,−√3,−1中,最小的实数是−2,故选:A.小提示:本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.7、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.8、按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1答案:D分析:逐项代入,寻找正确答案即可.解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m+1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;小提示:本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.9、−√64的立方根等于()A.−8B.−4C.−2D.±2答案:C分析:先求出−√64=−8,再求出-8的立方根即可得.3=−2,解:∵−√64=−8,√−8∴−√64的立方根等于-2,故选:C.小提示:本题考查了立方根的意义,解题的关键是掌握立方根.10、下列说法正确的是()A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.√16的平方根是-2D.-2是√16的一个平方根答案:D分析:根据算术平方根、平方根的定义逐项判断即可得.A、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;B、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;C、√16=4,4的平方根是±2,则此项错误,不符题意;D、√16=4,4的平方根是±2,则−2是√16的一个平方根,此项正确,符合题意;故选:D.小提示:本题考查了算术平方根、平方根,掌握理解定义是解题关键.填空题11、根据图中呈现的运算关系,可知a=______,b=______.答案:-2020 -2020分析:根据立方根和平方根的定义进行求解即可.解:∵2020的立方根是m,a的立方根是-m,∴m3=2020,∴(−m)3=−m3=−2020,∴a=−2020;∵n的两个平方根分别为2020、b,∴b =−2020,所以答案是:-2020,-2020.小提示:本题主要考查了平方根和立方根,熟知二者的定义是解题的关键.12、比较大小:√22______√33(填写“>”或“<”或“=”).答案:>分析:比较两者平方后的值即可.解:∵(√22)2=12,(√33)2=13,∵12>13, ∴ √22>√33. 所以答案是:>.小提示:本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.13、写出一个比√2大且比√15小的整数______.答案:2(或3)分析:先分别求出√2与√15在哪两个相邻的整数之间,依此即可得到答案.∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数是2或3.所以答案是:2(或3)小提示:本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出√2与√15在哪两个相邻的整数之间是解答此题的关键.14、若√a +13与√a 2−53互为相反数,则a 3+5a 2﹣4的值为 _____.答案:12分析:先根据相反数的定义得√a +13+√a 2−53=0,再利用立方根的意义进行整理,最后利用整体代入的方法即可求得答案 .解:由题意得:√a +13+√a 2−53=03∴√a+13=−√a2−5∴a+1=﹣(a2﹣5).∴a2+a=4.∴a3+a2=4a.∴a3=﹣a2+4a.∴a3+5a2﹣4=﹣a2+4a+5a2﹣4=4a2+4a﹣4=4(a2+a)﹣4=4×4﹣4=12.所以答案是:12.小提示:本题考查的相反数的应用,立方根的应用,解题的关键是在于整理出所需形式,利用整体代入求解.15、若实数a的立方等于27,则a=________.答案:3分析:根据立方根的定义即可得.3=3,解:由题意得:a=√27所以答案是:3.小提示:本题考查了立方根,熟练掌握立方根的运算是解题关键.解答题16、据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是______;∴x=______.(2)y3=614125,且y为整数,按照以上思考方法,请你求出y的值.答案:(1)2#,2#,22#(2)y=85分析:(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.(1)解:∵x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是2;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是2;∴x=22.所以答案是:2,2,22.(2)∵1000=103<614125<1003=100000,∴y一定是两位数;∵614125的个位数字是5,∴y的个位数字一定是5;划去614125后面的三位125得614,∵512=83<614<93=729,∴y的十位数字一定是8;∴y=85.小提示:本题考查立方根,灵活运用立方根的计算是解题的关键.17、如图,把图(1)中两个小正方形纸片分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到如图(2)的大正方形.问题发现若大正方形的面积为32cm2,则小正方形的面积是__________cm2,边长为___________cm;知识迁移某兴趣小组想将图(1)中的一个小正方形纸片,沿与边平行的方向剪裁出面积为12cm2,且长宽之比为3∶2的长方形纸片.兴趣小组能否剪裁出符合要求的长方形纸片?请说明理由.拓展延伸如图(3)是由5个边长为1的小正方形组成的纸片,能否把它剪开并拼成一个大正方形?若能,请画出示意图,并写出边的长度,若不能,请说明理由.答案:问题发现:小正方形的面积为16cm2,边长为4cm知识迁移:不能裁出符合要求的长方形纸片拓展延伸:能把它剪开并拼成一个大正方形,示意图见解析,大正方形边长为√5分析:问题发现:先求出小正方形的面积,再根据正方形的面积等于边长的平方求边长;知识迁移:设长和宽分别为3x、2x,利用面积列方程,最后检验即可;拓展延伸:新的大正方形面积为5,则边长为√5,可以把它剪开并拼成一个大正方形.问题发现:小正方形的面积为32÷2=16cm2,∴小正方形的边长为4cm.所以答案是:16;4.知识迁移:设长和宽分别为3x、2x,由题意得:3x⋅2x=12,整理得:x2=2,∵实际问题x为正数,∴x=√2,∴长方形的长为3x=3√2≈5.19>4,即裁剪后的长方形的长大于小正方形的边长,∴不能裁出符合要求的长方形纸片.拓展延伸:能把它剪开并拼成一个大正方形,裁剪示意图如图所示:∵原图形的面积是5,∴裁剪后的正方形面积也是5,∴大正方形边长为√5.小提示:本题考查了算术平方根的实际应用、正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.18、求下列式子中的x :(1)25(x ﹣35)2=49;(2)12(x +1)2=32. 答案:(1)x 1=2,x 2=−45(2)x 1=7,x 2=﹣9分析:(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解: 25(x ﹣35)2=49,(x ﹣35)2=4925, x ﹣35=±75,x ﹣35=75或x ﹣35=﹣75,解得:x 1=2,x 2=−45;(2)12(x +1)2=32, (x +1)2=32×2,(x +1)2=64, x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.小提示:此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键.。

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型
摘要:
I.实数的分类
A.整数
B.有理数
C.无理数
II.实数的性质
A.实数的运算
B.实数的比较
C.实数的绝对值
III.经典题型解析
A.整数和有理数的运算
B.无理数的求解
C.实数的比较和排序
IV.实数的应用
A.生活中的实数应用
B.科学中的实数应用
C.实数与其他领域的联系
正文:
实数是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。

在七年级下册人教版数学中,第六章主要介绍了实数的相关知识要点和经典题
型。

首先,实数可以分为整数、有理数和无理数三类。

整数包括正整数、负整数和零;有理数是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数);无理数则是不能表示为两个整数之比的数,如圆周率π等。

其次,实数具有许多性质。

在实数的运算中,我们需要遵循交换律、结合律和分配律;在实数的比较中,我们可以根据它们的大小关系来进行排列;实数的绝对值是一个非负数,表示距离原点的距离。

接下来,本章通过解析经典题型,帮助学生更好地理解实数的知识要点。

例如,在整数和有理数的运算题目中,我们需要熟练掌握加法、减法、乘法和除法的运算规则;在无理数的求解题目中,我们需要运用一些特殊方法,如平方根、立方根等;在实数的比较和排序题目中,我们需要灵活运用实数的性质来进行比较。

最后,实数在我们的生活中有着广泛的应用。

例如,在购物时,我们需要计算价格;在科学研究中,实数在物理、化学等领域发挥着重要作用;在艺术领域,实数与音乐、绘画等也有着密切的联系。

第六章 实数(复习课件)七年级数学下册(人教版)

第六章 实数(复习课件)七年级数学下册(人教版)

举一反三
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
解:不能.理由如下:因为大正方形纸片的面
积为( 18)2+( 18)2=36(cm2) ,
高频考点
高频考点七 实数的综合运用
(3)如果2+ 5的整数部分是a,小数部分是b,求出a-b的值.
(3)因为 4< 5< 9,即2< 5<3,
所以4<2+ 5<5,
所以2+ 5的整数部分为4,小数部分为2+ 5-4= 5-2,即a=4,b= 5-2,
所以a-b=4-( 5-2)= 6- 5.
举一反三
【7-1】若 2的整数部分为x,小数部分为y,则 2x-y的值是( C )
A.2 2-2
B.2
C.1
D. 2
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
0
一个,为负数
3
a
可以为任何数
知识梳理
四、实数及其运算
有理数包括整数和分数,它们都可以写成有限小数或者无限循环小数的形
式.
5 3 27 11 9
, , , , .
2 5 4 9 11
5
2.5
2
3
0.6
5
27
6.75
4
.
11

人教版七年级数学下册第六章《 实数》单元同步复习题及答案

人教版七年级数学下册第六章《 实数》单元同步复习题及答案

第六章《实数》单元同步检测试卷一.选择题(共10小题)1.下列各数3.14,,0.,,2.131 331 333 1…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为()A.2个B.3个C.4个D.5个2.在如图所示的数轴上表示﹣2的点在()A.点A和点B之间B.点B和点C之间C.点C和点D之间D.点D和点E之间3.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a4.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.15.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.6.已知,则的平方根为()A.1B.C.±1D.7.,,则1720的平方根为()A.13.11B.±13.11C.41.47D.±41.478.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③﹣3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个9.若把﹣写成整数a与正的纯小数x的和,那么整数a的值为()A.﹣3B.﹣4C.﹣5D.﹣610.如图,O为原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论正确的是()A.ac<bc B.c2<ac C.b2<bc D.ab<bc二.填空题(共5小题)11.若一个数x的平方根是m﹣3和m﹣7,那么这个数x是.12.已知2x+1的平方根是±3,则﹣5x﹣7的立方根是.13.若k<<k+1(k是整数),则k=.14.当x取时,代数式2﹣取值最大,并求出这个最大值.15.小亮求的近似值,下面是他的草稿纸上的部分内容:3.52=12.25,3.82=14.44,3.92=15.21,3.852=14.8225,3.872=14.9769,3.882=15.0544,3.8752=15.015625依据以上数据,可以得到的近似值(精确到0.01)是.三.解答题(共6小题)16.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.17.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.18.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.阅读理解∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.20.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.21.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共10小题)1.B.2.C.3.D.4.B.5.C.6.C.7.D.8.C.9.C.10.A.二.填空题(共5小题)11.412.﹣3.13.9.14.5,2.15.3.87.三.解答题(共6小题)16.解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9,0};无理数:{π,2.5353353335…},故答案为:3.1415926,,0.275,﹣,﹣0.25;8,9,0,;π,2.5353353335…,17.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.18.解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.19.解:∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.20.解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.21.解:(1)∵,∴的整数部分是7,小数部分是﹣7.故答案为:7;﹣7.(2)∵,∴,∵,∴b=2,∴|a﹣b|+===5.(3)∵,∴11<9+<12,∵9+=x+y,其中x是整数,且0<y<1,∴x=11,y==,∴x﹣y==,∴x﹣y的相反数是:.。

人教版七年级数学下册第六章《实数》小结与复习说课稿

人教版七年级数学下册第六章《实数》小结与复习说课稿
3.数学游戏:设计实数运算相关的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣;
4.生活实践:让学生收集生活中的实数问题,进行分析和解决,培养学生的数学应用意识。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
1.让学生总结本节课所学知识,分享自己的学习心得;
(2)掌握实数运算的顺序和法则;
(3)解决实数混合运算中的实际问题。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的算术运算,具备了一定的数学逻辑思维能力。然而,由于年龄和经验的限制,他们对实数概念的理解可能还不够深入,对实数运算的掌握也可能不够熟练。
2.互动教学:设计课堂提问、小组讨论等活动,引导学生积极参与,提高他们的学习主动性;
3.激励评价:对学生在课堂上的表现给予积极的评价和鼓励,增强他们的自信心;
4.举一反三:通过典型例题的讲解,引导学生发现解题规律,提高他们解决问题的能力;
5.数学游戏:设计一些与实数相关的数学游戏,让学生在游戏中学习,提高他们的学习兴趣。
板书在教学过程中的作用是帮助学生构建知识框架,直观展示教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将采取以下措施:
1.提前规划板书内容,确保知识点完整、系统;
2.使用不同颜色的粉笔,区分重点、难点和关键点;
3.板书过程中,适时引导学生关注,解释板书中的逻辑关系;
4.在适当位置留下空白,用于记录学生的疑问和课堂生成性内容。
2.提高练习:设计一些综合性较强的实数题目,培养学生的解题能力和思维能力;

七年级数学下册第六章【实数】知识点总结(含答案)

七年级数学下册第六章【实数】知识点总结(含答案)

一、选择题1.在实数,-3.14,0,π中,无理数有( ) A .1个B .2个C .3个D .4个2.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2 D .8的平方根是43.0215中,是无理数的是( )A B .0C D .2154.在0.010010001,3.14,π,1.51,27中无理数的个数是( ).A .5个B .4个C .3D .2个5.若3a =,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间6.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .17.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .AB >B .A B =C .A B <D .A B ≥8 )A .8B .8-C .D .±9.下列有关叙述错误的是( )AB 是2的平方根C .12<<D .2是分数10.在1.414,213,5π,2-中,无理数的个数是( ) A .1B .2C .3D .411.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9二、填空题12.计算: (1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|121232⎛⎫-+--⨯- ⎪⎝⎭13.计算:(1223168(2)(3)--(2)22(2)8x -=14.比较大小:221(填“>”、“=”或“<”). 15.计算:3612516--=____.16.若2x =,29y =,且0xy <,则x y -等于______. 17.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=18.3189124- 19.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2. (1)求a 与b 的值;(2)求2a +4b 的平方根.20.若x ﹣1与2x ﹣3是数A 的两个平方根,则A =_______. 21.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.三、解答题22.计算:2(3)216--23.已知(25|50x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.24.已知31a +的算数平方根是4,421c b +-的立方根是3,c 22a b c +-的平方根.25.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥C .④⑤⑥D .③④⑤2.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1B .2C .3D .43.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .104.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②5.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个6.64的算术平方根是( ) A .8B .±8C .22D .22±7.下列实数中,是无理数的为( ) A .3.14B .13C .5D .98.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间9.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2B .28.72C .13.33D .133.310.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .111.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A .21n -B .22n -C .23n -D .24n -二、填空题12.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-13)11163532-⎛⎫-+︒ ⎪⎝⎭14.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 15.已知103x ,小数部分是y ,求x ﹣y 的相反数_____.16.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)17.将1236按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.18.(1)求x 的值:2490x -=; (2()2325227-19.计算:(1)﹣12327-﹣(﹣2)9(2331)+32| 20.3189124--+. 21.-64的立方根是____,9的平方根是_____,16的算术平方根是_____81_____.三、解答题22.计算:(132125(2)(10)4---⨯- (2)2325(24)27-⨯--÷23.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2. (1)求a 与b 的值;(2)求2a +4b 的平方根. 24.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +3b - 25.(1)小明解方程2x 1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值.一、选择题1.在实数3-,-3.14,0,π,364中,无理数有( ) A .1个B .2个C .3个D .4个2.81的平方根是( ) A .9B .-9C .9和9-D .813.下列计算正确的是( ) A .11-=-B .2(3)3-=-C .42=±D .31182-=-4.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n5.下列实数中,属于无理数的是( ) A .3.14B .227C .4D .π6.估计50的立方根在哪两个整数之间( ) A .2与3B .3与4C .4与5D .5与67.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .48.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n -9.在1.414,3213,5π,23中,无理数的个数是( ) A .1B .2C .3D .410.下列等式成立的是( )A .±1B =±2C 6D 311.下列各组数中都是无理数的为( )A .0.07,23,π; B .0.7•,π;C ,π;D .0.1010101……101,π二、填空题12.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a + 13.计算:(1(2)0(0)|2|π-- (3)解方程:4x 2﹣9=0.14.(22-15.把下列各数填在相应的集合里: 4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …} 负有理数集合{ …} 非负整数集合{ …} 无理数集合{ …}.16. ________0.5.(填“>”“<”或“=”) 17.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.18.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.计算:(1)﹣12﹣(﹣2)(21)+2|20.设a ,b 是两个连续的整数,若a b <<,是,则a b =____.21.比较大小:三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.24.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.25.设26+x 、y ,试求x 、y 的值与1x -的立方根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、平方根是其本身的数是0;算术平方根是其本身的数是;立方根是其本身的数是。
2、每一个正数都有两个平方根,其中正的那个是;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3、 本身为非负数,有非负性,即 ≥0; 有意义的条件是a≥0。
4、公式:⑴( )2=a(a≥0);⑵ = (a取任何数)。
5、区分( )2=a(a≥0),与 =
6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
三、整式复习题
一、填空题
1、(-0.7)2的平方根是
2、若 =25, =3,则a+b=
3、已知一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是
4、 =____________
9.一般来说,被开放数扩大(或缩小) 倍,算术平方根扩大(或缩小)倍,例如 .
10.平方表:(自行完成)
12=
62=
112=
162=
212=
22=
72=
122=
172=
222=
32=
82=
132=
182=
232=
42=
92=
142=
192=242=52=来自102=152=
202=
252=
二、题型规律总结:
C、∵3的平方是9,∴9的平方根是3D、 是1的平方根
三、利用平方根解下列方程.
(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0;
四、解答题
1、求 的平方根和算术平方根。
2、计算 的值
3、若 ,求 的值。
4、若a、b、c满足 ,求代数式 的值。
5、已知 ,求7(x+y)-20的立方根。
七年级下学期数学第六章实数复习
一、基本概念
1.算术平方根:叫做a的算术平方根,记作“”。
2.如果x2=a,则x叫做a的,记作“”(a称为被开方数)。
3.正数的平方根有两个,它们互为;0的平方根是;负数。
4.平方根和算术平方根的区别与联系:
区别:正数的平方根有,而它的算术平方根。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。(3)0的算术平方根与平方根同为0。
A、 的平方根是 B、 的平方根是
C、 的算术平方根是 D、 的算术平方根是
9.下列说法:(1) 是9的平方根;(2)9的平方根是 ;(3)3是9的平方根;
(4)9的平方根是3,其中正确的有()
A.3个B.2个C.1个D.4个
10.下列语句中正确的是()
A、任意算术平方根是正数B、只有正数才有算术平方根
参照(四)式得 =___________________。
4.64的平方根是()
A.±8 B.±4 C.±2 D.±
5.4的平方的倒数的算术平方根是()
A.4 B. C.- D.
6.下列结论正确的是()
A B C D
7.以下语句及写成式子正确的是()
A、7是49的算术平方根,即 B、7是 的平方根,即
C、 是49的平方根,即 D、 是49的平方根,即
8.下列语句中正确的是()
13、当 时, 有意义。
14、当 时,式子 有意义。
15、若 有意义,则 能取的最小整数为
二、选择题
1.9的算术平方根是()
A.-3 B.3 C.±3 D.81
2.下列计算正确的是()
A. =±2 B. =9 C. D.
3.下列说法中正确的是()
A.9的平方根是3 B. 的算术平方根是±2
C. 的算术平方根是4 D. 的平方根是±2
5.如果x3=a,则x叫做a的,记作(a称为被开方数)。
6.正数有;0的立方根是;负数。
7.求一个数的平方根(立方根)的运算叫开平方(开立方)。
8.立方根与平方根的区别:
一个数只有一个立方根,并且符号与这个数一致;只有有平方根,没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.
5、若m、n互为相反数,则 =_________
6、若 ,则a______0
7、若 有意义,则x的取值范围是
8、16的平方根是±4”用数学式子表示为
9、大于-,小于的整数有______个。
10、一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。
11、当 时, 有意义。
12、当 时, 有意义。
6、阅读下列材料,然后回答问题。
在进行二次根式去处时,我们有时会碰上如 , , 一样的式子,其实我们还可以将其进一步化简: = (一); = (二) ;
= = (三)
以上这种化简的步骤叫做分母有理化。
还可以用以下方法化简: = (四)
(1)请用不同的方法化简 :
参照(三)式得 =__________________;
相关文档
最新文档