立体几何公式
数学立体几何公式

数学立体几何公式
以下是一些常见的数学立体几何公式:
1. 棱柱表面积公式:A=LH+2S(其中L为底面周长,H为柱高,S为底面面积)。
2. 棱柱体积公式:V=SH(其中S为底面面积,H为柱高)。
3. 圆柱表面积公式:A=LH+2S=2πRH+2πR^2(其中L为底面周长,H为柱高,S为底面面积,R为底面圆半径)。
4. 圆柱体积公式:V=SH=πR^2H(其中S为底面面积,H为柱高,R为底面圆半径)。
5. 球体表面积公式:A=4πR^2(其中R为球体半径)。
6. 球体体积公式:V=4/3πR^3(其中R为球体半径)。
7. 圆锥表面积公式:A=1/2sL+πR^2(其中s为圆锥母线长,L为底面周长,R为底面圆半径)。
8. 圆锥体积公式:V=1/3SH=1/3πR^2H(其中S为底面面积,H为圆锥高,R为底面圆半径)。
9. 正方体体积公式:V=a^3(其中a为正方体的边长)。
10. 长方体体积公式:V=lwh(其中l为长度,w为宽度,h为高度)。
这些公式是解决立体几何问题的基础,能帮助我们更好地理解和计算空间几何体的性质。
小学立体几何部分公式数学公式

小学立体几何(长方体、正方体)公式
一、长方体
(1)长方体棱长总和=(长+宽+高)×4
(2) 长方体表面积=(长×高+长×宽+宽×高)×2
(3) 长方体体积=长×宽×高=底面积×高=横截面面积×长
长=体积÷宽÷高
宽=体积÷长÷高
高=体积÷长÷宽
底面积=体积÷高
二、正方体
横截面积=体积÷长
高=体积÷底面积
长=体积÷横截面积
(1)正方体棱长总和=棱长×12
一条棱长=正方体棱长总和÷12
(2)表面积=棱长×棱长×6 S表=a×a×6
(3)体积=棱长×棱长×棱长=底面积×高=横截面面积×长
三、单位进率
※长度单位换算1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
1米=10分米=100厘米=1000毫米
※面积单位换算1平方千米=100公顷1公顷=10000平方米1
平方米=100平方分米1平方分米=100平方厘
米1平方厘米=100平方毫米
体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米
1立方分米=1升1立方厘米=1毫升1立方米=1000升1升=1000毫升。
立体几何公式定理大全

立体几何公式定理大全一、公理定理(一)平面基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理3:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补。
(二)空间中两条直线的位置关系空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:过平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。
范围为(]0,90︒︒两异面直线间距离: 公垂线段(有且只有一条)2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面(三)平行关系1.线面平行定义:直线和平面没有公共点判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行 性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
2.面面平行定义:空间两平面没有公共点判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质定理引理:两个平面互相平行则其中一个平面内的直线平行于另一个平面。
性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
(四)垂直关系1.线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
立体几何公式

立体几何公式立体几何是研究空间中尺寸、形状、位置等几何性质的分支学科。
在立体几何中,有许多重要的公式能够帮助我们计算不同立体体量、表面积、角度和长度等物理量。
本文将详细介绍一些常用的立体几何公式,包括点、线、面、体、角、球、圆锥、圆柱、圆盘等多个几何形状。
1. 点:- 点的坐标:点的坐标可由一组数字表示,通常使用(x, y, z)表示三维空间中的点。
- 两点间的距离:两点间的距离可使用勾股定理计算,公式为:d = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ -z₁)²)。
2. 线:- 线段长度:线段的长度可以通过两点间的距离公式计算得出。
- 直线方程:直线可以使用一般式、点斜式或两点式等多种形式表示。
3. 面:- 面积:不同形状的面积计算公式略有不同,其中包括矩形的面积(A = l × w)、三角形的面积(A = 1/2 × b × h)、圆形的面积(A = πr²)等。
- 周长:周长是封闭几何图形的边界长度。
4. 体:- 体积:体积是三维几何图形的容积大小,如矩形的体积(V = l × w × h)和球的体积(V = 4/3 × πr³)等。
- 表面积:表面积是指三维几何图形的外部面积大小,如矩形的表面积(A = 2lw + 2lh + 2wh)和球的表面积(A = 4πr²)等。
5. 角:- 角度:角度是表示两条辐射线之间夹角的度量单位,常用度(°)表示。
- 三角函数:包括正弦、余弦、正切等三角函数,可用于计算角的各种相关性质。
6. 球:- 球的体积:V = 4/3 × πr³。
- 球的表面积:A = 4πr²。
7. 圆锥:- 圆锥的体积:V = 1/3 × πr²h。
- 圆锥的侧面积:A = πrl。
立体几何公式定理大全

立体几何公式定理大全、公理定理(一)平面基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理3:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补。
(二)空间中两条直线的位置关系空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:过平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。
范围为0 , 90两异面直线间距离: 公垂线段(有且只有一条) 2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面三)平行关系1.线面平行定义:直线和平面没有公共点判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
2.面面平行定义:空间两平面没有公共点判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质定理引理:两个平面互相平行则其中一个平面内的直线平行于另一个平面。
性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
(四)垂直关系1线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
高中数学立体几何公式大全

高中数学立体几何公式大全高中数学立体几何公式整理如下:1. 正方体:a-边长,S=6a²,V=a³2. 长方体:a-长,b-宽,c-高,S=2(ab+ac+bc),V=abc3. 圆柱:r-底半径,h-高,C=2πr,S底=πr²,S侧=Ch,S表=Ch+2S底,V=S底h=πr²h4. 空心圆柱:R-外圆半径,r-内圆半径,h-高,V=πh(R²-r²)5. 直圆锥:r-底半径,h-高,V=πr²h/36. 圆台:r-上底半径,R-下底半径,h-高,V=πh(R²+Rr+r²)/37. 棱柱:S-底面积,h-高,V=Sh8. 棱锥:S-底面积,h-高,V=Sh/39. 棱台:S1和S2-上、下底面积,h-高,V=h[S1+S2+(S1S1)1/2]/310. 拟柱体:S1-上底面积,S2-下底面积,S0-中截面积,h-高,V=h(S1+S2+4S0)/611. 球:r-半径,d-直径,V=4/3πr³=πd²/612. 球缺:h-球缺高,r-球半径,a-球缺底半径,V=πh(3a²+h²)/6=πh²(3r-h)/3a²=h(2r-h)13. 球台:r1和r2-球台上、下底半径,h-高,V=πh[3(r1²+r2²)+h²]/614. 圆环体:R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径,V=2π²Rr²=π²Dd²/415. 桶状体:D-桶腹直径,d-桶底直径,h-桶高,V=πh(2D²+d²)/12以上公式涵盖了几何体各个方面的内容。
立体几何公式

立体几何公式
以下是一些立体几何常见的公式:
1. 体积公式:
- 立方体的体积:V = 边长³
- 直方体的体积:V = 长× 宽× 高
- 圆柱体的体积:V = πr²h
- 圆锥体的体积:V = 1/3πr²h
- 球体的体积:V = 4/3πr³
2. 表面积公式:
- 立方体的表面积:A = 6s² (s为边长)
- 直方体的表面积:A = 2lw + 2lh + 2wh (l为长,w为宽,h为高)
- 圆柱体的表面积:A = 2πr(r + h)
- 圆锥体的表面积:A = πr(r + s) (s为斜高)
- 球体的表面积:A = 4πr²
3. 斜高公式:
- 直角三角形的斜高:h² = a² + b² (a和b为两个直角边的长度)
- 斜三棱锥的斜高:h² = a² - r² (a为斜边的长度,r为底面半径)
4. 圆锥母线公式:
- 圆锥母线的长度:l = √(h² + r²) (h为高,r为底面半径)
注意:这里提到的公式只是一小部分常见的立体几何公式,实际上还有很多其他公式和特殊情况需要考虑。
七年级的全部数学公式

1、立体几何公式:
1)面积公式:
(1)正方体的表面积S=6a²
(2)正方体的体积V=a³
(3)正多面体的表面积 S=ns
(4)正多面体的体积 V=ah/3
(5)圆柱的表面积S=2πrh+2πr²
(6)圆柱的体积V=πr²h
(7)球体的表面积S=4πr²
(8)球体的体积V=4/3πr³
(9)圆锥的表面积S=πrl+πr²
(10)圆锥的体积V=1/3πr²h
2)周长公式:
(1)正方形的周长P=4a
(2)正多边形的周长 P=ns
(3)圆的周长P=2πr
2、代数公式:
(1)一次函数的标准方程 y=ax+b
(2)二次函数的标准方程y=ax²+bx+c
(3)多项式的系数和P=(a+b+c+d…)
(4)分式的乘积P=a/b×c/d
(5)三角形的面积S=1/2ab×sinC
(6)平行四边形的面积S=ab×sinα
(7)抛物线的顶点方程x=(-b/2a)y=c-(b²/4a)
(8)椭圆的标准方程x²/a²+y²/b²=1
(9)直降函数的标准方程 y=-ax+b
3、数列公式:
(1)等比数列的首项与公比求和 Sn=an(1-r^n)/1-r
(2)公差不等的等差数列的公比求和Sn=n(2a+(n-1)d)/2(3)等比数列的前n项和Sn=a(1-r^n)/1-r
(4)等差数列的前n项和Sn=n[2a+(n-1)d]/2
(5)等比数列的第n项an=a1×r^(n-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何公式
Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
立体几何公式
一、平面图形
名称符号周长C和面积S
1、正方形 a—边长 C=4a S=a2
2、长方形 a和b-边长C=2(a+b) S=ab
3、三角形 a,b,c-三边长; h-a边上的高;s-周长的一半; A,B,C-内角其中s=(a+b+c)/2
S=ah/2 =ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
4、四边形 d,D-对角线长;α-对角线夹角
S=dD/2·sinα
5、平行四边形 a,b-边长; h-a边的高;α-两边夹角
S=ah =absinα
6、菱形 a-边长;α-夹角; D-长对角线长; d-短对角线长
S=Dd/2 =a2sinα
7、梯形 a和b-上、下底长; h-高; m-中位线长
S=(a+b)h/2 =mh
8、圆 r-半径; d-直径;
C=πd=2πr S=πr2 =πd2/4
9、扇形 r—扇形半径 a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
10、弓形 l-弧长; b-弦长; h-矢高; r-半径;α-圆心角的度数S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
11、圆环 R-外圆半径;r-内圆半径;D-外圆直径;d-内圆直径
S=π(R2-r2) =π(D2-d2)/4
12、椭圆 D-长轴;d-短轴;S=πDd/4
二、立方图形
名称符号面积S和体积V
1、正方体 a-边长S=6a2 ; V=a3
2、长方体 a-长;b-宽;c-高;S=2(ab+ac+bc) ; V=abc
3、棱柱 S-底面积; h-高; V=Sh
4、棱锥S-底面积 h-高;V=Sh/3
5、棱台 S1和S2-上、下底面积 h-高;V=h[S1+S2+(S1S1)1/2]/3
6、拟柱体 S1-上底面积;S2-下底面积;S0-中截面积;h-高
V=h(S1+S2+4S0)/6
7、圆柱 r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积
S表—表面积
C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h =πr2h
8、空心圆柱 R-外圆半径;r-内圆半径;h-高
V=πh(R2-r2)
9、直圆锥 r-底半径;h-高V=πr2h/3
10、圆台 r-上底半径 R-下底半径 h-高
V=πh(R2+Rr+r2)/3
11、球 r-半径;d-直径 V=4/3πr3=πd2/6
12、球缺 h-球缺高;r-球半径;a-球缺底半径
V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
13、球台 r1和r2-球台上、下底半径;h-高
V=πh[3(r12+r22)+h2]/6
14、圆环体 R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径V=2π2Rr2=π2Dd2/4
15、桶状体 D-桶腹直径;d-桶底直径;h-桶高
V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)。