2.4 有理数的加法与减法(1)课后练习

合集下载

2.1有理数的加法与减法+同步练习题2024-2025学年人教版数学七年级上册

2.1有理数的加法与减法+同步练习题2024-2025学年人教版数学七年级上册

人教版七年级上册数学2.1有理数的加法与减法同步练习题一、单选题 1.计算:25+的结果是( )A .3B .3-C .7D .7-2.若a 、b 、c 、d 是正整数,且a +b =c ,b +c =d ( )A .b <c <aB .a <c <bC .a +d =2cD .a +d =2b3.有理数a ,b 在数轴上的位置如图所示,下列各式成立的是( )A .0b >B .a b >-C .0a b +>D .0a b ->4.龙岗某校七年级(1)班期末考试数学的平均成绩是73分,小亮得了90分,记作17+分,若小英的成绩记作3-分,表示小英得了( )分.A .76B .73C .77D .705.在3-,2,1-,3这四个数中,比2-小1的数是( )A .3B .3-C .1-D .2 6.计算+(+)+(++)+(+++)+…+(+++…+)=( ) A .612 B .612.5 C .613 D .613.57.若||1,||3==a b ,且a b >,则a b -的值为( )A .4-,2B .4C .4,2D .4,2-8.一辆货车从超市出发,向东走了3km 到达小彬家,继续向东走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市.小明家距小彬家( ) km .A .4.5B .6.5C .8D .13.5二、填空题1.某一天早晨的气温是6C -︒,中午上升了10C ︒,午夜又下降了7C ︒,则午夜的温度是_____C ︒.2.如图,数轴上的点A 表示有理数a ,若点A 到原点O 的距离大于1,则|a +1|= .3.计算:(1)25-+= ;(2)33--= ;(3)12-= .4.爱动脑筋的小明同学设计了一种“幻圆”游戏,将1,﹣2,3,5,﹣6,7,﹣8分别填入图中的圆圈内,他已经将﹣2,﹣6,7,则图中a ﹣b 的值为 .5.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位.三、解答题 1.计算(1)1141334734⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)423127373⎛⎫⎛⎫⎛⎫+---+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2. 已知有理数a 、b 满足a b >,且2=a ,3b =,求a -b 的值.3.某公司5天内货品进出仓库的吨数如下:+23,﹣30,﹣16,35,﹣33(其中“+”表示进库,“﹣”表示出库)(1)经过这5天,仓库管理员结算后确定仓库里还有货品509吨,那么5天前仓库里存有货品多少吨?(2)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?4.如图,在数轴上有A、B、C这三个点.请回答:(1)A、B、C这三个点表示的数各是:A:________,B:________,C:_______.(2)A,B两点间的距离是多少?A,C两点间的距离是多少?5.某集团公司对所属甲、乙两个分厂上半年的经营情况记录如下:(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)月份一月份二月份三月份四月份五月份六月份甲厂﹣0.4 ﹣0.2 ﹣0.8 0 +1.1 +1.3乙厂+0.2 ﹣0.8 +0.8 ﹣1.5 +1 0(1)计算二月份乙厂比甲厂多亏损了多少亿元?(2)月份两个厂的经营情况差距最大,差距是亿元;(3)分别计算甲、乙两个工厂上半年盈利或亏损了多少亿元?。

有理数的加减法随堂练习题(1)

有理数的加减法随堂练习题(1)

有理数的加减法随堂练习题(1)一、选择题(共6小题;共30分)的结果是B. D.2. 气象部门测定,高度每增加千米,气温大约下降,现在地面气温是,那么千米高空的气温是A. B. C. D.3. 小明经常在一条南北方向的公路上散步.他每次从点出发,两次记录自己散步的情况如下(向南走为正方向),如果第二次记录时停下,此时他离点最近的是A. 米,米B. 米,米C. 米,米D. 米,米4. 大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计了一种新的加减记数法.比如:写成,;写成,;写成,.总之,数字上画一杠表示减去它,按这个方法请计算A. B. C. D.5. 观察下列一组图形中点的个数,其中第一个图形中共有个点,第个图形中共有个点,第个图形中共有个点,按此规律第个图形中共有点的个数是A. B. C. D.6. 小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将,,分别填入图中的圆圈内,使横、竖以及内外两圈上的个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中的值为或或或 D. 或二、填空题(共4小题;共20分)7. ;;.8. 如果一辆汽车从仓库出发向东行驶了千米后到达商场,卸完货向西行驶了千米到达加油站,那么加油站位于仓库的面(填方向),距仓库千米.9. 下边横排有个方格,每个方格中都只有一个数字,且任何相邻三个数字之和都是.(1)以上方格中,;(2)利用你在解决(1)时发现的规律,设计一个在本题背景下相关的拓展问题,或给出设计思路(可以增加条件,不用解答).你所设计的问题(或设计思路)是: .10. .三、解答题(共3小题;共39分)11. 计算题:(1);(2);(3);(4);(5);(6).12. 计算:(1);(2);(3;(4);(5);(6;(7).13. 计算:(1);(2);(3);(4).答案第一部分1. D .2. C3. C4. B 【解析】5. D【解析】第个图形中共有个点;第个图形中共有个点,比第个图形中多了个点;第个图形中共有个点,比第个图形中多了个点;,按此规律可知:第个图形比第个图形中多个点,所以第个图形中共有个点;第个图形比第个图形中多个点,所以第个图形中共有个点;第个图形比第个图形中多个点,所以第个图形中共有个点.6. A 【解析】设小圈上的数为,大圈上的数为,,横、竖以及内外两圈上的个数字之和都相等,两个圈的和是,横、竖的和也是,则,得,,得,,,当时,,则,当时,,则.第二部分7. ,8. 西,9. ,,信用卡上的号码由位数字组成,每一位数字写在下面方格中,如果任何相邻三个数字之和都等于,则的值等于() .第三部分11. (1).(2).(3).(4).(5).(6).12. (1).(2).(3).(4).(5).(6).(7).13. (1)(2)(3)(4)。

【教案】2.4 有理数的加法与减法(1)

【教案】2.4 有理数的加法与减法(1)

体现数轴这一数学工 具的作用,渗透数形 结合的数学思想方
如图,把笔尖放在数轴的原点,先向正方向移动 3 个单位长度, 法。
引导学生对有理数的 加法情况进行二次分 算式: (+3)+(—2)= 再做一些类似的活动,验证表格算式的结果是否一致。 5.我们以后做有理数的加法,不能总是用数轴或凭经验做啊。 有理数的加法运算有没有什么规律?下面来探索有理数加法法 则。 能否给它们归归类? 三种情况:同号两数相加,异号加数相加,一个数与 0 相加 ②观察以上算式, 有理数加法运算的结果与小学所学的加法 运算的结果有什么不同? ③如何确定和的符号?如何确定和的绝对值? 以上三个问题层层递进,有序抛出,一个一个地解决,特别是 第三个问题的解决, 一定要让学生仔细观察算式中的加数与和的 关系。然后进行小组讨论。 6.归纳法则 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,绝对值相等时,和为 0;绝对值不等时,取 绝对值较大的加数的符号,并用较大的绝对值减去较小的绝 对值。 一个数与 0 相加,仍得这个数。 三、例题讲解 例 1:计算 (1) (—180)+(+20) ; (3)5+(—5) ; 解: (—180)+(+20) (1) = —(180—20) = —160 教师讲解示范做第一题, 后面三题由学生自己做, 最后教师讲解。 通过游戏的形式,再 教师讲评时,一定要问学生:
算,一方面提高学生 的兴趣,另一方面训 练学生的反应和速 度, 发展学生的数感。 运用有理数加法解决 实际问题,要求学生 出算式,然后求解。 教师在讲评时,一定 要让学生充分暴露自 己的思维过程,特别 是要让他们说出自己 是怎么想的?为什么 这样列式? 提出本节课的重点和 难点,再次引起学生 注意。 在小学所学的基础 上,帮助学生构建新 的知识体系。

2.4有理数加法与减法(1)

2.4有理数加法与减法(1)
(3)确定和的绝对值. 思考:两个有理数相加,和一定 比两个加数大吗?
绝对值不等时,取绝对值较大的 加数符号,并用较大的绝对值减去 较小的绝对值。
四类:一个数与0相加
仍得原来的数。
练一练:填表
和的 符号
(+4)+(+7) (-8)+(-3) (-9)+(+5) (-6)+(+6) (-7)+ 0 8+(-1)

确定绝对值 (加或减)


相加 相加 相减


相减
11 11 4 0 7 7
四类:一个数与0相加
仍得原来的数 (与小学里也差不多)
议一议
一类:两个正数相加 二类:两个负数相加 三类:一正一负相加
取正号,并把绝对值相加。 取负号,并把绝对值相加。 有时为正,有时为负,还有为0。
四类:一个数与0相加
仍得原来的数 (与小学里也差不多)
议一议
一类:两个正数相加 二类:两个负数相加 三类:一正一负相加
与小学里的一样 不谈负号与小学里也一样 有时为正,有时为负,还有为0。
四类:一个数与0相加
仍得原来的数 (与小学里也差不多)
议一议
一类:两个正数相加 二类:两个负数相加 三类:一正一负相加
取正号,并把绝对值相加。 不谈负号与小学里也一样 有时为正,有时为负,还有为0。
四类:一个数与0相加
仍得原来的数 (与小学里也差不多)
议一议
一类:两个正数相加 二类:两个负数相加 三类:一正一负相加
取正号,并把绝对值相加。 不谈负号与小学里也一样 有时为正,有时为负,还有为0。
四类:一个数与0相加
仍得原来的数 (与小学里也差不多)

2.4有理数的加法与减法(1)

2.4有理数的加法与减法(1)

2.4有理数的加法与减法(1)主备人:王树山学习目标:1、探索有理数加法法则,理解有理数的加法法则。

2、能熟练进行整数加法运算3、初步体会分类思想课前预习:1、计算(1)(13)25++ (2)(52)(7)-+- (3) (3)(8)++-(4)(3)(15)-+- (5)(23)0-+ (6)4.5( 4.5)+-2、(1)甲水库第一天水位上涨了3厘米,可以记作_______厘米,第二天上涨了2厘米,记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。

(2)乙水库第一天水位上涨了3厘米,可以记作_______厘米,第二天下降了2厘米,记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。

(3)丙水库第一天水位下降了3厘米,可以记作_______厘米,第二天上涨了2厘米,记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。

(4)丁水库第一天水位下降了3厘米,可以记作_______厘米,第二天下降了2厘米,记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。

填写表中的水位总变化量和相应的算式。

(单位:厘米)一、展示交流:二、合作探究1、活动思考:(1)把笔尖放在原点处,先向正方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用算式表示以上过程及结果。

(2)把笔尖放在原点处,先向负方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用算式表示以上过程及结果。

0 3 2 1 4-1 -4 -5 -3 -2 0 3 2 1 4-1 -4 -5 -3 -22 算式:________________________2.观察、思考、讨论、交流得出加法法则。

七年级数学有理数的加法与减法1

七年级数学有理数的加法与减法1

归纳:
苏科版数学教材
有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加; 2.异号两数相加,绝对值相等时,和为0;绝对值不等 时,取绝对值较大的加数的符号,并用较大的绝对值减 去较小的绝对值。 3.一个数与0相加,仍得这个数.
活动一:
苏科版数学教材
把笔尖放在原点处,先向正方向移动3个单位长 度,再向负方向移动2个单位长度,这时笔尖的位置 表示什么数?请用算式表示以上过程及结果.
共上涨了多少?
问题4. 第1天水位上涨了3cm,第2天不升也不降,两
天共上涨了多少? ……
交流:
苏科版数学教材
如果将上涨记为正,下降记为负,你能用含正数、 负数的算式表示水位的变化过程和结果吗?两天的 水位还会出现哪些变化?请用含正数、负数的算式 表示变化过程和结果.
友情提醒:
苏科版数学教材
上面我们列出了两个有理数相加的几种不同情 形,并根据它们的具体意义得出了它们相加和.但 是,要计算两个有理数相加所得的和,我们总不能 一直用这种方法.现在我们大家仔细观察比较这几 个算式,看能不能从这些算式中得到启发,想办法 归纳出进行有理数加法的法则?也就是结果的符号 怎么定?绝对值怎么算?
活动二:
苏科版数学教材
把笔尖放在原点处,先向负方向移动3个单 位长度,再向负方向移动2个单位长度,这时笔 尖的位置表示什么数?请
jswmx2009@

便在脑海中幻想着自己亲手 制作小木雕的场景,迫不及待的想要把它们变成现实。 幻想着自己成了能工巧匠,一块木头不一会儿就被做成了一只栩栩如生, 非常可爱的小狗。忽然感觉自己就 好像是"神笔马良"一样,也拥有一把神奇的 雕刻笔,相信任何木头都能让它变得形态逼真,活灵活现的。 我将去年暑假收集的雪糕棍全部找了出来,用铅笔和直尺开始了绘图,我 想要做一把 小木剑:用直尺量出了木条宽的中点,又在两边找到了两个合适的 点,平移做成了一个长方条,和刚才的点连接后,剑的大致轮廓就做出来了, 剑柄也在十分钟后完工。 这一切都进行的顺顺 利利,我便开始了雕刻,每一步我都小心让学生通过模仿操作,掌握for语 句和repeat语句. v教学重点: 通过实例,使学生理解循环语句的 表示方法,结构和用法,进一步体会 算法的基本思想. v 教学难点: 将程序框图转化教学重点——建立并合理解释数学模型 教学难点——实际问题数学化过程 突破点:利用丰富的素材,充分感知,实 现数学化过程。 图 26.2.4 3 2 题型分析: (一)抛物线与x轴、y轴的交点急所构成 的面积 例1:填空: (1)抛物线y=x2-3x+2与y轴的交点 3 2 坐标是___(_0,_2_) ______,与x轴的交 点坐标是__(_1,_0_)和__(2_,0_)___; (2)抛物线 y=-2x2+5x-3与y轴的交 点坐标是_____(0_,_-3_)____,与x轴的 交点坐标是______(1_,0_),_(_3 _,0_) . 2 例2:已知抛物线y=x2-2x-8, (1)求证:该抛物线与x轴一定有两个交点; (2)若该抛物线与x轴的两个交点分别为A、 B,且它的顶点为P,求△ABP的面积。 (1)证明:∵△=22-4*(-8)=36>0 ∴该抛物线与x轴一定有两个交点 y (2)解:∵抛物线与x轴相交时 A Bx P x2- 2x-8=0 解方程得:x1=4, x2=-2 ∴AB=4-(-2)=6 而P点坐标是(1,-9) ∴S =27 (二)根据函数性质判定函数图象之间的 位置关系 例3:在同一直角坐标系中,一次函数 y=ax+c和二次函数y=ax2+c 的图象大致为 y y y y O x A x O x O O x B C D 答案: B (三)由函数图象上的点的坐 标求函数解析式 例4:已知一个二次函数的图象经过点(0, 0),(1,-3),(2,-8)。 (1)求 这个二次函数的解析式; (2)写出它的对称轴和顶点坐标。 答案:(1)y=-x2-2x (2)对称轴:x=-1 顶点坐标(-1,1) (四)实践与探索题 例5:某企业投资100万元引进一条产品加工生产线, 若 不计维修、保养费用,预计投产后每年可创利33万。 该生产线投产后,从第1年到第x年的维修、保养费用 累计为y(万元),且y=ax2+bx,若第1年的维修、保养 费用为2万元,第2年为4万元。 (1)求y的解析式; (2)投产后,这个企业在第几年就能收回投资? 解:(1)由题意,x=1时,y=2;x=2时,y=2+4=6,分 别代入y=ax2+bx,得a+b=2,4a+2b=6, 解得:a=1,b=1, ∴y=x2+ x. (2)设g=33x-100-x2-x,则 g=-x2+32x-100=-(x-16)2+156. 由于当1≤x≤16时,g随x的增大而增大,故当x=4时, 即第4年可收回投资。 练习题: 已知二次函数的图象的顶点坐 标为 (-2,-3),且图象过点(-3,-2)。 (1)求此二次函数的解析式; (2)设此二次函数的图象与x轴交于A,B两 点,O为坐标原点,求线段OA,OB的长度之 和。 作业 作业本(1) P 11--13 板书设计 二次函数的应用: 一. 二. 三. 四. 范例讲解: 常见数学思成功的必经之路。和他们相比,我的这些困难又算得了什 么。 想到这里我又重新鼓起勇气,拿起铅笔从头开 始,计算、绘图、修改…… 开始雕刻时,我深吸一口气,静下心来仔细的雕刻着,顺着铅笔的痕迹, 一点一点的雕刻着

有理数的加法与减法知识点以及专项训练(含答案解析)

有理数的加法与减法知识点以及专项训练(含答案解析)

有理数的加法与减法知识点以及专项训练(含有答案解析)【知识点1:有理数的加法】1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).4. 运算律:【知识点1:有理数的加法练习】1.华罗庚说:“数学是中国人民擅长的学科”,中国是最早认识负数并进行运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负数”的方法.图1表示的是()34+-的过程,按照这种方法,图2表示的过程是在计算()A.()52+-B.()52-+C.()()52-+-D.52+【答案】A【解析】由左图知:白色表示正数,黑色表示负数,所以右图表示的过程应是在计算5+(−2), 故选:A .2. 计算(﹣2)+(﹣3)的结果是( ) A .﹣5 B .﹣1 C .1 D .5【答案】A【解析】原式=﹣(2+3)=﹣5, 故选:A3. 比3大-1的数是( ) A .2 B .4 C .-3 D .-2【答案】A【解析】3+(﹣1)=2,所以比3大-1的数是2. 故选:A .4. 奶奶把35000元钱存入银行2年,按年利率2.50%计算,到期时可得到本金和利息共多少元?( ) A .1750 B .36750 C .175 D .35175【答案】B【解析】本金+本金×年利率×年数=到期本息和。

根据题意得:35000+35000×2.50%×2=35000+1750=36750(元), 故选:B .5. 小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了( ). A .加法的交换律和结合律 B .加法的交换律 C .加法的结合律 D .无法判断【答案】A【解析】将式子(−8)+(−3)+8+(−4)先变成[(−8)+8]+[(−3)+(−4)],再计算结果,则小红运用了:加法的交换律和结合律.故选:A .6.两个数相加,如果和小于每个加数,那么这两个加数()A.同为正数B.同为负数C.一正一负且负数的绝对值较大D.不能确定【答案】B【解析】两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(−1)+(−3)=−4,−4<−1,−4<−3,故选B.7.两个数的和为正数,那么这两个数是()A.正数B.负数C.至少有一个为正数D.一正一负【答案】C【解析】根据题意,当两个数为正数时,和为正;当两数一个正数和0时,和为正;当两数一个为正一个为负,且正数的绝对值较大时,和为正.故选C.8.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10【答案】D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.9.已知a,b互为相反数,则a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b= ________.【答案】0【解析】∵a,b互为相反数,∴a+b=0.∴a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b=(a+b)+2(a+b)+3(a+b)+⋯+50(a+b)=0.故答案为:0.10.已知|a|=4>a,|b|=6,则a+b的值是________.【答案】2或-10【解析】∵|a|=4>a,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.11.绝对值不大于2.1的所有整数是____,其和是____.【答案】﹣2,﹣1,0,1,2 0【解析】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;012.若a,b为整数,且|a-2|+| a-b|=1,则a+b=________.【答案】2,6,3或5【解析】当|a-2|=1,| a-b|=0时,得:a+b=6或2;当|a-2|=0,| a -b|=1时,得:a+b=3或5;故答案为:2,6,3或5【知识点2:有理数的减法】1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.2. (1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.3.运算法则:减去一个数,等于加这个数的相反数,即有:a−b=a+(−b).将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:【知识点2:有理数的减法练习】1.冬季某天我国三个城市的最高气温分别是 -10℃,1℃, -7℃,它们任意两城市中最大的温差是()A.11℃B.7℃C.8℃D.3℃【答案】A【解析】它们任意两城市中最大的温差是:1-(﹣10)=1+10=11℃.故选:A.2.计算-2-3=()A.1-B.1 C.5-D.5 【答案】C【解析】解:-2-3=-2+(-3)=-5.故选:C.3.计算2136⎛⎫---⎪⎝⎭的结果为( )A.12-B.12C.56-D.56【答案】A【解析】原式=−46+16=−36=−12,故选:A.4.今年10月份某市一天的最高气温为11℃,最低气温为﹣3℃,那么这一天的最高气温比最低气温高()A.﹣14℃B.14℃C.8℃D.11℃【答案】B【解析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解:这一天的最高气温比最低气温高11﹣(﹣3)=11+3=14(℃),故选:B.5.气温由6℃下降了8℃,下降后的气温是()A.14-℃B.8-℃C.2-℃D.2℃【答案】C【解析】用原来的气温减去下降的温度,求出下降后的气温是多少即可.解:6-8=-2(℃),故选:C.6.下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.12D.12【答案】A【解析】∵-2+2=0,故选A.7.-3-(-2)的值是( )A.-1 B.1 C.5 D.-5【答案】A【解析】本题按照有理数的减法运算法则直接求解即可.−3−(−2)=−3+2=−1,故选:A.8.小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是﹣2℃,则她家冰箱冷藏室温度比冷冻室温度高( )A.3℃B.﹣3℃C.7℃D.﹣7℃【答案】C【解析】用冷藏室温度减去冷冻室的温度,就是冰箱冷藏室温度与冷冻室温度的温差.依题意得:5-(-2)=5+2=7℃,所以冷藏室温度比冷冻室温度高7℃.故选C.9.下列说法中正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.如果两个数的和是正数,那么这两个数中至少有一个正数D.两个数的差一定小于被减数【答案】C【解析】解:A. 一个有理数不是正数就是负数,错误,如0既不是正数,也不是负数;B. |a|一定是正数,错误,如|0|=0;C. 如果两个数的和是正数,那么这两个数中至少有一个正数,正确;D. 两个数的差一定小于被减数,错误,如3-0=3. 故选:C10. 若3x =,2y =,且0x y +>,那么x y -的值为( ). A .5或1 B .1或-1 C .5或-5 D .-5或-1【答案】A【解析】由题意,利用绝对值的代数意义确定出x 与y 的值,即可求出x-y 的值.解:∵|x|=3,|y|=2,x+y >0, ∴x=3,y=2;x=3,y=-2, 则x-y=1或5, 故选A .11. 在数轴上,a 所表示的点总在b 所表示的点的右边,且|a|=6,|b|=3,则a-b 的值为( ) A .-3 B .-9 C .-3或-9 D .3或9【答案】D 【解析】∵|a|=6,|b|=3,∴a=±6,b=±3,∵在数轴上,a 所表示的点总在b 所表示的点的右边,∴a=6,当a=6,b=3时,a ﹣b=6﹣3=3,当a=6,b=﹣3时,a ﹣b=6﹣(﹣3)=6+3=9,所以,a ﹣b 的值为3或9.故选D .12. 设|a|=4,|b|=2,且|a+b|=-(a+b),则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2【答案】A 【解析】∵|a+b|=-(a+b ),∴a+b≤0,∵|a|=4,|b|=2,∴a=±4,b=±2,∴a=-4,b=±2,当a=-4,b=-2时,a-b=-2; 当a=-4,b=2时,a-b=-6;故a -b 所有值的和为:-2+(-6)=-8.故选A .13. 某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg .【知识点3:有理数加减混合运算】1. 将加减法统一成加法运算,适当应用加法运算律简化计算.2.举例:一、几个有理数相加,把相加得零的数先行相加: 例1 计算38−213−18−20+523−14−313. 【答案】-14【解析】原式=(38-18-20)+(-213+523-313)-14=0+0-14=-14. 例2 计算1+2-3-4+5+6-7-8+9+…+1998-1999-2000+2001+2002-2003-2004+2005+2006. 【答案】2007【解析】原式=1+(2-3-4+5)+(6-7-8+9)+…+(1998-1999-2000+2001)+(2002-2003-2004+2005)+2006=1+0+0+…+0+2006=2007. 二、几个有理数相加,把同号的数分别相加: 例3 计算-18+21-16+8-23+28. 【答案】0【解析】原式=(21+8+28)+(-18-16-23)=57-57=0. 三、几个非整数的有理数相加,先把相加得整数的数相加: 例4 计算-0.375+3.15+114-658+735. 【答案】5【解析】原式=(-0.375-658)+(3.15+114+735)=-7+12=5. 例5 计算214-123+325-113+2.35+9. 【答案】14【解析】原式=(2.35+214+325)+(-123-113)+9=8-3+9=14.四、几个分数相加,先把同分母的分数分别相加: 例6 计算413+514+634-113. 【答案】15【解析】原式=(514+634)+(413-113)=12+3=15.五、几个带分数相加,先把它们的整数部分和分数部分分别相加: 例7 计算413+514+634-113. 【答案】15【解析】原式=(4+5+6-1)+(13+14+34-13)=14+1=15. 六、先变形,后相加:例8 计算38+27-49-996+2006+28. 【答案】1234【解析】原式=(40-2)+(30-3)+(-50+1)+(-1000+4)+(2000+6)+(30-2)=(40+30-50-1000+2000+30)+(-2-3+1+4+6-2)=1230+4=1234.小结:进行有理数的加减混合运算前,根据减法法则把减法变成加法.进行有理数的加减混合运算时,一般先应考虑到符号相同的数先加;互为相反数的数先加,同分母的数先加,和为整数的几个数先加. 【知识点3:有理数加减混合运算 练习】 1. |1−2|+3的相反数是( ) A .4 B .2 C .4- D .2-【答案】C【解析】先化简求解,再根据相反数的定义即可求解. 解:|1−2|+3=2−1+3=4. ∵4的相反数为-4, ∴|1−2|+3的相反数是-4. 故选:C .2. 我市今年某一天上午9点的气温是4°C,下午1点上升了3°C,半夜(24时)又下降了5°C,半夜的气温是( ) A .3°C B .-3°C C .4°C D .2°C【答案】D【解析】根据有理数的加减运算法则计算即可. 解:由题意可得:4+3-5=2°C, 故选D .3. 1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是( ) A .0 B .100 C .﹣1003 D .1003【答案】C【解析】1﹣2+3﹣4+5﹣6+…+2005﹣2006 =1003(1)(1)(1)(1)(1)--+-+-++-个=-1003.4. 50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是( ) A .0 B .50 C .﹣50 D .5050 【答案】C【解析】试题解析::(1+3+5+7+…+99)-(2+4+6+8+…+100) =-[(2-1)+(4-3)+(6-5)+(8-7)…+(100-99)] =-(1+1+1+1+…+1) =-50. 故选C .5. 绝对值大于1且小于4的所有整数的和是( ) A .6 B .–6 C .0 D .4【答案】C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0. 故选C .6. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .11 | 13【答案】 -1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-17. 阅读下题的计算方法.计算−556+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)] =0+(−54) =−54上面这种解题方法叫做拆项法,按此方法计算:(−201156)+(−201023)+402223+(−112). 【答案】−43【解析】解:原式=[(−2011)+(−56)]+[(−2010)+(−23)]+[4022+23]+[(−1)+(−12)]=[(−2011)+(−2010)+4022+(−1)]+[(−56)+(−23)+23+(−12)] =0+(−43) =−438. “九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】【解析】解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.9.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】1594千克【解析】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6 200×8+(-6)=1594(千克)法二:197+202+197+203+200+196+201+198=1594(千克)10.邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【答案】(1)(2)6千米(3)18千米【解析】解:(1)以邮局为原点,以向北方向为正方向用1cm表示1km,数轴为:;12 | 13(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).11.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.【答案】10【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5,不大于3的正整数为1,2,3,即y=3,绝对值等于3的整数为3,﹣3,即z=2,所以x+y+z=10.12.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期一二三四五每股涨跌/元+0.4 +0.45 ﹣0.2 +0.25 ﹣0.4【答案】(1)11.85元;(2)周四,本周该只股票最高价12.1元出现在周四。

七上2-4有理数的加法(1)

七上2-4有理数的加法(1)

七年级上册第二章《有理数及其运算》第四节:有理数的加法(一)一、备课标(一)内容标准:课标要求:理解有理数的加法运算律,能运用运算律简化运算。

能运用有理数的加法运算解决简单的问题(二)十大核心概念:本节课初步学会在具体情境中从数学的角度发现和提出问题,探索具体问题中的数量关系并能根据数量关系进行有理数加法运算,加深学生对运算本身意义的理解。

发展灵活运用数学知识解决实际问题能力。

十大核心概念在本节课中突出培养的是符号意识数感运算能力二、备重点、难点(一)教材分析:本节课是七年级上册第二章《有理数及其运算》第四节第一课时的内容。

本节对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。

为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。

教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。

(二)教学重点、难点内容:重点:有理数加法法则的探索过程,利用有理数的加法法则进行计算难点:探索异号两数相加的法则三、备学情(一)学习条件和起点能力分析:1.学习条件分析:(1)必要条件:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。

符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

(2)支持性条件:教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务,本节课渗透探索、归纳等思想方法。

数学学习中学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定数学交流的能力。

2.起点能力分析:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后练习
1、选择题
(1)若两数的和为负数,则这两个数一定( )
A .两数同负
B .两数一正一负
C .两数中一个为0
D .以上情况都有可能
(2)两个有理数相加,若它们的和小于每一个加数,则这两个数( )
A.都是正数
B.都是负数
C.互为相反数
D.符号不同
(3)如果两个有理数的和是正数,那么这两个数( )
A.都是正数
B.都是负数
C.都是非负数
D.至少有一个正数
(4)使等式x x +=+66成立的有理数x 是 ( )
A.任意一个整数
B.任意一个非负数
C.任意一个非正数
D.任意一个有理数
(5)对于任意的两个有理数,下列结论中成立的是 ( )
A.若,0=+b a 则b a -=
B.若,0>+b a 则0,0>>b a
C.若,0<+b a 则0<<b a
D.若,0<+b a 则0<a
(6)下列说法正确的是 ( )
A.两数之和大于每一个加数
B.两数之和一定大于两数绝对值的和
C.两数之和一定小于两数绝对值的和
D.两数之和一定不大于两数绝对值的和
(7)下列各组运算结果符号为负的有( )
(+35)+(-45),(-67)+(+75),(-313)+0,(-1.25)+(-34
) A .1个 B .2个 C .3个 D .4个
2、判断
(1)若某数比-5大3,则这个数的绝对值为3.( )
(2)若a>0,b<0,则a+b>0.( )
(3)若a+b<0,则a ,b 两数可能有一个正数.( )
(4)若x+y=0,则︱x ︱=︱y ︱.( )
3、填空
(1)(+5)+(+7)=_______; (-3)+(-8)=________;
(+3)+(-8)=________; (-3)+(-15)=________;
0+(-5)=________; (-7)+(+7)=________.
(2)一个数为-5,另一个数比它的相反数大4,这两数的和为________.
(3)(-2)+______=-7; ______+(+3)=-6.
_______+(+2)=+11; ______+(+2)=-11;
4、 如果,5,2-=-=b a 则=+b a ,=+b a
5、计算
(1)(+21)+(-31) (2)(-3.125)+(+318) (3)(-13)+(+12

(4)(-313)+0.3 (5)(-22914)+0 (6)│-7│+│-9715

6、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?
7、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。

8、 已知.5,2==b a
(1)求b a + (2)若又有b a >,求b a +.
当堂训练
班级: 姓名:
1、判断
(1)两个有理数相加,和一定比加数大. ( )
(2)绝对值相等的两个数的和为0.( )
(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )
2、一个正数与一个负数的和是( )
A 、正数
B 、负数
C 、零
D 、以上三种情况都有可能
3、两个有理数的和( )
A 、一定大于其中的一个加数
B 、一定小于其中的一个加数
C 、大小由两个加数符号决定
D 、大小由两个加数的符号及绝对值而决定
4.下列各组运算结果符号为负的有( )
(+35)+(-45),(-67)+(+75),(-313)+0,(-1.25)+(-34
) A .1个 B .2个 C .3个 D .4个
5、计算:
(1) (+3)+(+7)=______ (2) (+3)+(-8)=_______ (3) (-12)+(-5)=_________
(4)(-3.8)+(+1.8) =______ (5) 0+(-19) =________(6)(-3
71)+(-176)=________ 6、(-5)+______=-8; ______+(+4)=-9.
7、 若 | m |= 5,| n | = 3,则(1)m+n=
(2)m >n, 则m+n =___________
8.一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现
在位于原来的哪个方向,与原来位置相距多少米?。

相关文档
最新文档