2.5有理数的加法与减法(1)(教案)
七年级数学上册有理数有理数的加法与减法教学课件苏科版本

1.计算:
(1)10-24-15+26-24+18-20;
(2) 0.5
1 3
1 4Βιβλιοθήκη 1 6;(3)14-28-32-16+18+32.
2.某公路养护小组乘车沿南北公路巡护维护.某天早晨从A地 出发,晚上最后到达B地,约定向北为正方向,当天的行驶 记录如下(单位:千米): +18,-9,-7,-14,-6,+13,-6,-8,B地在A地何方?相距 多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少 升?
计算:(1) (11) 8 (14);
(2) 8 (2) (4) 1 (3);
(3) (4) (3) (4) 3;
(4) 0.35+(-0.6)+0.25+(-5.4);
(5) ( 3) ( 2) ( 1) 2; 4 3 43
(6) (2) ( 1) 1 ( 1). 23 6
谈谈你这一节课有哪些收获.
(a b) c a (b c).
例1 计算: (1)(-23)+(+58)+(-17); (2)(-2.8)+(-3.6)+(-1.5)+3.6.
符号相同 的先结合
解:(1)原式=(-23)+(-17)+(+58)
=-40+58
互为相反数 的先结合
=18.
(2)原式=(-2.8)+(-1.5)+3.6+(-3.6)
2.计算:
(1)( – 3) – ( –5); (3)( – 3) – 5 ; (5) 3 – 5 ; (7)(-14)-(+15); (9)(+12)-(-28); (11)(-23.9)-(-21.3); (13)3-[(-3)-12] ;
有理数的加减法教案

《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。
3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。
4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。
2.5《有理数的加减混合运算》北师大版七年级数学上册示范教案

第二章有理数及其运算2.6 有理数的加减混合运算第3课时一、教学目标1.能将生活中的问题转化为有理数的加减混合运算,使问题简单明了;2.使学生熟练地进行有理数的加减混合运算,解决实际问题.二、教学重点及难点重点:准确迅速地进行有理数的加减混合运算;难点:减法直接转化为加法及混合运算的准确性.三、教学准备多媒体课件四、相关资多媒体五、教学过程【复习巩固】合作交流,引入新课(1)2-7;(2)(-2)-7;(3)(-2)-(-7);(4)2+(-7)(5);(6);(7)解:设计意图:通过计算,回顾计算中的技巧,培养学生计算速度和准确率,为本节课做准备.【新知讲解】合作交流,探索新知下图是流花河的水文资料(单位:米).问题1.取河流的警戒水位作为0,那么图中其他数据可以分别记作什么?解:取河流的警戒水位(33.4 m)作为0点,那么图中的最高水位(35.3 m)可记作+1.9 m,平均水位(22.6 m)可记作-10.8 m,最低水位(11.5 m)可记作-21.9 m.问题2.下表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水位).星期一二三四五六日水位变化/米+0.2+0.81-0.35+0.03+0.28-0.36-0.01注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天流花河的水位最高?哪一天水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?(2)与上周末相比,本周末流花河水位是上升了还是下降了?(3)请完成下面的本周水位记录表:星期一二三四五六日水位记录(米)33.6(4)以警戒水位为0点,用折线统计图表示本周的水位情况.师生活动:通过老师指导,学生之间的交流,讨论,思维水平及思维方法灵活多样,促进思维的提高,培养学生的“数感”.解:(1)星期二的水位最高,星期一的水位最低,它们都位于警戒水位之上,与警戒水位的距离分别是:1.01 m,0.2 m.(2)因为0.20+0.81-0.35+0.03+0.28-0.36-0.01=0.6(m).所以本周末河流水位与上周末相比上升了.(3)填表如下:星 期一二 三 四 五 六 日 水位记录(米) 33.634.4134.0634.0634.3734.0134(4)如图所示.设计意图:通过读本题的分析,让学生感受数学知识在生活中的应用,培养学数学、用数学的意识.(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?解析:(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.解:(1)7-(-10)=17(辆);(2)100×7+(-1+3-2+4+7-5-10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆,比原计划减少了4辆.【典型例题】1.一辆公共汽车上原有20人,到站后下去了5人,又上来了8人,下一站下去6人,再上来9人,现在公共汽车上有______人.262.黄山主峰一天早晨气温为-1 ℃,中午上升了8 ℃,夜间又下降了10 ℃,那么这天夜间黄山主峰的气温是_________. -30.20.40.60.81.0星期3.已知有理数a 、b 、c 在数轴上对应点分别为A 、B 、C ,点A 、B 在数轴上的位置如图所示,若|b |=4,AC =2,则a +b -c = 解:由数轴可知,a >0,c >0,b <0,∵|b |=4,AC =2,∴b =-4,c -a=2,∴a +b -c =b +(a -c )=b-(c -a )=-4-2=-6.故答案为-6.4.矿井下A 、B 、C 三处的高度分别是-37.4m ,-129.8m ,-71.3m ,A 处比B 处高多少米?C 处比B 处高多少米?A 处比C 处高多少米?解:A 处比B 处高:-37.4-(-129.8)=92.4(m ),C 处比B 处高:-71.3-(-129.8)=58.5(m ),A 处比C 处高:-37.4-(-71.3)=33.9(m ).【随堂练习】1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低( ) CA .星期二B .星期四C .星期六D .星期五2.一个数减去-5与2 的和,所得的差是6,求该数的相反数.解:根据题意知这个数为6+(-5+2)=6+(-3)=3,所以这个数的相反数为-3.3.光明中学七(1)班学生的平均身高是160 cm .(1)下表给出了该班6名学生的身高情况(单位:cm ).试完成下表:姓名小明小彬小丽小亮小颖小山身高159154165身高与平均身高的差值-1+2+3(2)这6名学生中谁最高?谁最矮?(3)最高与最矮的学生身高相差多少?星期一二三四五六日水位变化/米0.12-0.02-0.13-0.20-0.08-0.020.32解:(1)如下表:姓名小明小彬小丽小亮小颖小山身高159162160154163165身高与平均身高的差值-1+20-6+3+5(2)小山最高,小亮最矮.(3)最高与最矮的学生身高相差:165-154=11(cm).4.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?解:(1)第一次操作后增加的新数是6,-1,则6+(-1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(-10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.六、课堂小结谈谈你的收获:1.通过学习本节内容,要能将生活中的问题转化为有理数的加减混合运算,使问题简单明了.2.要特别注意正、负号的含义,含义不同,计算的过程和结果也都不相同.3.计算时要注意:减法统一成加法时减号要变加号,减数变成相反数,统一成加法后才可以用加法的交换律和结合律.七、板书设计:。
有理数加减及混合运算教案

有理数的加法(1)20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。
可是上述问题不能得到确定答案,因为问题中并未指出行走方向。
二、讲授新课:1.发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。
(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50, 即这位同学位于原来位置的东方50米处。
这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处, 写成算式就是: (―20)+(―30)=―50。
(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。
(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。
即这位同学位于原来位置的( )方( )米处。
后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不仿仍可看作运动的方向和路程):你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(―3)=( ); (+3)+(―10)=( ); (―5)+(+7)=( ); (―6)+ 2 = ( )。
再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。
(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。
我们不难得出它们的结果。
2.概括:综合以上情形,我们得到有理数的加法法则: 1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。
2.5有理数的加法与减法(1)(教案)

有理数的加法与减法(1)(教案)【教学目标】1、了解有理数加法的意义,理解有理数加法法则的合理性;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,感受数学学习的方法.【教学重点】1、有理数的加法法则的生成过程;2、能运用有理数加法法则正确进行有理数加法运算.【问题导学】1、通过实例引导学生理解有理数加法法则的算理。
2、利用数形结合理解有理数加法法则的算理。
3、引导学生对有理数加法法则中的不同类型进行合理分类。
4、能准确地有理数加法计算。
【教学过程】一、情境创设小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?二、探索活动活动一、甲、乙两队进行足球比赛•如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.你能把上面比赛的过程及结果用有理数的算式表示出来吗?做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:注意:先写净胜球数,再写算式,最后写“=”号.【学生活动】由学生完成这份表格,在填写过程中,引导学生用生活情境化的语言来表述问题的结果,这样有助于学生对加法法则后面的算理的理解。
活动一、.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“2”的位置上.用数轴和算式可以将以上过程及结果分别表示为:-S -5 -3 -1 0 1 2 3 4 5算式: ___________________________2 .把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“ 1”的位置上.用数轴和算式可以将以上过程及结果分别表示为:3.把笔尖放在数轴的原点,沿数轴先向左移动 3个单位长度,再向左移动 2个单位长度,这时笔尖的位置表示什么数?请用数轴和算式分别表示以上过程及结果:-S --5 -3 -1 0 1 2 3 4 5算式: ___________________________对照上述两组算式,讨论:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定? 【学生活动】请学生表述,在表述过程中老师要渗透,同号两数表示相同性质的两个量相 加,结果是量叠加的,异号两数表示性质相反的两个量相加,结果是相抵消的,这样的一 个基本思想意识。
有理数加减教案初中数学

有理数加减教案初中数学教学目标:1. 理解有理数的加减法的概念和规则。
2. 能够熟练地进行有理数的加减法运算。
3. 能够解决实际问题,运用有理数的加减法进行计算和分析。
教学重点:1. 有理数的加减法的概念和规则。
2. 有理数的加减法运算的技巧和方法。
教学准备:1. 教学课件或黑板。
2. 练习题和答案。
教学过程:一、导入(5分钟)1. 引入有理数的加减法,解释有理数的加减法的概念和意义。
2. 通过举例说明有理数的加减法的实际应用。
二、讲解(20分钟)1. 讲解有理数的加法规则,包括同号相加、异号相加和零的加法。
2. 讲解有理数的减法规则,包括减去一个数等于加上它的相反数。
3. 通过示例和练习,让学生理解和掌握有理数的加减法的规则。
三、练习(15分钟)1. 分组练习题,让学生进行有理数的加减法运算。
2. 提供一些实际问题,让学生运用有理数的加减法进行计算和分析。
四、总结(5分钟)1. 对本节课的内容进行总结,强调有理数的加减法的概念和规则。
2. 提醒学生注意运算的符号和顺序。
五、作业布置(5分钟)1. 布置一些有关有理数的加减法的练习题,让学生巩固所学知识。
2. 鼓励学生进行自主学习,查找有关有理数的加减法的更多信息。
教学反思:本节课通过引入实际问题和示例,让学生理解和掌握有理数的加减法的概念和规则。
通过练习和总结,让学生巩固所学知识,并能够运用有理数的加减法进行计算和分析。
在教学过程中,要注意引导学生掌握运算的符号和顺序,避免出现错误。
同时,也要鼓励学生进行自主学习,提高他们的学习兴趣和能力。
有理数的加减混合运算的教案设计

有理数的加减混合运算的教案设计有理数的加减混合运算教学目标1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;3.通过加法运算练习,培养学生的运算能力。
教学建议(一)重点、难点分析本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。
了解运算符号和*质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.(二)知识结构(三)教法建议1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.2.关于去括号法则,只要学生了解,并不要求追究所以然.3.任意含加法、减法的算式,都可把运算符号理解为数的*质符号,看成省略加号的和式。
这时,称这个和式为代数和。
再例如-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。
代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。
如12-5+7应变成12+7-5,而不能变成12-7+5。
教学设计示例一有理数的加减混合运算(一)一、素质教育目标(一)知识教学点1.了解:代数和的概念.2.理解:有理数加减法可以互相转化.3.应用:会进行加减混合运算.(二)能力训练点培养学生的口头表达能力及计算的准确能力.(三)德育渗透点通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.(四)美育渗透点学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.二、学法引导1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.2.学生写法:练习寻找简单的一般*的方法练习巩固.三、重点、难点、疑点及解决办法1.重点:把加减混合运算算式理解为加法算式.2.难点:把省略括号和的形式直接按有理数加法进行计算.四、课时安排1课时五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.七、教学步骤(一)创设情境,复习引入师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:-9+(+6);(-11)-7.师:(1)读出这两个算式.(2)+、-读作什么?是哪种符号?+、-又读作什么?是什么符号?学生活动:口答教师提出的问题.师继续提问:(1)这两个题目运算结果是多少?(2)(-11)-7这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正).师小结:减法往往通过转化成加法后来运算.。
2.5有理数的加法与减法教案(4课时定稿)

§2.5有理数的加法与减法(第一课时)一、教学目标目的与要求:了解加法的意义,会用有理数的加法法则进行运算。
知识与技能: 渗透数形结合和转化的数学思想,培养运用这种思想解决实际问题的能力。
情感、态度与价值观:感知数学知识来源于生活,并应用于生活;利用转化思想,渗透事物间的普遍联系。
二、教学重难点重点:能运用有理数加法法则,正确进行有理数加法运算;难点:经历探索有理数加法法则的过程,感受数学学习的方法。
三、教学过程情境创设:小明在一条东西方向的跑道上,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?你能把所有情况设想完整吗?自主探究(+3)+(-5)= (-3)+(+5)= (+3)+(+5)=(-3)+(-5)= (-3)+ 0 = 0 +(-5)=例题剖析例1、计算:(1)(+17)+(+4)(2)(-9)+(-4)(3)(+4)+(-6)(4)(-30)+(+110)(5)(+123)+(-123)(6)(-3.2)+0例2、下列说法中正确的有()个①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和可能等于其中一个加数④两个有理数的和可能等于零A、1 B、2 C、3 D、4例3、一个水利勘察队,第一天沿江向上游走了20千米,第二天向下游走了45千米,问此时勘察队在出发点的上游还是下游,距出发点多远?(利用有理数的加法列式解答)例4、如果a<0,b>0,且a+b<0,借助于数轴比较a、b、-a、-b的大小(用“<”连接)随堂演练 1、填空(+3)+(+4)= ; (-4)+(-6)= ;(-112)+(+114)= ; 413+(-3)= ;(-2.2)+(+125)= ; (-300)+0= 。
2、选择(1)如果两个数的和是正数,那么下面对这两个加数的判断正确的是( ) A 、这两个加数都是正数 B 、这两个加数一正一负 C 、一个加数为正,另一个加数为零 D 、必属于上面三种情况之一 (2)下列说法中,正确的是 ( ) A 、同号两数相加,其和比加数大B 、异号两数相加,其和比两个加数都小C 、两数相加,等于它们的绝对值相加D 、两个正数相加和为正数,两个负数相加和为负数 3、计算:(1)-|-3.75|+(-6.25) (2)-|-3|+(-5.4) (3)-(-4)+(-27)4、有理数a,b 之间的关系如图所示,借助于数轴和加法法则判断下列各式计算结果与0的大小:(1)a+b 0 (2)a+(-b) 0(3)(-a)+b 0 (4)(-a)+(-b) 05、列式并解答:(1)-个数与-5的差为-8,求这个数; (2)-个数与9的差为-5,求这个数.6、能力提升小明在一条东西方向的跑道上运动,从A 点出发,沿跑道先走了20米,然后又走了30米,问此时小明在距离A 点什么位置?(要求利用有理数的加法列式解答)四、本课小结五、作业布置: 完成学案六、教学反思ba§2.5有理数的加法与减法(第二课时)一、教学目标目的与要求 进一步熟悉有理数加法法则的基础上探索加法的运算律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5有理数的加法与减法(1)(教案)
【教学目标】
1、了解有理数加法的意义,理解有理数加法法则的合理性;
2、能运用有理数加法法则,正确进行有理数加法运算;
3、经历探索有理数加法法则的过程,感受数学学习的方法.
【教学重点】
1、有理数的加法法则的生成过程;
2、能运用有理数加法法则正确进行有理数加法运算.
【问题导学】1、通过实例引导学生理解有理数加法法则的算理。
2、利用数形结合理解有理数加法法则的算理。
3、引导学生对有理数加法法则中的不同类型进行合理分类。
4、能准确地有理数加法计算。
【教学过程】
一、情境创设
小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?
二、探索活动
活动一、甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.
你能把上面比赛的过程及结果用有理数的算式表示出来吗?
做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:
赢球数
净胜球数算式
主场客场
3 -2 1 3+(-2)=1
-3 2
3 2
-3 -2
3 0
0 -3
【学生活动】由学生完成这份表格,在填写过程中,引导学生用生活情境化的语言来表述问题的结果,这样有助于学生对加法法则后面的算理的理解。
活动一、.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个
”的位置上.
单位长度,这时笔尖停在“2
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?
请用数轴和算式分别表示以上过程及结果:
算式:________________________ 对照上述两组算式,讨论:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定? 【学生活动】请学生表述,在表述过程中老师要渗透,同号两数表示相同性质的两个量相加,结果是量叠加的,异号两数表示性质相反的两个量相加,结果是相抵消的,这样的一个基本思想意识。
总结与归纳:
有理数加法法则:
同号两数相加,_________________________________________________. 异号两数相加,_____________________________________________________________.
一个数与0相加,_________________________. 法则的理解:
(1)同号两数相加,包括同正两数相加和同负两数相加两种情形.同正得正,同负得负,并把绝对值相加;
(2) 异号两数相加,包括绝对值相等和绝对值不等两种情形.绝对值相等时,即两个互为相反数的和为0;绝对值不等时和的符号由绝对值较大的加数确定并用较大的绝对值减去较小的绝对值;
(3)任何有理数与0相加仍得这个数.
另外,由法则应知道,无论是哪种情形的两个有理数相加,都分成两个步骤: 第一步确定结果的符号,第二步确定结果的绝对值.
【学生活动】在规定有理数加法法则时,是如何进行分类的?先按什么来分?再按什么来分?这样的层次和顺序能变化吗?如果能,你会怎样变化?如果不能,为什么?如果变化了,那一种方式更好? 三、例题教学 例1、计算:
(1)(+5)+(+24) (2)(-15)+(-3) (3)(-43)+(-4
1
)
(4)(-180)+(+20) (5)(—7)+10 (6)7.2+(-6.4)
(7)5+(-5) (8)(—7.8)+7.8 (9)(-53
)+(+0.6)
(10)0+(-2) (11)0+(—1.5) (12)(—3
4
)+0
例2、已知.7,3==b a
(1)若有b a <,求b a + (2)求b a +.
例3、请你给算式(-15)+(+7)=-8编写一个现实的情境.
【学生活动】老师解题示范,学生板书练习,学生互相评价,归纳解题的规范与注意点。
四、课堂小结
【学生活动】归纳总结,老师引导学生有条理地表达,注意总结的层次性与系统性,小结应当有:1、有理数加法的算理,2、有数数加法的法则,3、有理数加法计算的注意点与步骤。