2.4有理数的加法与减法(1)
有理数的加减法(共44张PPT)

总结词
整数和小数相加或相减时,先将整数和 小数都转换为小数,再进行加减运算。
VS
详细描述
在进行整数和小数的混合加减法时,先将 整数转换为小数,再进行小数的加减法运 算。例如,将整数1和0.5相加得到1.5,将 整数2和-0.8相加得到1.2。同样地,在进 行混合减法时,先将整数转换为小数,再 进行小数的减法运算。例如,将整数2和 0.6相减得到1.4,将整数1和-0.4相减得到 0.6。
异号数的加减法规则
总结词
异号数相加或相减,取绝对值较大数的符号,并用较大的绝对值减去较小的绝 对值。
详细描述
当两个有理数符号不同时,结果的符号取绝对值较大的数的符号。同时,结果 的绝对值是较大的绝对值减去较小的绝对值。例如,+3和-5相加得到-2,-7和 +4相加得到-3。
整数和小数的混合加减法规则
06
习题和练习
基础习题
总结词
针对有理数加减法的基本概念和规则进行练习。
详细描述
包括正数、负数和零的加法运算,减法运算转化为加法运算,以及整数、分数和 小数的混合运算。
进阶习题
总结词
在掌握基础习题的基础上,进一步提高解题技巧和思维能力 。
详细描述
涉及更复杂的运算,如多步运算、分数的约分、有理数的乘 除法等,以及解决实际问题中的数学模型。
计算 (-5) + (-3):首先确定符号为 负,然后计算绝对值5和3,最后相 加得到结果-8。
示例2
计算 (-7) - (-4):首先确定符号为 负,然后计算绝对值7和4,最后相 减得到结果-3。
运算技巧和策略
利用分配律简化运算
例如,a + (b + c) = (a + b) + c 和 a - (b - c) = (a - b) + c。
【北师大版】七年级数学上册 教案2.4 有理数的加法

2.4 有理数的加法(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题.符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一.学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力.学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点.二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算.为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力.教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算.本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则.教学方法是“引导——分类——归纳”.本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法.三、教学过程设计本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业.(一)复习引入,提出问题活动内容:1.复习提问:(1)下列各组数中,哪一个较大?(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 .活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.这里先让学生回顾在具体问题中感受正数和负数的加法运算.2.提出问题:某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.如果我们用1个表示+1,用1个,那么就表示0,同样也表示0.(1)计算(-2)+(-3).在方框中放进2个和3个:因此,(-2)+(-3)= -5.用类似的方法计算(2)(-3)+ 2323330143----+--与;与;与;-2与;与(3) 3 +(-2)(4) 4+(-4)思考:两个有理数相加,还有哪些不同的情形?举例说明.引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0.活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0.进而讨论如何进行一般的有理数加法的运算.活动的实际效果:实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.(二)活动探究,猜想结论:上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识.对“一起探究”,教师可引导学生按以下步骤思考:1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0.2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?3、从中归纳概括出规律在学生探究的基础上,教师引出规定的加法法则.在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助.同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳.活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则.通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程.理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力.(三)验证明确结论:例1计算下列算式的结果,并说明理由:(1) 180 +(-10); (2) (-10)+(-1);(3)5+(-5);(4) 0+(-2)活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.活动的实际效果:通过习题,加深了学生对有理数加法法则的理解.(四)运用巩固:活动内容:1.口答下列算式的结果(1) (+4)+(+3); (2) (-4)+(-3); (3) (+4)+(-3);(4) (+3)+(-4); (5) (+4)+(-4); (6) (-3)+0;(7) 0+(+2); (8) 0+0.活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度.2.请同学们完成书上的随堂练习:(1)(-25)+(-7); (2)(-13)+5; (3)(-23)+0;(4)45+(-45)全班学生书面练习,四位学生板演,教师对学生板演进行讲评.活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展.活动的实际效果:通过练习进一步熟悉有理数的加法法则.通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种问题.(五)课堂小结:活动内容:师生共同总结.1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值2. 有理数加法法则及其应用.3. 注意异号的情况.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.活动的实际效果:学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标.(六)布置作业:1.课本习题2.4 1、2、3、4、5、 62.拓展练习:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;(4)3.29+1.78;(5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.四、教学设计反思本节课是在前面学习了有理数的意义的基础上进行的,运用数形结合的思想,探索出有理数加法法则.在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的.“有理数加法法则”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,加法的训练则贯穿在今后的教学活动中进行.故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法.2.4 有理数的加法(第2课时)一、学生起点分析学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨.二、教学任务分析和有理数的加法法则一样,有理数加法运算律的得出也是要学生自主探索,同时通过具体运算体会运算律对计算的简便之处.本课时教学重点是有理数加法运算律,并能运用加法运算律简化运算;教学难点是灵活运用运算律简化运算.具体教学目标如下:知识与技能:1.进一步熟练掌握有理数加法的法则;2.掌握有理数加法的运算律,并能运用加法运算律简化运算.过程与方法:启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法.情感、态度与价值观:1.培养学生的分类与归纳能力.2.强化学生的数形结合思想.3.提高学生的自学以及理解能力,激发学生学习数学的兴趣.三、教学过程设计本节课设计了六个教学环节:第一环节:情境引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业.(一)情境引入,提出问题活动内容:1.叙述有理数的加法法则.2.计算并比较每组的两个算式的结果:(1)(-8)+(-9),(-9)+(-8);(2) 4 +(-7),(-7) + 4;(3)[2+(-3)]+(-8), 2+[(-3)+(-8)];(4) [10+(-10)]+(-5),10+[(-10)+(-5)].活动目的:复习旧知识,为新的知识内容做准备.活动的实际效果:学生知道了小学的加法运算和有理数加法运算的联系与区别:进行有理数加法运算,先要根据具体情况正确地选用法则,确定“和”的符号,这与小学里学过的数的加法是不同的,而计算“和”的绝对值,用的是小学里学过的加法或减法运算;同时巩固了有理数的加法运算.(二)活动探究,猜想结论活动内容:通过上面练习,引导学生得出:交换律——两个有理数相加,交换加数的位置,和不变.用代数式表示:a + b = b + a.运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示:(a + b) + c = a +(b + c).这里a、b、c表示任意三个有理数.活动目的:通过特例归纳有理数的加法交换律、结合律.活动的实际效果:让学生自己总结,参与教学活动,从而使学生积极主动地学习,并且营造了良好的学习氛围.(三)验证明确结论活动内容:例1计算:(1)16+(-25)+24+(-32).(2)31 +(-28)+ 28 + 69解:(1) 16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=(16+24)+[(-25)+(-32)] (加法结合律)=40+(-57) (同号相加法则)=-17 (异号相加法则) (2)31 +(-28)+ 28 + 69=31 + 69 + [(-28)+ 28 ] (加法交换律和结合律)=100+0=100提出问题引起学生反思:此题你是抓住数的什么特点使计算简化的?依据是什么?引导学生发现,在本例(1)中,把正数与负数分别结合在一起再相加,计算比较简便.在本例(2)中,把互为相反数的两个数结合在一起,计算比较简便.总结常用的三个规律:1、一般地,总是先把正数或负数分别结合在一起相加.2、有相反数的可先把相反数相加,能凑整的可先凑整.3、有分母相同的,可先把分母相同的数结合相加.活动目的:体会加法运算律对运算的简化作用,并且根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.活动的实际效果:本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:消去互为相反数的两数(其和为0)、同号结合或凑整数.例2.有一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,结果如下表(单位:克)7这10听罐头的总质量是多少?解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(克)解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表(单位:克):这10听罐头与标准质量差值的和为(-10)+ 5 + 0 + 5 + 0 + 0 +(-5)+ 0 + 5 + 10=[(-10)+10]+[(-5)+5]+5+5=10(克)因此,这10听罐头的总质量为454×10 + 10 = 4540 + 10 = 4550(克)活动目的:通过这个应用题,让学生初步体会有理数加法运算律对加法运算的简便作用,同时让学生感受解决问题的方法的多样性.活动的实际效果:加法运算怎么由繁到简?“解法二”让学生感到很新奇,同时为今后平均数、数据的处理的学习奠定了基础.(四)运用巩固活动内容:1.完成书上随堂练习:(要求注理由)(1)(-3)+ 40+(-32)+(-8);(2) 13 +(-56)+47+(-34);(3) 43+(-77)+27+(-43).2.某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?3.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?活动目的:通过习题,加深学生对有理数加法运算律的理解.活动的实际效果:教师指定4名学生板演练习1,第2、3两题分别指定两名学生板演,并引导学生发现解题过程中出现的问题,及时解决.(五)课堂小结活动内容: 请同学们谈一谈这节课的体会和收获.1、通过具体有理数的计算,把加法运算律从非负数范围扩大到有理数的范围.2、掌握加法运算律的法则及公式,并适当的运用运算律进行简化计算.3、有理数加法解决实际问题,体会求简意识.(六)布置作业课本习题2.5: 1、2、3、4、5、6、7.四、教学设计反思1.课堂上应当把更多的时间留给学生在课堂教学中应当把更多时间交给学生.本节课中有理数运算律的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导.这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力.2.不要忽视代数推理对学生的思维训练作用我们一向会错误地认为,推理训练是几何教学的目的,代数可以不讲推理.其实,计算本身就是推理,计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有根有据.这样通过运算就能逐步培养学生的逻辑思维能力.。
2.4 有理数的加法与减法(第2课时) 练习(1)

2.4.2 有理数的加法与减法考点浏览例1 计算:(-1.25)+3.85+(+3.875)+(-314)+(-12)+1.15+(-378).【解析】简便运算时,应根据题目特点,把相加得0•的数结合在一起:把同分母的分数结合在一起;把相加得整数的数结合在一起;把同号的数结合在一起.答案是:原式=[(-1.25)+(-314)+(-12)]+(3.85+1.15)+[(+3.875)+(-378)]=-5+5+0=0.例2 计算:(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10).【解析】找出各加数间的内在规律,然后利用运算律,比较方便.答案是:原式=[(+1)+(-2)]+[(+3)+(-4)]+…+[(+9)+(-10)]=(-1)+(-1)+…+(-1)=-5.在线检测1.计算.(1)(-9)+4+(-5)+8;(2)(-13)+(+25)+(+35)+(-123);(3)(-36.35)+(-7.25)+26.35+(+714)+10;(4)225+(-278)+(-1512)+435+(-118)+(-3712);(5)(-3.75)+2.85+(-114)+(-12)+3.15+(-2.5);(6)(-12)+(+13)+(-14)+(+19)+(+18)+(-49)2.某储蓄所办理的5件业务是:取出580元,取出450元,存入1 250元,•取出360元,取出470元,这时总共增加(减少)了多少元?3.10袋大豆,以每袋50千克为标准,超过的千克数记为正,不足的记为负,•记录如下:-3,+1.5,+0.5,0,-2.5,+1.8,+1.2,-1,-0.5,0.请问:10•袋大豆共超过(不足)多少千克?总重量为多少?4.仓库内原存某种原料4 500千克,一周内存入和领出情况如下(存入为正,单位:千克):1 500,-300,-670,400,-1 700,-200,-250.请问:第7天末仓库内还存有这种原料多少千克?5.计算:|1-12|+|12-13|+|13-14|+…+|19-110|6.求在数轴上-5与+5之间的所有的有理数之和.答案1.(1)-2 (2)-1 (3)0 (4)-2 (5)-2 (6)5 82.减少610元 3.不足2•千克 498千克4.3 280千克 5.9106.0。
【教案】2.4 有理数的加法与减法(1)

体现数轴这一数学工 具的作用,渗透数形 结合的数学思想方
如图,把笔尖放在数轴的原点,先向正方向移动 3 个单位长度, 法。
引导学生对有理数的 加法情况进行二次分 算式: (+3)+(—2)= 再做一些类似的活动,验证表格算式的结果是否一致。 5.我们以后做有理数的加法,不能总是用数轴或凭经验做啊。 有理数的加法运算有没有什么规律?下面来探索有理数加法法 则。 能否给它们归归类? 三种情况:同号两数相加,异号加数相加,一个数与 0 相加 ②观察以上算式, 有理数加法运算的结果与小学所学的加法 运算的结果有什么不同? ③如何确定和的符号?如何确定和的绝对值? 以上三个问题层层递进,有序抛出,一个一个地解决,特别是 第三个问题的解决, 一定要让学生仔细观察算式中的加数与和的 关系。然后进行小组讨论。 6.归纳法则 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,绝对值相等时,和为 0;绝对值不等时,取 绝对值较大的加数的符号,并用较大的绝对值减去较小的绝 对值。 一个数与 0 相加,仍得这个数。 三、例题讲解 例 1:计算 (1) (—180)+(+20) ; (3)5+(—5) ; 解: (—180)+(+20) (1) = —(180—20) = —160 教师讲解示范做第一题, 后面三题由学生自己做, 最后教师讲解。 通过游戏的形式,再 教师讲评时,一定要问学生:
算,一方面提高学生 的兴趣,另一方面训 练学生的反应和速 度, 发展学生的数感。 运用有理数加法解决 实际问题,要求学生 出算式,然后求解。 教师在讲评时,一定 要让学生充分暴露自 己的思维过程,特别 是要让他们说出自己 是怎么想的?为什么 这样列式? 提出本节课的重点和 难点,再次引起学生 注意。 在小学所学的基础 上,帮助学生构建新 的知识体系。
沪科版七年级数学上第一章《有理数》第4节《有理数的加减》例题与讲解(课后辅导)

1.4 有理数的加减1.有理数的加法(1)有理数的加法法则①同号两数相加,取与加数相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时和为零;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与零相加,仍得这个数.(2)两个有理数相加的步骤第一步:有理数的加法法则分三种情况,进行有理数加法时,要先区别是哪种情况;第二步:确定和的符号;第三步:求每个加数的绝对值;第四步:根据具体的法则计算两个数的绝对值的和或差;第五步:写出最后的计算结果.析规律有理数的加法运算规律(1)有理数的加法法则是进行有理数运算的依据,进行加法运算时要先确定用哪条法则.(2)小学学过的加法中,和一定大于每一个加数,在数的范围扩大到有理数以后,这个结论就不成立了,只有两个正数的和必定大于每一个加数,而两个负数的和要小于每一个加数,一个非零数与零相加,得到的和等于非零加数.(3)如果两个数的和为0,那么这两个数互为相反数.即:如果a+b=0,那么a=-b.例如:(-3)+a=0,则a=3.(4)进行有理数的加法运算要遵循“一定二求三和差”的步骤,即第一步先确定和的符号,第二步再求加数的绝对值,第三步要分析确定是绝对值相加还是相减.【例1】计算:(1)(+8)+(+5);(2)(+2.5)+(-2.5);(3)(-17)+(+9);(4)(-4)+0.分析:根据有理数的加法法则,两数相加,只要确定它适合有理数加法法则的哪一种情况,再根据法则确定和的符号,然后根据法则求出和的绝对值.解:(1)(+8)+(+5)(同号两数相加)=+(8+5)(取与加数相同的符号,并把绝对值相加)=13.(2)(+2.5)+(-2.5)(异号两数相加,绝对值相等)=0(和为0).(3)(-17)+(+9)(异号两数相加,绝对值不等)=-(17-9)(取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-8.(4)(-4)+0(一个数与零相加)=-4(仍得这个数).2.有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数.用字母表示为a-b=a+(-b).(2)有理数减法运算的基本步骤①将减法转化为加法;②按有理数的加法法则运算.(3)法则理解①有理数的减法,不像小学里的那样直接减,而是把它转化为加法,借助于加法进行计算.其关键是正确地将减法转化为加法,再按有理数的加法法则计算.②学习有理数减法运算,关键在于处理好法则中两个“变”字,即注意两个符号的变化:一是运算符号——减号变为加号,二是性质符号——减数变成它的相反数.③其含义可以从以下两方面理解:(a)(b)④并不是所有的减法运算都要转化为加法运算.一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算. 解技巧 有理数的减法运算技巧(1)可用口诀记忆法则:“减正变加负,减负变加正.”(2)带分数减法运算,可把带分数拆成整数和分数和的形式后再进行计算.(3)特别注意减法没有交换律.【例2】 计算:(1)3-(-5);(2)(-3)-(-7);(3)⎝⎛⎭⎫-213-516; (4)5.2-(+3.6).分析:有理数减法运算,按照减法法则,将减法转化为加法,然后按有理数加法进行计算.在做减法转换为加法时,一定要注意符号的变换.解:(1)3-(-5)=3+(+5)=8;(2)(-3)-(-7)=(-3)+(+7)=4;(3)⎝⎛⎭⎫-213-516=⎝⎛⎭⎫-213+⎝⎛⎭⎫-516=-712; (4)5.2-(+3.6)=5.2+(-3.6)=1.6.3.有理数加法的运算律(1)加法交换律:两数相加,交换加数的位置,和不变.用字母表示为:a +b =b +a .(2)加法结合律:三数相加,先把前两个数相加或先把后两个数相加,和不变.用字母表示为:(a +b )+c =a +(b +c ).【例3】 计算:(1)(-8)+⎝⎛⎭⎫-212+2+⎝⎛⎭⎫-12+12; (2)⎝⎛⎭⎫-13+⎝⎛⎭⎫+12+⎝⎛⎭⎫-23+⎝⎛⎭⎫+45+⎝⎛⎭⎫-12. 分析:进行三个以上的有理数加法运算时,常常运用加法的交换律和结合律,把同号的数相结合,把互为相反数的两个数相结合,把同号的数中的同分母的分数相结合,以达到计算简便、迅速的目的. 解:(1)原式=(2+12)+⎣⎡⎦⎤(-8)+⎝⎛⎭⎫-212+⎝⎛⎭⎫-12=14+(-11)=3; (2)原式=⎣⎡⎦⎤⎝⎛⎭⎫-13+⎝⎛⎭⎫-23+⎣⎡⎦⎤⎝⎛⎭⎫+12+⎝⎛⎭⎫-12+45=-1+0+45=-15. 4.有理数的加、减混合运算(1)加减法统一成加法①有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5).②在和式里,通常把各个加数的括号省略不写,写成省略加号的和的形式.如:(-12)+(-8)+(-6)+(+5)=-12-8-6+5.③和式的读法:一是按这个式子表示的意义,读作“负12,负8,负6,正5的和”,即把各个数中间的符号作为后面的这个数的性质符号来读;二是按运算意义读作“负12减8减6加5”,即把各个数中间的符号作为运算符号来读.(2)有理数加、减混合运算的方法和步骤由于减法可以转化为加法,所以在进行有理数的加减混合运算时,首先要将混合运算的式子写成省略括号的和式的形式,然后按加法法则和运算律进行简便运算.第一步:用减法法则将减法转化为加法;第二步:运用加法法则、加法交换律、加法结合律进行简便运算.(3)进行有理数的加减混合运算的注意事项①交换加数的位置时,一定要连同加数前的符号一起移动;②如果需要添括号,一定要连同加数前的符号一起括进括号内,并将原来已省略的括号写出来; ③省略加号和括号的“和”与小学里的“和”是有区别的,小学里的“和”是一个具体的数,并且和一定不小于任何一个加数,而这里的“和”则是表示的是有理数的加法运算,也表示相加的结果.有理数的“和”可以大于任何一个加数,也可以小于任何一个加数,和可能是正数、负数或零.【例4-1】 把下列各式写成省略加号的和的形式:(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.【例4-2】 计算:(1)0-327-6+1167-537; (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45; (3)(-5)-(-21)+(-12)+8-(-4)-18;(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5.分析:(1)本题是省略括号和加号后的和的形式,在五个加数中,考虑到-327,1167,-537三个加数分母都是7,便于运算,所以把这三个加数放在一起;(2)把加减混合运算统一成加法运算后结果为⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45,考虑到⎝⎛⎭⎫-12,⎝⎛⎭⎫-23,⎝⎛⎭⎫+16便于通分,把它们结合起来,可使计算较为简便;(3)统一成加法后,可采用同号结合法,即把正数与正数、负数与负数分别相加;(4)统一成加法后,可采用凑整结合法,即把相加得整数的加数先结合.解:(1)0-327-6+1167-537=(0-6)+⎝⎛⎭⎫-327+1167-537 =-6+⎝⎛⎭⎫+317=-267. (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =(-1)+⎝⎛⎭⎫-45=-145. (3)(-5)-(-21)+(-12)+8-(-4)-18=-5+21-12+8+4-18=(21+8+4)+(-5-12-18)=33-35=-2.(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5=10.4-7.5+12.7+3.6-1.7-2.5=(10.4+3.6)+(12.7-1.7)+(-7.5-2.5)=14+11-10=15.5.含有字母的有理数加法的运算我们可以用字母表示有理数加法的运算法则:①同号两数相加:若a >0,b >0,则a +b =+(|a |+|b |);若a <0,b <0,则a +b =-(|a |+|b |).②异号两数相加:若a >0,b <0,且|a |=|b |,则a +b =0;若a >0,b <0,且|a |>|b |,则a +b =+(|a |-|b |);若a >0,b <0,且|a |<|b |,则a +b =-(|b |-|a |).③一个数与0相加:a +0=a .【例5-1】 根据加法法则填空:(1)如果a >0,b >0,那么a +b __________0;(2)如果a <0,b <0,那么a +b __________0;(3)如果a >0,b <0,|a |>|b |,那么a +b ________0;(4)如果a <0,b >0,|a |>|b |,那么a +b ________0.答案:(1)> (2)< (3)> (4)<【例5-2】 已知有理数a ,b ,c 在数轴上的对应点如图所示,且|a |>|b |>|c |,则(1)|a +(-b )|=__________;(2)|a +b |=__________;(3)|a +c |=__________;(4)|b +(-c )|=__________;(5)|b +c |=__________.答案:(1)|a |+|b | (2)|a |-|b | (3)|a |+|c | (4)|b |+|c | (5)|b |-|c |6.有理数加减混合运算的注意事项(1)运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉.(2)应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便.(3)若分数、小数混在一块运算时,可以把它们统一成分数或小数再运算.(4)如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,此时一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.辨误区 拆分负的带分数负的带分数拆分为整数与分数的和时,易将负整数与负分数的和错拆为负整数与正分数的和.【例6】 计算:(1)(-837)+(-7.5)+(-2147)+(+312);(2)⎪⎪⎪⎪5111-3417+4417-111. 分析:把分母不同的分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)(-837)+(-7.5)+(-2147)+(+312) =-837-7.5-2147+312=-837-2147-7.5+312=(-837-2147)-(7.5-312) =-30-4=-34.(2)⎪⎪⎪⎪5111-3417+4417-111=5111-3417+4417-111=5111-111-3417+4417=(5111-111)-(3417-4417) =5+1=6.7.有理数加减法的运用学习有理数的加减法后,可以和前面学过的数轴、相反数、绝对值综合出题,把有理数的知识融合得更紧密,理解得更深刻.(1)有理数的加法与绝对值在有些计算中,含有绝对值符号,这就要用绝对值的概念,先去掉绝对值符号,再按有理数混合运算法则进行计算.几个非负数的和等于0,则每个加数必等于0.(2)有理数的加法与有理数的大小比较学习加法后,在比较大小的数中,出现了和的形式或差的形式(差可以化成和).特别是以字母表示的数.这就需要用加法法则来判断数的正负,或判断数对应的点在数轴上的位置关系,从而确定两个数的大小关系.(3)有理数加法在实际问题中的应用在实际问题中,要应用有理数的加法法则求解问题,注意运算技巧的使用.【例7-1】 若|x -3|与|y +3|互为相反数,求x +y 的值.解:根据题意得|x -3|+|y +3|=0.则x -3=0,y +3=0,所以x =3,y =-3.所以x +y =3+(-3)=0.【例7-2】 一小吃店一周中每天的盈亏情况如下(盈利为正):128.3元,-25.6元,-15元,-7元,36.5元,98元,27元,这一周总的盈亏情况如何?分析:正数表示盈利,负数表示亏损,这些数的代数和就是总的盈亏情况,如果代数和为正,则总的情况是盈利,否则是亏损.解:128.3+(-25.6)+(-15)+(-7)+36.5+98+27=(128.3+36.5+98+27)+(-25.6-15-7)=289.8-47.6=242.2.答:一周总的盈亏情况是盈利242.2元.【例7-3】 一农业银行某天上午9:00~12:00办理了7笔储蓄业务;取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这天上午该银行的现金增减情况怎样?分析:可以设存入为正,取出为负,用正、负数分别表示这7笔业务,求它们的和即可判断现金的增减情况.若结果为正数,则表明现金增加了;若结果为负数,则表明现金减少了.解:(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(-9.5)+(-8)+(-10.25)+(-2)]+[5+(+12)+(+25)]=-29.75+42=12.25(万元).答:这天上午该银行的现金增加了12.25万元.8.有理数减法的应用(1)有理数减法的应用比较常见的题型有:计算高度,计算温差,计算销售利润,计算距离,计算时差等.有理数减法的应用题虽然比较简单,但却能让大家主动地从数学角度运用所学知识和方法寻求解决问题的策略,充分体现课程标准所要求的“数学应用意识”.因此,我们要有意识地加强数学知识与现实生活联系密切的问题的训练,提高自己的能力.(2)利用有理数减法求数轴上两点间的距离求数轴上两点间的距离是有理数减法最典型的应用之一,数轴上任意两点之间的距离,都可以用数轴上表示这两点的有理数的差的绝对值来表示.【例8-1】如图所示的数轴上,表示-2和5的两点之间的距离是______,数轴上表示2和-5的两点之间的距离是______,数轴上表示-1和-3的两点之间的距离是______.解析:数轴上表示-2和5两点之间的距离是|-2-5|或|5-(-2)|;数轴上表示2和-5两点之间的距离是|2-(-5)|或|-5-2|;数轴上表示-1和-3的两点之间的距离是|-1-(-3)|或|-3-(-1)|.答案:77 2【例8-2】以地面为基准,A处高为+2.5米,B处高为-17.8米,C处高为-32.4米,问:(1)A处比B处高多少米?(2)B处与C处哪个地方高?高多少米?解:(1)+2.5-(-17.8)=2.5+17.8=20.3(米),所以A处比B处高20.3米.(2)-17.8-(-32.4)=-17.8+32.4=14.6(米),所以B处比C处高,高了14.6米.。
七上苏科版2.4有理数的加法与减法 第3课时 课件

问题2:小丽根据日温差的意义,利用加“凑”出了日温差也是8℃.你认为她的算法可行吗?为什么?
问题3:观察小明与小丽的算式和运算结果,你有什么猜想?
问题4:请用小明、小丽的方法计算“尝试”中的问题,你得到什么
结论?
底图替换区
情境导入
小丽的想法是把减法看作加法的逆运算,小明的想法是利用相
反数把减法转化为加法.两人的想法本质上是一致的,其运算过程可
应用举例
下面是北京与世界上其他城市的时差,其中带“+”的数表示 同一时刻比北京时间早的小时数,带“-”的数表示同一时刻比北 京时间晚的小时数.
纽约 巴黎 莫斯科 东京
-13h -7h -5h +1h
地理知识:北京在东八区,纽约、
巴黎、莫斯科、东京分别在西五区、 东三区、东九区.由于地球自西向东 转动.因此同一纬度上位置较东的地
底图替换区
应用举例
计算:(1)0-(-33) (3)(+3)-17
(2)6.5-(-3.5) (4)-13-16
解:(1)0-(-33)=0+33=33 (2)6.5-(-3.5)=6.5+3.5=10 (3)(+3)-17 =(+3)+(-17)=-14
(4)-13-16=-13+(-16)=12
以表示为:
5-(-3) = 8
减号变成加号
-3变成它的相反数3
5+ 3 =8
5 - (-3) = 5+3=8
情境导入
将某地某天的最低气温记为a℃,最高气温记为b℃,仿照上面的算式 填空:
地区 a b
a-b
b-a
北京 2 8
2-8=2+(-8)
哈尔滨 -14 -5 -14-(-5)=-14+5
2024年秋新苏科版7年级上册数学课件 2.4 有理数的加法与减法

知3-讲
特别提醒1. 有理数的减法,需要先将减法转化为加法,再按有理数的加法法则和运算律计算.2. 有理数的减法在转化为加法之前,被减数与减数的位置不变.
知1-练
例 1
解题秘方:先确定两个数相加的类型,然后根据法则计算.
知1-练
知1-练
活学巧记同号相加一边倒;异号相加“大”减“小”,符号跟着“大”的跑,绝对值相等“0”正好.
知1-练
在括号内填入适当的数, 使得下列各式成立:(1)6+( )> 6; (2)(-2)+( )>-2;(3)6+( )< 6; (4)(-2) +( )<-2;(5)6+( )=6; (6)(-2) +( )=-2.
(a+b)+c=a+(b+c)
知2-讲
2. 加法运算律的运用方法(1)相反数结合法;(2)同号结合法;(3)同形结合法;(4)凑整法;(5)拆项结合法.3. 有理数加法的推论如果a+b=0 ,那么a,b互为相反数.
知2-讲
特别提醒1. 有理数的加法运算律不但适用于两个数或三个数相加,而且适用于三个以上有理数相加.2. 利用有理数的加法交换律时,要适当加括号,如-6.6+2+(-3.4)=2+(-6.6)+(-3.4).3. 根据需要灵活利用加法运算律,可以达到简化计算的 目标.
知1-讲
特别解读1. 若两个数的和为正数,则这两个数有三种可能:(1) 两个都是正数;(2) 一个是正数、一个是负数,且正数的绝对值大于负数的绝对值;(3) 一个是正数、一个是0.
知1-讲
2. 若两个数的和为负数,则这两个数有三种可能:(1) 两个都是负数;(2)一个是正数、一个是负数,且负数的绝对值大于正数的绝对值;(3) 一个是负数、一个是0.
知2-练
同号结合法在有理数的加法运算中,先将所有的正数结合在一起,所有的负数结合在一起,分别相加,再求和的计算方法,称为同号结合法.
第8课时2[1].4有理数的加法与减法(1)(七上)
![第8课时2[1].4有理数的加法与减法(1)(七上)](https://img.taocdn.com/s3/m/66aafc194431b90d6c85c7bc.png)
第8课时 2.4有理数的加法与减法(1)备课日期:2009-9-8 编号:200909080208教学目标:1、经历探索有理数加法法则的过程,会进行两个有理数的加法运算.2、感受有理数加法法则的合理性以及分类的思想方法.教学重点:有理数加法法则的理解.教学难点:探索有理数加法法则.教学设计一、情景创设情景1:甲、乙两队进行足球比赛,如果甲队在主场以4∶1赢了3球,在客场以1∶3输了2球,那么两场累计甲队净胜几球?操作指导:在学生得出答案后,板书:1.问:如果把赢了3球记为“+3”,输2球记为“—2”,那么你能把甲队在主、客场比赛中的赢球数用算式表示出来吗?板书:(+3)+(—2).问:(+3)+(—2)与1之间是什么关系?板书“=”.问:刚才甲队“先赢后输”,就一般而言,两队比赛结果还会出现那些情况(让学生感受两个有理数相加的各种情况,渗透分类思想.)填写表中的净胜球数和相应的算式注意:先写净胜球数,再写算式,最后写“=”号.情景2:第一天水位上涨了3cm,第2天上涨了2cm,两天共上涨了多少?第1天水位上涨了3cm,第2天下降了2cm,两天共上涨了多少?第1天水位下降了3cm,第2天下降了2cm,两天共下降了多少?第1天水位上涨了3cm,第2天不升也不降,两天共上涨了多少?处理方法同上二、探索活动活动1、把笔尖放在原点处,先向正方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用算式表示以上过程及结果.操作指导:(1)先让学生直观感受两次连续运动后,笔尖的位置所表示的数,再用算式表示以上过程,写出算式.(2)刚才笔尖“先向右,再向左”后,笔尖的位置在原点右边,笔尖表示的数是“+1”.一般而言,笔尖“先向右,再向左”后,笔尖的位置还有其他情况吗?请举例说明,并写出过程和结果.(让学生充分讨论,然后请学生代表发言)在学生得出另两种情况后,师生共同归纳异号两数相加结果的符号如何确定,绝对值如何确定,从而得出:异号两数相加,绝对值相等时,和为零;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;问:若笔尖“先向左,再相右”,笔尖所处位置有几种情况,与上述情况相同吗?(处理方法同上)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4有理数的加法与减法(1)
主备人:王树山
学习目标:
1、探索有理数加法法则,理解有理数的加法法则。
2、能熟练进行整数加法运算
3、初步体会分类思想
课前预习:
1、计算(1)(13)25++ (2)(52)(7)-+- (3) (3)(8)++-
(4)(3)(15)-+- (5)(23)0-+ (6)4.5( 4.5)+-
2、(1)甲水库第一天水位上涨了3厘米,可以记作_______厘米,第二天上涨了2厘米,
记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。
(2)乙水库第一天水位上涨了3厘米,可以记作_______厘米,第二天下降了2厘米,记
作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。
(3)丙水库第一天水位下降了3厘米,可以记作_______厘米,第二天上涨了2厘米,记
作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。
(4)丁水库第一天水位下降了3厘米,可以记作_______厘米,第二天下降了2厘米,记
作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。
填写表中的水位总变化量和相应的算式。
(单位:厘米)
一、展示交流:
二、合作探究
1、活动思考:
(1)把笔尖放在原点处,先向正方向移动3个单位长度,再向负方向移动2个单位长度,
这时笔尖的位置表示什么数?请用算式表示以上过程及结果。
(2)把笔尖放在原点处,先向负方向移动3个单位长度,再向负方向移动2个单位长度,
这时笔尖的位置表示什么数?请用算式表示以上过程及结果。
0 3 2 1 4
-1 -4 -5 -3 -2 0 3 2 1 4
-1 -4 -5 -3 -2
2 算式:________________________
2.观察、思考、讨论、交流得出加法法则。
两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数和零相加和是多
少__________________________________________________________________________________________________________________________________________________________
3、例题剖析,巩固法则(口述算理)
计算:1.(1)(180)(20)-++; (2)(15)(3)-+-; (3)5(5)+-; (4)0(2)+-
三、质疑反馈1、计算(5)(2)+++= ;(89)(7)-+-=______; 3(12)+-=_______;
(23)32-+=________; 33()44
-+=___ __; ( 2.4)0-+=_______. 2、某一条河第一天水位涨了9cm ,第二天水下降了12cm,则最后水位涨了_____cm
3、计算:(1)(20)(15)-+- (2)(5)(6)+++ (3)(15)(21)-+-
(4) (5)(7)+++ (5) (3)(8)-+- (6)(65)(15)-++
(7)100(20)+- (8)(7)7-+ (9)(8)8-+
(10)(2)0++ (11) 0( 3.2)+-
4、比-3大-6的数为_______;上升20米,再上升-10米,则共上升_______米.
5、(-5)+______=-8; ______+(+4)=-9.
6、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定
他现在位于原来的哪个方向,与原来位置相距多少米?
7、利用有理数加法解下列各题:
(1) 某天早晨的气温是-5℃,到了中午升高了7℃,求中午的温度。
(2) 某升降机第一次上升6米,第二次下降5米,这时:
①升降机在初始位置的上方还是下方,相距多少米?
②升降机共运行了多少米?
课作:课本P28 练一练 1 《补充习题》P`13 1、3、4
家作:《每日数学》。