基于PLC的水储罐恒压系统设计
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计随着科技的发展和社会的进步,人们对水资源的利用和管理越来越重视。
恒压供水系统是一种能够在不同用水量下保持供水压力稳定的系统,广泛应用于工业、农业和民用领域。
本文将介绍基于PLC的恒压供水系统的设计,通过PLC控制系统实现对供水系统的智能控制和优化运行。
恒压供水系统是通过控制水泵的运行来维持供水管网中的压力稳定,当用户用水量变化时,系统能够自动调节水泵的运行状态,以保持供水压力在设定范围内。
恒压供水系统一般由水泵、压力传感器、PLC控制系统等组成。
当供水管网中的压力低于设定值时,PLC 控制系统将启动水泵,当压力达到设定值时,控制系统将停止水泵的运行。
1. 系统传感器的选择恒压供水系统中需要使用压力传感器来检测供水管网中的压力情况,传感器的选择直接影响到系统的准确性和稳定性。
一般情况下,可以选择高精度的压力传感器,通过其测量得到的压力信号输入PLC控制系统,以便系统根据压力变化进行自动调节。
2. PLC控制系统的设计PLC(Programmable Logic Controller)是一种用于工业控制的可编程逻辑控制器,具有良好的稳定性和灵活性,适用于恒压供水系统的设计。
设计PLC控制系统时,首先需要明确系统的控制逻辑和运行流程,然后编写相应的控制程序并进行调试。
3. 水泵的选型和布置恒压供水系统中的水泵是系统的核心部件,其选型和布置直接影响系统的运行效果。
在选型时,需要考虑供水管网的水质、用水量、管网布局等因素,以确保水泵能够满足系统的要求。
水泵的布置也需要符合水力平衡原则,确保供水管网的水流畅通。
恒压供水系统中的水泵一般是多台联动运行的,通过PLC控制系统实现水泵的智能联动是设计的重点。
在控制系统中,需要考虑水泵的启停逻辑、联动方式、切换条件等,以便系统能够根据实际压力需求进行自动调节。
5. 系统的远程监控和报警设计恒压供水系统在运行过程中需要进行实时监控和故障报警,以确保系统的安全可靠运行。
基于PLC控制的恒压供水系统设计毕业设计

毕业设计(论文)基于PLC控制的恒压供水系统设计北京航空航天大学本科毕业设计(论文)任务书Ⅰ、毕业设计(论文)题目:基于PLC控制的恒压控制供水系统设计Ⅱ、毕业设计(论文)使用的原始资料(数据)及设计技术要求:1、基于PLC的变频恒压供水系统的设计2、基于PLC和变频器的恒压供水泵站系统设计3、基于PLC的恒压变频供水系统的研制4、PLC及变频器恒压供水控制系统设计Ⅲ、毕业设计(论文)工作内容:1、查阅相关专业方面的资料,选题2、根据资料撰写开题报告3、继续搜集并翻阅相关资料书籍,完成论文初稿4、根据指导老师的修改意见,完成论文的终稿Ⅳ、主要参考资料:1、岂兴明.PLC与变频器2、李方园.西门子S7-200 PLC从入门到实践3、彭小红,刘志东.基于PLC的变频调速恒压供水系统的设计4、林俊赞,李雄松,尹元日.PLC在恒压供水控制系统中的应用5、姜兴忠,戴恒阳.变频恒压控水系统的机理分析校外学习中心理工科类专业类学生(学号)12934202146毕业设计(论文)时间:自2014年6月20日至2014 年10月20 日指导教师:陈燕兼职教师(并指出所负责部分):校外毕设组织协调小组(签字):注:任务书应该附在已完成的毕业设计(论文)的首页。
本人声明我声明,本论文及其研究工作是由本人在导师指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。
作者:王静签字:时间:2014年10 月基于PLC控制的恒压供水系统设计摘要本设计根据城市小区的供水要求,设计了一套基于PLC控制的变频调速恒压供水系统。
该系统由PLC、变频器、水泵机组、压力变送器等构成。
本系统利用变频器实现对三相水泵电机的变频调速,采用“先启先停”的原则切换运行水泵。
压力传感器检测水压信号,送入PLC并与设定值比较进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速和供水量。
这样使管网水压力始终保持在设定值附近,从而实现恒压供水。
基于PLC变频恒压供水控制系统设计

基于PLC变频恒压供水控制系统设计PLC变频恒压供水控制系统的设计供水系统是一种常见的工业和建筑领域常用的系统。
PLC变频恒压供水控制系统是一种可以控制和调节水泵的电气控制系统,以实现恒压供水的目的。
下面将介绍一个基于PLC变频恒压供水控制系统的设计。
设计目标:1.实现恒定的供水压力,不受进水压力和水流量的波动影响。
2.实现多台水泵的协调运行,实现水泵的均衡负荷运行,延长水泵寿命。
3.实现故障自动检测和报警,提高供水系统的可靠性。
系统组成:1.传感器:使用压力传感器和流量传感器来感知进水压力和供水流量。
2.PLC:使用可编程逻辑控制器(PLC)来实现逻辑控制和运算。
3.变频器:使用变频器来控制水泵的转速,从而实现恒扬程供水控制。
4.水泵:使用多台水泵来实现供水。
系统工作原理:1.系统启动:当水泵系统运行时,PLC会控制最初的启动过程,按照设定的启动顺序依次启动水泵,避免同时启动造成的电网冲击。
2.进水压力检测:系统通过压力传感器检测进水压力,当进水压力小于设定的最小进水压力时,PLC会自动启动水泵,以提供足够的进水压力。
3.恒压供水控制:PLC通过控制变频器,改变水泵的转速来实现供水流量和压力的稳定。
当供水压力低于设定的最小供水压力时,PLC会增加水泵的转速以提供足够的供水压力;当供水压力高于设定的最大供水压力时,PLC会降低水泵的转速以避免过高的压力。
4.水泵协调运行:通过PLC控制,多台水泵可以根据供水流量需求实现均衡负载运行,避免其中一台水泵长时间运行。
系统优势:1.系统能够自动检测供水压力,保持恒定的供水压力,避免由于进水压力和水流量的波动而导致的供水压力变化。
2.系统能够实现多台水泵的协调运行,避免单一水泵长时间运行而导致的设备损坏。
3.系统具有快速故障检测和报警功能,及时发现水泵等设备的故障,减少停机时间。
总结:基于PLC变频恒压供水控制系统的设计可以实现恒定的供水压力,提高供水系统的稳定性和可靠性。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计恒压供水系统是一种自动调节水压的设备,通常用于建筑物、工业场所和城市供水系统中。
它可以根据需求调节水压,确保水压始终保持在稳定的水平,从而提高供水效率和水质。
在恒压供水系统中,PLC(可编程逻辑控制器)起着至关重要的作用。
PLC是一种用于自动化控制系统的电子设备,可以根据预先编程的指令来控制各种设备和过程。
在恒压供水系统中,PLC可以监测水压、控制水泵和阀门的运行,实现恒压供水系统的自动化控制。
恒压供水系统的设计需要考虑到以下几个方面:1. 水压监测:恒压供水系统需要能够实时监测水压值,以便及时调节水泵的运行。
PLC可以通过传感器来监测水压值,并根据设定的压力范围来控制水泵的启停和速度调节。
2. 水泵控制:恒压供水系统中通常会配备多台水泵,以便实现备用和负载均衡。
PLC可以根据需求来实现自动或手动切换水泵的运行,保证系统能够持续稳定地供水。
3. 阀门控制:恒压供水系统需要通过控制阀门来调节水流量,以保持恒定的水压。
PLC可以根据需要来控制阀门的开启和关闭,从而实现恒压供水系统的自动调节。
4. 故障诊断:恒压供水系统需要具备故障诊断和自动报警功能,以便及时发现和解决问题。
PLC可以通过程序来监测设备的运行状态,并在发现异常情况时及时报警或采取相应的应对措施。
1. PLC控制系统设计恒压供水系统的核心是PLC控制系统,它可以根据预先设定的参数来实现恒定的水压控制。
在设计PLC控制系统时,需要考虑以下几个方面:1.1 控制逻辑设计:根据恒压供水系统的工作原理,需要设计相应的控制逻辑来实现水泵、阀门等设备的自动控制。
可以通过 ladder diagram(梯形图)等图形化编程语言来设计控制逻辑。
1.2 参数设置:需要在PLC中设置水压的目标数值、压力范围、水泵启停条件等参数,以实现恒定水压的控制。
2. 传感器和执行器选型恒压供水系统需要配备压力传感器、水流量传感器、温度传感器等传感器,以及电动阀门、电动水泵等执行器。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计【摘要】本文主要介绍了基于PLC的恒压供水系统的设计。
引言部分包括引言概述、研究背景和研究意义。
在着重讨论了PLC在恒压供水系统中的应用、系统架构设计、控制策略设计、硬件设计和软件设计。
结论部分主要对设计方案进行优劣比较,并展望未来的发展方向,最后总结全文。
通过对恒压供水系统的设计,可以实现水压稳定,提高供水系统的效率和节约能源成本。
这种基于PLC的设计方案在实际工程中有着广阔的应用前景,有助于提高供水系统的自动化程度,提供更好的供水服务。
【关键词】PLC、恒压供水系统、系统架构、控制策略、硬件设计、软件设计、设计方案优劣比较、未来展望、总结、研究背景、研究意义、引言概述。
1. 引言1.1 引言概述恒压供水系统是一种通过控制水泵的运行来保持管网中恒定的水压的系统。
随着城市化进程的加快和生活水平的提高,恒压供水系统在城市生活中的应用越来越广泛,成为现代城市水务管理中的重要组成部分。
基于PLC的恒压供水系统利用PLC作为控制核心,能够实现自动控制、参数调节、故障检测等功能,可以提高系统的稳定性和可靠性。
本文旨在探讨基于PLC的恒压供水系统的设计和应用。
将介绍PLC在恒压供水系统中的应用,包括PLC的特点、优势以及在恒压供水系统中的具体作用。
然后,将详细介绍系统架构设计,包括系统的组成部分、连接方式以及工作原理。
接着,将探讨控制策略设计,包括系统的控制逻辑、参数调节方法等方面。
还将介绍硬件设计和软件设计,包括控制器的选型、传感器的选择以及编程软件的使用方法等。
通过本文的研究,可以更好地了解基于PLC的恒压供水系统的设计原理和应用方法,为实际工程项目的实施提供有力的技术支持。
1.2 研究背景恒压供水系统是一种在水泵工作中保持水压恒定的系统,能够满足用户对水压稳定的需求,提高供水系统的运行效率和水质管理。
随着现代化社会的发展和城市建设的不断推进,对水资源的需求日益增加,传统的水泵控制系统已经无法满足实际需求。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计恒压供水系统是一种以恒定压力为目标进行供水的系统。
PLC(可编程逻辑控制器)是一种专门用于自动化系统控制的设备,它可以根据预设的程序控制各种设备和执行各种操作。
恒压供水系统一般包括水泵、水箱、传感器、流量计和控制器等组件。
PLC可以根据不同的需求和实时传感器数据,对这些组件进行控制和调节,以实现恒定的供水压力。
设计一个基于PLC的恒压供水系统时,首先需要确定系统的工作要求,包括所需的最小和最大供水压力范围、水泵的工作状态和切换条件等。
然后,根据这些要求编写PLC的控制程序。
控制程序的主要功能包括以下几个方面:1. 监测供水压力:PLC需要连接压力传感器,实时监测供水压力,并将其数据传输到控制器。
2. 控制水泵的启停:根据实时的供水压力数据和预设的最小和最大压力范围,PLC可以控制水泵的启停,保持供水压力在设定的范围内。
3. 控制水泵的运行速度:当供水压力低于最小压力时,PLC可以调节水泵的运行速度,增加供水流量,提高供水压力。
4. 控制水泵的切换:当供水压力达到最大压力时,PLC可以控制一个备用水泵的启动,实现水泵的切换。
5. 数据记录和报警:PLC可以记录供水压力、流量等各种数据,并根据预设的条件产生报警信号,提醒操作人员进行维护或处理异常情况。
在设计过程中,需要充分考虑系统的稳定性、可靠性和安全性。
PLC的选型和配置需要根据系统的规模和要求来确定,同时还需要设计合理的电气控制、保护和联锁装置,确保系统的正常运行。
基于PLC的恒压供水系统的设计需要充分考虑供水压力的监测和控制,合理调节水泵的运行速度和切换,以实现稳定的恒压供水。
还需要保证系统的可靠性和安全性,提供数据记录和报警功能,便于维护和处理异常情况。
《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。
恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。
其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。
本文将详细介绍基于PLC恒压变频供水系统的设计与实现。
二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。
其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。
2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。
此外,还需要具有与其他设备通信的能力。
在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。
3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。
供水泵站则负责实际的供水任务。
在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。
三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。
在选型过程中,应充分考虑设备的性能、价格、维护等因素。
安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。
2. 软件实现软件部分主要包括PLC程序的编写和调试。
在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。
在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。
四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。
测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。
如果发现问题,应及时进行排查和修复。
2. 系统运行经过测试后,系统可以正式投入运行。
基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。
随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。
在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。
而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。
恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。
基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。
研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。
1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。
传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。
对于基于PLC的恒压供水系统的研究具有重要的意义。
通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。
本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。
1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。
通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。
通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。
通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计任务书题目基于PLC的水储罐恒压系统设计学生姓名学号班级专业电气工程及其自动化承担指导任务单位电气工程系导师姓名导师职称一、主要内容水储罐保持恒定水压的PLC控制。
二、基本要求1.保持恒定水压,水以变化的速率不断从水储罐取出。
2.变速泵用于保持充足水压的速率添加水到水储罐。
三、主要技术指标(或研究方法)1.系统设定值等于水储罐达到充满75%水位的设置。
2.过程变量由浮点型测量器提供,它提供水储罐充满程度的相同读数,可以从0到100%变化,泵速的值为输出值,允许泵从最大速度的0到100%运行。
四、应收集的资料及参考文献五、进度计划1-3周课题调研、收集、学习参考资料,查阅外文资料4-5周制定毕业设计方案,作开题报告6-9周完成电路设计,编写程序,中期答辩10-11周系统调试,撰写论文12-13周设计整体系统。
14-15周整理并撰写毕业设计论文,提交论文给指导老师16周答辩教研室主任签字时间年月日毕业设计开题报告题目基于PLC的水储罐恒压控制系统设计学生姓名学号班级专业电气工程及其自动化一、本课题的研究背景随着国民经济的飞速发展,水储罐被广泛应用于石油化工,锅炉制造等行业, 它的普遍特点是常用于高温, 高压等恶劣工况下,因此对水储罐的质量提出了更高的要求。
于是,压力试验成为水储罐生产过程中必需的质量检测环节,对水储罐质量检验起着重要作用。
水压控制正是为检验水储罐的耐压能力而设计制造的.水压实验机是一种利用油水平衡控制对水储罐进行静水压试验的机器.它一方面检查水储罐是否有渗漏现象,另一方面可以消除水储罐在成型过程中产生的残余内应力。
将水储罐充满高压水后在一定压力范围内对其进行保压,保证规定时间内水储罐全长范围内均无泄漏,它是一个多方面为一体的复杂系统,是集机械、电气、液压、传感和自动控制为一体的复杂的机、电、液一体化设备。
水储罐恒压控制系统集变频技术、电气传动技术、现代控制技术于一体。
采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控,同时可达到良好的节能性,提高供水效率。
所以研究设计基于PLC的水储罐恒压控制系统,对于提高企业效率以及人民的生活水平,同时降低能耗等方面具有重要的现实意义。
二、国内外研究现状随着高级水储罐市场的扩大,对高压水储罐水压控制的需求也日益增大。
以前,我国油套管,输送管主要生产企业使用的高压水压控制主要依赖进口,直到1999年西安重型机械研究所设计研发出第一套高压水储罐水压控制才改变了这种局面。
在不到10年的时间里,西安重型机械研究所根据用户需求,开发设计了十多套不同规格,不同试验压力的高压水储罐水压控制。
由于国产高压水储罐水压控制的起步较晚,其发展过程中尚存在一些问题。
目前国内外水储罐水压控制有很多种,但原理基本相似,国内的水压控制在部分规格和某些部分的工艺上不如国外的恒压。
国内外水压控制的研究主要集中在原理与结构探讨,设备改造,组态系统设计,控制系统和对水压控制的整体运行状态进行故障诊断以及预报潜在故障等方面,都取得了很大的进展。
近年来,我国新开发了多种水压控制,不仅满足国际标准的新要求,而且价格低,很受用户欢迎.三、研究方案水储罐恒压系统设计是一种利用PLC和变频器对水储罐进行恒压控制的装置。
它主要有以下几部分组成:水储罐、PLC﹑变频器、模拟输入模块、模拟输出模块和水位计。
水储罐负责储水,水泵负责往水储罐中注水,并且水压足够大,水位计负责监测水位的高低,模拟量输入模块和模拟量输出模块配合PLC和变频器对水储罐水位进行调节,组合起来的整个系统可以有效的进行工作。
水压控制的拟研制控制系统由硬件系统,软件系统组成。
此设计系统以以变频器、可编程序控制器作为系统控制的核心部件,以设定压力为控制目标,以PID为控制算法,和变频器组成恒压闭环控制系统。
系统时刻跟踪水储罐的水压与压力设定值的偏差变化情况,经变频器内部进行PID运算,实现闭环自动调整恒压供水。
四、预期达到的结果本系统以一个水储罐作为被控对象,研究基于PLC的恒压供水系统的设计,使系统获得较好的性能指标。
设计水储罐恒压供水控制系统的硬件电路,并画出详细的原理图;掌握PLC的编程及应用,画出PLC控制功能图,梯形图。
掌握变频器的工作原理和使用方法,研究恒压变频供水的控制方法,拟定变频器的各项参数,实现对系统的高性能控制;进行程序的模拟调试,并观察运行结果,实现要求的现象。
指导教师签字时间年月日摘要基于PLC水储罐恒压系统设计以西门子S7-200系列PLC作为控制器,采用模拟量输入模块和模拟量输出模块。
利用PID控制指令,配合变频器和电机,同时用水位计来测试水储罐的压力,使水储罐保持恒定的水压,构成闭环调速系统。
本文所研究的是水压控制的PLC控制部分,有非常重要的意义。
水储罐恒压供水系统是非常高效的。
本系统的方案是用智能PID调节器实现水储罐水压的PID调节。
PLC控制单元则是水泵管理的执行设备,同时还是变频器的驱动控制,根据水储罐水位的实际变化,自动调整输出模拟量,进而控制变频器。
变频恒压供水控制系统通过监测水储罐的压力,经PLC内置PID 调节器运算后,通过模拟输出端传送到变频器,调节输出频率进而调节水泵变速入水,实现水储罐的恒压供水。
从最终结果来看,本次设计成功把自动控制、水储罐、PID控制结合起来,综合实现了水储罐恒压供水,使其在实际运用中响应迅速,实现自动控制的效果,达到预期要求。
关键词:水压控制系统PLC水储罐AbstractPLC-based water storage tank constant pressure system designed to Siemens S7-200 series PLC as a controller, analog input modules and analog output module. Using PID control instructions, with the inverter and the motor, while the water level gauge to test the pressure of the water storage tank, the water storage tank to maintain a constant water pressure, closed loop speed control system. It is an the complex multifaceted integrally system. Studied in this paper is part of the hydraulic pressure control PLC control.Water tank Water Supply System for its water-saving, high efficiency, adaptability, etc. are widely used in the field of industrial production. Intelligent PID controller in the system water tank water pressure PID regulator. PLC control unit is the pump manage the implementation of equipment, or inverter drive control, automatically adjust the output based on actual changes in water level of the water tank, analog, and then control the drive. Constant pressure water supply control system by monitoring the pressure of the water storage tank, built-in PID controller operation by PLC, transmitted through the analog outputs to the inverter, adjust the output frequency and then adjust the pump variable speed into the water, the water tank pressure water supply.From the final results, the design successfully combine automatic control, water storage tanks, PID control, integrated water tank pressure water supply, making it quick response in the practical application, the effect of automatic control, to achieve the desired requirements.Key words: Control system for hydrostatic testing machine PLC Water tank目录第1章绪论 (1)1.1课题研究的目的意义 (1)1.2国内外研究现状和发展趋势 (2)1.3论文研究内容 (4)第2章水储罐恒压系统的要求及设计方案 (5)2.1设计要求 (5)2.2设计方案 (5)第3章水储罐恒压系统的硬件设计 (7)3.1PLC选型 (7)3.2S7-200PLC工作原理 (7)3.3I/O分配 (8)3.4模拟量模块 (8)3.4.1模拟量输入模块(A/D) (8)3.4.2模拟量输出模块(D/A) (9)3.5CPU和接触器的选型 (9)3.6水位计的选型 (9)3.7变频器的选型 (10)3.8系统接线图 (11)3.9水泵和熔断器的选型 (12)第4章水储罐恒压系统的软件设计 (14)4.1PLC程序流程图 (14)4.2PID控制器 (15)4.3程序 (16)4.4指令和注释 (17)4.4.1主程序部分 (17)4.4.2子程序部分 (17)4.4.3中断服务子程序部分 (17)4.4.4中断服务子程序 (18)第5章结论与展望 (19)5.1结论 (19)5.2展望 (19)参考文献 (20)致谢 (21)附录 (22)附录A外文资料翻译 (22)附录B梯形图 (30)第1章绪论1.1课题研究的目的意义水储罐恒压控制系统设计在我们的日常生活中应用非常普遍,为了达到节水和提高供水效率等目的,此设计则非常重要。