数轴上比较数的大小
在数轴上比较数的大小.2.1数轴上比较数的大小-

解: (1)-2<+6
(负数小于零); (2)0>-1.8 3 3 (3) (数轴上, - 2 所对应的点在-4 - >-4 2 所对应点的右侧)。 |
|
1.判断下列各式是否正确: (1)2.9>-3.1 (2)0<-14 (4)-5.4>-4.5
(3)-10>-9
2.用“>”或“>”填空: (1)3.6——2.5 (2)-3——0 (3)-16——-1.6 (4)+1——-10 (5)-2.1——+2.1 (6)-9——-7
课堂小结:
• 能够用数轴比较有理数大小.
2.在数轴上比较数的 大小
(1)画 出数轴并表示下列有理数:
2 3
复习
9 2 1 5, . 2, 2, 2 5, . , , 0 2 3
-2.5 -2 -4 -3 -2 0 0 1 1.5 2 2 3 4
9 2
-1
(2)写出数轴上点A、B、C、D、E表示的数:
B E -4 -3 -2 点A表示0 点B表示-3.5 -1 A 0 C D 2
-3 -2 -1 0 1 2 3
2.10C与-20C哪个温度高?-10C与00C哪个 温度高?-30C与-40C哪个温度高?这些 关系在温度计上表现为怎样的情形?
-2 -4 -3 -2 -1 -1 -4 -3 -2 -4 -3 -1 0 0 B 0
1
1
2
3
4
1
2
3
4
-4 -3 -2
-1
0
1
2
3
4
例 画出数轴,把下列各数在数轴上表
示出来,并按从小到大的顺序排列,用 “<”号连接起来:
2.2.2 在数轴上比较数的大小

12.如图,若 A 是有理数 a 在数轴上对应的点,则关于 a, -1,1 的大小关系表示正确的是( B )
A.a<1<-1 B.a<-1<1 C.1<-1<a D.-1<a<1
13.下列是我国几个城市某年一月份的平均气温,其中气温最低的城
市是( D )
城市
北京 武汉 广州 哈尔滨
平均பைடு நூலகம்温
(单位: ℃) -4.6 3.8
18.(8 分)画一条数轴,在数轴上分别表示下列各数,并用“>”连 接起来.
+4,+3,-2,-1.5,+312,0,1.5.
解:略
19.(10分)小红在做作业时,不小心把墨水洒在一个数轴上,如图, 根据图中标出的数值,判断墨迹盖住的整数共有多少个?
解:12个
20.(10分)(1)借助数轴,回答下列问题. ①从-1到1有3个整数,分别是_____-__1_,__0_,__1__; ②从-2到2有5个整数,分别是_____-__2_,__-__1_,__0__,_1_,__2__; ③从-3到3有____个7 整数,分别是_____-__3_,__-__2_,__-__1_,__0_,__1_,__2_,__3_; ④从-200到200有___4_0个1 整数; (2)根据以上规律,直接写出:从-2.9到2.9有____个5 整数,从-10.1到10.1 有____个21整数; (3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB,求 线段AB盖住的整数点的个数. 解:(3)1000个或1001个
13.1
-19.4
A.北京
B.武汉 C.广州 D.哈尔滨
14.小于 2 的非负整数有__2__个,它们是_0_,__1. 15.在有理数中,最大的负整数是__-1__,最小的正整数是__1__,最大的 非正数是__0__,最大的非负数是_不__存__在___. 16.大于-3 而不大于+3 的整数__6__个. 17.用“<”“>”或“=”填空: -34__>__-34,π_>___3.14,-65_>___-67.
正数负数数轴上的数值大小判断

正数负数数轴上的数值大小判断在数学中,数轴是一种用来表示实数的直线。
数轴上的每一个点都有一个对应的实数值。
正数和负数位于数轴的两侧,并以0为分界点。
在数轴上,数值的大小可以通过数轴上两点的位置关系来判断。
下面将详细介绍如何在数轴上准确判断数值的大小。
1. 正数的大小判断:正数位于数轴的右侧,数值越大,离原点越远。
例如,数轴上的点A表示正数x,点B表示正数y,若A在B的右侧,则x大于y;若A在B的左侧,则x小于y。
举个例子,假设数轴上有点A表示正数2,点B表示正数5。
可以看到,点A位于原点的左侧,而点B位于A的右侧。
因此,2小于5。
2. 负数的大小判断:负数位于数轴的左侧,数值越小,离原点越远。
例如,数轴上的点C表示负数m,点D表示负数n,若C在D的左侧,则m大于n;若C在D的右侧,则m小于n。
举个例子,假设数轴上有点C表示负数-3,点D表示负数-6。
可以看到,点C位于原点的右侧,而点D位于C的左侧。
因此,-3大于-6。
3. 正数和负数的比较:当正数和负数进行比较时,正数大于负数。
例如,数轴上的点E表示正数p,点F表示负数q,若E在F的右侧,则p大于q;若E在F的左侧,则p小于q。
举个例子,假设数轴上有点E表示正数4,点F表示负数-2。
可以看到,点F位于原点的右侧,而点E位于F的左侧。
因此,4大于-2。
4. 数值的相等判断:当两个数值在数轴上重合时,它们相等。
例如,数轴上的点G和点H重合,表示数值相等。
举个例子,假设数轴上有点G表示数值0,点H也表示数值0。
可以看到,点G和点H重合,因此,0等于0。
综上所述,通过在数轴上比较两个数值所对应的点的位置关系,可以准确判断数值的大小。
正数位于数轴的右侧,负数位于数轴的左侧,正数大于负数。
而当两个数值在数轴上重合时,它们相等。
1.25.利用数轴比较大小

(2)绝对值小于 2 的整数是( -1,0,1 )。
(3)绝对值不大于2 的整数有(-2,-1,0,1,2 )。
(4)绝对值小于 5 的整数有( 9 )个。
(5)绝对值大于 2 而小于 8 的整数是
3
( +1,-1,+2,-2 )。
3
观察下面四个式子,找规律:
|9-6|=9-6=3;
|6-9|=9-6=2 。
数轴上的两点,右边点表示的数与左边点 表示的数的大小关系?
越来越大
-3 -2 -1 0 1 2 3
数轴上两个点表示的数,右边的总比左边的大。
数学中规定:数轴上表示有理数,它们从左到右的 顺序,就是从小到大的顺序,即左边的数大于右边 的数.
说一说
正数、负数与0的大小关系
-4 -3 -2 -1 0 1 2 3 4 5
因 为 89, 即 |-8||-3|. 21 21 21 7
所以- 8 - 3. 21 7
课本练习P13 (2)(4)
例: 比较下列这组数的大小 (1) -(-1)和 –(+ 3) 解: (1) 先化简, -(-1)=1, –(+ 3)=-3
正数大于负数, 1>-3
即
-(-1)>–(+ 3)
有理数大小比较法则
1.数轴法:右大左小 正数大于0,0大于负数,正数大于负数
2.绝对值法 两个负数,绝对值大的反而小. 也可以用数轴法解题。
比较下列每组数的大小
(1)-0.3和
–
1 3
;
(2)-
66 77
和-
7 8
做一做
比较下列各组数的大小
⑴-35和12
⑵- 8和 0
利用数轴比较数的大小2

❖ 2.利用数轴比较有理数的大小.
自学指导一
1.自学内容:课本第25页—第27页
2.自学方法: “阅读-理解-分析”
3.自学时间:5分钟
4.自学要求:自后完成自学检测.
自学检测一
1、绝对值小于3的数有哪些?绝对值 小于3的整数有哪几个? 解:大于-3,小于3的所有数的绝对值都小 于3.绝对值小于3的整数有-2、-1、0、1、2.
2、已知a<0,b>0,且|a|>|b|,试用 “>”将,a,b,-a,-b连接起来.
解:-a>b>-b>a
3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小
解:因为 -(-5)=5 -│-5│=-5 所以 -(-5)>-│-5│ 因为 +(-5)=-5 +│-5│=+5 所以 +(-5)˂+│-5│
方法:
1.先求出它们的绝对值,并比较绝对值的大小。
|-1|=1,|-0.01|=0.01 1>0.01
2.根据刚才的概括得出结论
-1<-0.01
课本P27 练习 1
当堂训练
2、比较下列各对数的大小: (1)-|-2|与0 (2)-(-5)与0
解:-│-2│˂o 解:-(-5)>0
(3) ( 1)与- | - 1 |
9
10
解:-(-
1 9
)>-│-
1 10
│
(4) 3 与 - 2
4
3
解:- 3 ˂- 2
43
要点归纳:
有理数的大小比较: 1、一组数在比较大小时,先把正 数分一类,负数分一类; 2、按所有的正数大于0大于所有 的负数,两个两个负数比较大小 绝对值大的反而小去比较。
2.2.2 在数轴上比较数的大小-七年级数学上册同步教学辅导讲义(华师大版)

2.2.1数轴同步讲义基础知识1、在数轴上表示的两个数,右边的数总比左边的数大;2、正数都大于零,负数都小于零,正数都大于负数。
例题例、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.2-,1,0,54-,3,2.5【答案】见解析,5201 2.534-<-<<<<【分析】首先在数轴上表示出各数,然后根据在数轴上,右边的数总比左边的数大即可得到答案.【详解】解:如图所示:由数轴可知,这些数从小到大的顺序为:5201 2.534-<-<<<<.【点睛】本题考查有理数的比较大小、数轴,解题的关键是掌握在数轴上,右边的数总比左边的数大.练习1.在5-、1-、0、3这四个有理数中,最小的有理数是()A.5-B.1-C.0 D.32.如图,a与b的大小关系是()A.a<b B.a>b C.a=b D.a=2b3.大于-4.2且小于3.8的整数有()A.5个B.6个C.7个D.8个4.在数轴上表示数1-和2020的两点分别为点A和点B,则A、B两点之间的距离为()A.2018 B.2019 C.2020 D.20215.实数,a b在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0a >B .2b >C .a b <D .a b =6.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列关系正确的是( )A .a >b >cB .b >a >cC .c >b >aD .b >c >a7.实数a 在数轴上对应点的位置如图所示,若实数b 满足﹣a <b <a ,则b 的值可以是___(任填一个即可).8.四个数在数轴上的对应点分别为A ,B ,C ,D ,这四个数中最小的数的对应点是______.9.有理数a 、b 在数轴上的位置如图所示,则a 、b 大小是:a ______b .10.大于2-而小于3的负整数是_______.11.利用数轴比较132-,2,0,1-,12,4-的大小,并用“<”把它们连结起来.12.在数轴上表示下列各数:0,2,﹣1.5,13-,并按从小到大的顺序用“<”号把这些数连接起来.13.将有理数﹣5,0.4,0,﹣214,﹣412表示在数轴上,并用“<”连接各数.练习参考答案1.A【分析】由5-<1-<0<3,从而可得答案.【详解】-解:由5-<1-<0<3,可得:最小的有理数是 5.故选:.A【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较的方法是解题的关键.2.B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:由数轴可知,b<0<a,即a>b,故选:B.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.3.D【分析】在数轴上表示出-4.2与3.8的点,进而可得出结论.【详解】解:如图所示,,由图可知,大于-4.2且小于3.8的整数有-4,-3,-2,-1,0,1,2,3共8个.故选:D.【点睛】本题考查的是数轴,根据题意画出数轴,利用数形结合求解是解答此题的关键.4.D【分析】由数轴上两点间距离可得AB=|-1-2020|=2021.【详解】解:AB=|-1-2020|=2021,故选:D.【点睛】本题考查数轴上两点间距离;会求数轴上两点间的距离是解题的关键.5.C【分析】根据点在数轴上的位置分别判断即可.【详解】解:由图可得:-1<a<0,1<b<2,,∴a<0,b<2,a b故选项A、B、D错误,故选C.【点睛】本题考查了实数与数轴,利用数轴比较数的大小是解决问题的关键.6.A【分析】根据数轴左边的点所表示的数小于右边的点所表示的数解答即可.【详解】由数轴得:a>b>c,故选:A.【点睛】本题考查了数轴和有理数的大小比较,熟练掌握数轴上的点所表示的数的大小关系是解答的关键.7.0(答案不唯一)【分析】根据a的范围确定出﹣a的范围,进而确定出b的范围,判断即可.【详解】解:由数轴可知,1<a<2,﹣2<﹣a<﹣1,∵﹣a<b<a,∴b可以在﹣1和1之间任意取值,如﹣1,0,1等,故答案为:0(答案不唯一).【点睛】此题主要考查数轴的性质,解题的关键是熟知有理数的大小关系.8.A【分析】根据数轴的定义即可得.【详解】由数轴的定义得:数轴上的点表示的数,左边的总小于右边的,则这四个数中最小的数的对应点是A,故答案为:A.【点睛】本题考查了数轴,掌握理解数轴的定义是解题关键.9.<【分析】数轴上原点右边的数都大于0,原点左边的数都小于0,数轴右边的数始终大于数轴左边的数.【详解】a b、都在数轴原点的左边∴<<a b0,0观察数轴得,a在b左边,a b∴<<故答案为:<.【点睛】本题考查数轴、利用数轴比较有理数的大小等知识,是重要考点,难度较易,掌握相关知识是解题关键.10.-1【分析】在数轴上找出-2与3之间的数,进而可得出结论.【详解】由图可知,大于-2而小于3的负整数是-1,故答案为:-1.【点睛】本题考查的是有理数分类与大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.11.数轴见解析,114310222-<-<-<<<【分析】根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.【详解】解:如图所示:114310222-<-<-<<<.【点睛】本题考查了有理数大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.数轴见解析,11.5023-<-<<【分析】先将各数表示在数轴上,再依据数轴上右边的数大于左边的数进行判断即可.【详解】解:在数轴上表示下列各数如下:故11.5023-<-<<.【点睛】本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的方法是解题的关键.13.见解析,11 54200.424-<-<-<<【分析】先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.【详解】解:如图所示:故1154200.424-<-<-<<.【点睛】本题主要考查数轴及有理数的大小比较,熟练掌握数轴及有理数的大小比较是解题的关键.。
比较实数大小的十种常用方法

比较实数大小的十种常用方法
1.数轴法:将实数表示在数轴上,通过判断实数所在的位置来进行比较。
数轴的左侧表示较小的实数,右侧表示较大的实数。
2.常规比较法:直接通过比较两个实数的大小来进行比较。
比较大于、小于、或者等于的关系。
3.绝对值法:通过比较两个实数的绝对值来进行比较。
绝对值较大的
实数为较大的数。
4.分数法:将实数表示为一个分数形式,通过比较分数的大小来进行
比较。
分数的分子越大,表示实数越大。
5.小数法:将实数表示为小数形式,通过小数的位数和每一位数值的
大小来进行比较。
数值大的小数表示实数更大。
6.科学计数法:将实数表示为科学计数法形式,通过比较指数和尾数
的大小来进行比较。
指数越大,实数越大。
7.对数法:将实数取对数后进行比较。
对数较大的实数为较大的数。
8.平方法:将实数进行平方,通过比较平方后的结果来进行比较。
平
方较大的实数为较大的数。
9.指数法:将实数表示为指数形式,通过指数的大小来进行比较。
指
数越大,实数越大。
10.积累法:通过积累两个实数的差来进行比较。
若差累积为正数,
则较大的实数为大的数;若差累积为负数,则较大的实数为小的数。
这些方法都是常用的比较实数大小的方法,根据具体情况可以选择不同的方法进行比较。
在实际应用中,可以根据实际问题的要求来选择适当的比较方法。
七年级数学上册《利用数轴比较数的大小》优秀教学案例

4.最后,结合实际问题,如温度、海拔等,让学生学会将现实问题转化为数轴上的点,进行大小比较。
(三)学生小组讨论
在学生小组讨论环节,我会给出以下几个讨论题目:
1.数轴上数的大小比较有什么规律?
2.如何用数轴解决实际问题,例如比较两个城市的海拔高度?
(三)情感态度与价值观
1.培养学生积极的学习态度,让学生在数轴的学习过程中,感受到数学的趣味性和实用性。
2.培养学生的自信心,让学生在解决数轴相关问题中,体验到成功的喜悦,激发学生的学习积极性。
3.培养学生的团队合作精神,让学生在小组合作中,学会倾听、尊重他人,共同解决问题。
4.培养学生的责任感,让学生明白学习数学的重要性,认识到数学在现实生活中的应用价值,为将来的学习和生活打下基础。
(五)作业小结
为了巩固本节课所学内容,我会布置以下作业:
1.课后习题:完成课本上与数轴相关的习题,巩固数轴的知识。
2.实践作业:让学生收集生活中的实例,如温度、海拔等,将它们表示在数轴上,并进行大小比较。
3.思考题:引导学生思考数轴在数学中的其他应用,如数轴上的距离、对称性等。
五、案例亮点
1.创设生活化的教学情境
1.数轴上数的大小比较有哪些规律?
2.如何用数轴解决实际问题?
在小组讨论过程中,学生可以相互启发、互补不足,共同解决问题。同时,我还将组织小组间的交流,让学生分享各自的想法和经验,提高课堂氛围。
(四)反思与评价
在课堂教学结束后,我将组织学生进行反思与评价。首先,让学生自我反思在本节课中学到了什么,还有哪些疑问。然后,组织学生相互评价,鼓励学生表达自己的观点,发现他人的优点,学会尊重和欣赏他人。