2018年云南省玉溪市高考数学模拟试卷(05)
2018年云南省玉溪市高考一模数学试卷(理科)【解析版】

A.
B.
第 2 页(共 22 页)
C.
D.
11.(5 分)双曲线 C: ﹣ =1(a>0,b>0)的左右焦点分别为 F1(﹣c,
0),F2(c,0),M,N 两点在双曲线上,且 MN∥F1F2,|F1F2|=2|MN|,线段 F1N 交双曲线 C 于点 Q,且|F1Q|= |F1N|,则双曲线的离心率为( )
.
14.(5 分)在( ﹣2x2)5 的展开式中,x2 的系数是
.
15.(5 分)已知抛物线 y2=2px(p>0)的焦点为 F,过点 F 且斜率为 的直线
l 与该抛物线分别交于 A,B 两点,(点 A 在第一象限),若 = ,则 λ
=
.
16.(5 分)已知各项均为正数的数列{an}的前 n 项和为 Sn,且点(an,4Sn)在
(Ⅰ)求证:直线 PA∥平面 MFE; (Ⅱ)若二面角 P﹣AD﹣C 的大小为 60°,求直线 PE 与平面 MFE 所成角的余
弦值.
第 4 页(共 22 页)
20.(12 分)已知圆 C:x2+(y+ )2=16,点 A(0, ),P 是圆上任意一点, 线段 AP 的垂直平分线交 CP 于点 Q,当的 P 在圆上运动时,点 Q 的轨迹为曲 线 E,直线 l:y=kx+m 与 y 轴交于点 D,与曲线 E 交于 M,N 两个相异点,
证明:t<2.
请考生在 22.23 两题中任选一题作答,如果多做,则按所做第一题计分,[选修
=3,c=2 ,则 sinC=( )
A.
B.
C.
D.1
8.(5 分)如图所示的程序框图是数学史上有名的“冰雹猜想”,它蕴含着一个 规律,即任意正整数 n,按照改程序运行,最终都会变为 4﹣2﹣1 循环,若输 入 i=0,试求输入 n 分别为 5 和 6,则输出的 i 分别为( )
2018年云南省玉溪市高考数学模拟试卷(01)

2018年云南省玉溪市高考数学模拟试卷(01)一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.64.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.76.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2:3 B.1:3 C.1:4 D.1:610.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是.12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有个零点.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是.14.(5分)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是.15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q=最大?19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证:=(2)求证:(1+)(1+)…(1+)<4.21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.2018年云南省玉溪市高考数学模拟试卷(01)参考答案与试题解析一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:集合A={x||x|≤4,x∈R}={x|﹣4≤x≤4},B={x|(x+5)(x﹣a)≤0},由A⊆B,可得B≠∅,即有(5﹣4)(﹣4﹣a)≤0且(5+4)(4﹣a)≤0,解得a≥4,则则“A⊆B”是“a>4”的必要不充分条件,故选B.2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④【解答】解:由题意,m,n是两条不同的直线,α,β,γ是三个不同的平面考察①选项,此命题正确,若m⊥α,则m垂直于α中所有直线,由n∥α,知m⊥n;考察②选项,此命题不正确,因为垂直于同一平面的两个平面的位置关系是平行或相交;考察③选项,此命题不正确,因为平行于同一平面的两条直线的位置关系是平行、相交或异面;考察④选项,此命题正确,因为α∥β,β∥γ,所以α∥γ,再由m⊥α,得到m ⊥γ.故选C.3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.4.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或【解答】解:若S3、S9、S6成等差数列,则S3+S6=2S9,若公比q=1,则S3=3a1,S9=9a1,S6=6a1,即3a1+6a1=18a1,则方程不成立,即q≠1,则=,即1﹣q3+1﹣q6=2﹣2q9,即q3+q6=2q9,即1+q3=2q6,即2(q3)2﹣q3﹣1=0,解得q3=,故选:A.5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.7【解答】解:根据框图的流程,当输入x1=6,x2=9时,不满足|x1﹣x2|=3<2,当输入x3<7.5时,满足|x3﹣x1|<|x3﹣x2|,则执行x2=x3.输出P==8.5⇒x3=11(舍去);当输入x3≥7.5时,不满足|x3﹣x1|<|x3﹣x2|,则执行x1=x3,输出P==8.5⇒x3=8.故选:C.6.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解答】解:由图象可知函数的周期为π,振幅为1,所以函数的表达式可以是y=sin(2x+φ).代入(﹣,0)可得φ的一个值为,故图象中函数的一个表达式是y=sin(2x+),即y=sin2(x+),所以只需将y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变.故选A.7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)【解答】解:存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,等价于x∈[2,4],m>(x2﹣2x+5)min.令f(x)=x2﹣2x+5=(x﹣1)2+4∴函数的图象开口向上,对称轴为直线x=1∵x∈[2,4],∴x=2时,f(x)min=f(2)=22﹣2×2+5=5∴m>5故选:B.8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)【解答】解:∵奇函数y=f(x)在[﹣1,0]上为单调递减函数∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ),故选:D.9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2:3 B.1:3 C.1:4 D.1:6【解答】解:如图所示,∵点P满足++=,∴=,∴.∴△PAB的面积与△ABC的面积比=AP:AC=1:3.故选:B.10.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:A、因正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的,故A不对;B、因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越平缓,故B正确;C、球是个对称的几何体,下半球因下面窄上面宽,所以水的高度增加的越来越慢;上半球恰相反,所以水的高度增加的越来越快,则图象先平缓再变陡;故C 正确;D、图中几何体两头宽、中间窄,所以水的高度增加的越来越慢后再越来越慢快,则图象先平缓再变陡,故D正确.故选A.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是(﹣∞,0).【解答】解:∵命题p:“存在x∈R,使4x+2x+1+m=0”,∴p为真时,m=﹣(2x)2﹣2×2x,存在x∈R成立∴m的取值范围是:m<0又∵非p”是假命题∴p是真命题∴m∈(﹣∞,0)故答案为:(﹣∞,0)12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有1个零点.【解答】解:当a>3时,由于次二次函数f(x)=x2﹣ax+1,可得f(0)=1>0,f(2)=5﹣2a<0,即f(0)f(2)<0,故函数f(x)=x2﹣ax+1在区间(0,2)上恰好有一个零点,故答案为:1.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是<<.【解答】解:函数f(x)=lnx,0<a<b<c<1,设g(x)==,g′(x)=,可得0<x<e时,g′(x)>0,g(x)递增,由0<a<b<c<1,可得g(a)<g(b)<g(c),即<<.故答案为:<<.14.(5分)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是(2,10).【解答】解:(1,1),两数的和为2,共1个,(1,2),(2,1),两数的和为3,共2个,(1,3),(2,2),(3,1),两数的和为4,共3个,(1,4),(2,3),(3,2),(4,1),两数的和为5,共4个…∵1+2+3+4+5+6+7+8+9+10=55,∴第57个数对在第11组之中的第2个数,从而两数之和为12,应为(2,10);故答案为:(2,10).15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是2.【解答】解:由三视图还原原几何体如图,该几何体为五面体ABCDEF,其中面ABCD为等腰梯形,EF∥BC∥AD,EF在平面ABCD上的射影在梯形ABCD的中位线上,分别过E、F作BC、AD的垂线,把原几何体分割为两个四棱锥及一个三棱柱,则几何体的体积V=.故答案为:2.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα【解答】解:∵α∈(0,π),∴,又,∴,∴=.17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.【解答】解:(1)依题意,以O为坐标原点建立直角坐标系,则A(3,﹣4),B (6,﹣3),C(5﹣m,﹣3﹣m),∵A,B,C能构成三角形,则A、B、C三点不共线,若A、B、C三点共线,则=t⇔(3,1)=t(2﹣m,1﹣m),即,解得;∴当m≠时,A,B,C能构成三角形;(2)∵=(2﹣m,1﹣m),m∈[1,2],∴2=(2﹣m)2+(1﹣m)2=2m2﹣6m+5=2(m﹣)2+,其对称轴为m=,当m∈[1,]时,该函数单调递减,当m∈[,2]时,该函数单调递增,∴当m=1或m=2时,2取得最大值1.∵对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,∴﹣x2+x+3≥=1,即x2﹣x﹣2≤0,解得:﹣1≤x≤2.∴x的取值范围为[﹣1,2].18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q=最大?【解答】解:因为,所以…(4分)≥2=,当且仅当v=40时取等号;当v0≥40时,Q≤50,所以v=40,Q max=50…(8分)当0<v0<40时,…(12分)19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.【解答】解:以DA、DC、DD1所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系如图,则D(0,0,0),A(a,0,0).B(a,a,0),C(0,a,0),E(0,a,),A1(a,0,a).…(3分)(1)设直线A1E与平面BDD1B1所成的角为α.因为AC⊥平面BDD 1B1,所以平面BDD1B1的法向量为,又.,所以s.…(6分)(2)设=(x,y,1)为平面A1DB的法向量,∵,∴x=﹣1,y=1…(8分)∴又…(11分)即点E到平面A1DB的距离为.…(12分)20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证:=(2)求证:(1+)(1+)…(1+)<4.【解答】(1)证明:当n≥2时,,…(1分)所以…(4分)故…(5分)(2)证明:当n≥2时,…(6分)=…(8分)=…(10分)=.…(11分)当n=1时,…(12分)综上所述,对任意n∈N*,不等式都成立.…(13分)21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.【解答】.解:(1)f'(x)=﹣[x2+(a﹣2)x﹣3a﹣3]e3﹣x=﹣(x﹣3)(x+a+1)e3﹣x由﹣a﹣1=3得a=﹣4,当a=﹣4时,f′(x)=﹣(x﹣3)2e3﹣x≤0,此时函数在(﹣∞,+∞)上为减函数,当a<﹣4时,﹣a﹣1>3,由f'(x)<0⇒x<3或x>﹣a﹣1,f'(x)>0⇒3<x <﹣a﹣1.∴f(x)单调减区间为(﹣∞,3),(﹣a﹣1,+∞),单调增区间为(3,﹣a﹣1).当a>﹣4时,﹣a﹣1<3,f'(x)<0⇒x>3或x<﹣a﹣1,f'(x)>0⇒﹣a﹣1<x<3.∴f(x)单调减区间为(﹣∞,﹣a﹣1),(3,+∞),单调增区间为(﹣a﹣1,3).(2)由(1)知,当a>0时,﹣a﹣1<0,f(x)在区间[0,3]上的单调递增,在区间[3,4)]单调递减,而f(0)=﹣(2a+3)e3<0,f(4)=(2a+13)e﹣1>0,f(3)=a+6.那么f(x)在区间[0,4]上的值域是F=[﹣(2a+3)e3,a+6]又g(x)=(a2+)e x(a>0),在[0,4]上是增函数,对应的值域为G=[a2+,(a2+)e4],∵a>0,∴﹣(2a+3)e3<a+6≤a2+<(a2+)e4,|f(x1)﹣g(x2)|<1等价为g(x2)﹣f(x1)<1若存在(a>0),x1,x2∈[0,4]使得|f(x1)﹣g(x2)|<1成立,只需要g min(x)﹣f max(x)<1,∴a2+﹣a﹣6<1,得4a2﹣4a﹣3<0,得﹣<a<∵a>0,∴0<a<∴a的取值范围为(0,).。
2018年云南省玉溪市高考数学模拟试卷(09)

2018年云南省玉溪市高考数学模拟试卷(09)一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合M={y|y=,x,y∈N}的元素个数是()A.2个B.4个C.6个D.8个2.(5分)下列命题中,真命题是()A.∃x∈R,≤0 B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1 D.a>1,b>1是ab>1的充分条件3.(5分)将函数y=sin4x的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A.B.C.D.4.(5分)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.32,,则()5.(5分)已知x=lnπ,y=log5A.x<y<z B.z<x<y C.z<y<x D.y<z<x6.(5分)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.7.(5分)设函数,则下列结论错误的是()A.D(x)的值域为{0,1} B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数8.(5分)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④二.填空题:本大题共6小题,每小题5分,满分30分.9.(5分)函数f(x)=的定义域是.10.(5分)在R上为减函数,则a的取值范围是.11.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x= .12.(5分)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)= .13.(5分)已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= .14.(5分)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是.三.解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.15.(12分)函数f(x)=Asin(ωx﹣)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;(2)设a∈(0,),则f()=2,求a的值.16.(12分)甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.17.(14分)如图,在四棱锥P﹣ABCD中,PA丄平面ABCD,AB丄BC,∠BCA=45°,PA=AD=2,AC=1,DC=(Ⅰ)证明PC丄AD;(Ⅱ)求二面角A﹣PC﹣D的正弦值;(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.18.(14分)已知函数f(x)=x﹣a+lnx,(a为常数).(1)当a=5时,求f(x)的极值;(2)若f(x)为增函数,求实数a的取值范围.19.(14分)设函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(1)若函数f(x)仅在x=0处有极值,求a的取值范围;(2)若对于任意的a∈[﹣2,2],不等式f(x)≤1在x∈[﹣1,1]恒成立,求b的取值范围.20.(14分)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.2018年云南省玉溪市高考数学模拟试卷(09)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合M={y|y=,x,y∈N}的元素个数是()A.2个B.4个C.6个D.8个【解答】解:因为M={y|y=,x,y∈N},所以,当x=0时,y=∉N;当x=1时,y=∈N;当x=2时,y=∉N;当x=3时,y=∉N;当x=4时,y=∉N;当x=5时,y=∈N;当x≥6时,,所以y∉N.综上,M={y|y=,x,y∈N}={2,1},元素个数是2个.故选A.2.(5分)下列命题中,真命题是()∈R,≤0 B.∀x∈R,2x>x2A.∃xC.a+b=0的充要条件是=﹣1 D.a>1,b>1是ab>1的充分条件【解答】解:因为y=e x>0,x∈R恒成立,所以A不正确;因为x=﹣5时2﹣5<(﹣5)2,所以∀x∈R,2x>x2不成立.a=b=0时a+b=0,但是没有意义,所以C不正确;a>1,b>1是ab>1的充分条件,显然正确.故选D.3.(5分)将函数y=sin4x的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A.B.C.D.【解答】解:函数y=sin4x的图象向左平移个单位,得到的图象,就是y=sin(4x+φ)的图象,故故选C4.(5分)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.3【解答】解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f(1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选B.5.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x【解答】解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选:D.6.(5分)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.【解答】解:根据题意,正方形OABC的面积为1×1=1,1(﹣x)dx=(﹣)而阴影部分由函数y=x与y=围成,其面积为∫1=,|则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.7.(5分)设函数,则下列结论错误的是()A.D(x)的值域为{0,1} B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数【解答】解:A显然正确;∵=D(x),∴D(x)是偶函数,B正确;∵D(x+1)==D(x),∴T=1为其一个周期,故C错误;∵D()=0,D(2)=1,D()=0,显然函数D(x)不是单调函数,故D正确;故选:C.8.(5分)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④【解答】解:在①中,反例:f(x)=在[1,3]上满足性质P,但f(x)在[1,3]上不是连续函数,故①不成立;在②中,反例:f(x)=﹣x在[1,3]上满足性质P,但f(x2)=﹣x2在[1,]上不满足性质P,故②不成立;在③中:在[1,3]上,f(2)=f()≤,∴,故f(x)=1,∴对任意的x1,x2∈[1,3],f(x)=1,故③成立;在④中,对任意x1,x2,x3,x4∈[1,3],有=≤≤=[f(x1)+f(x2)+f(x3)+f(x4)],∴[f(x1)+f(x2)+f(x3)+f(x4)],故④成立.故选D.二.填空题:本大题共6小题,每小题5分,满分30分.9.(5分)函数f(x)=的定义域是{x|﹣1<x≤2且x≠0} .【解答】解:由,解得:﹣1<x≤2,且x≠0.∴函数f(x)=的定义域是{x|﹣1<x≤2,且x≠0}.故答案为:{x|﹣1<x≤2,且x≠0}.10.(5分)在R上为减函数,则a的取值范围是.【解答】解:∵在R上为减函数,∴即∴故答案为11.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x= .【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).∵0≤x<2π,∴﹣≤x﹣<,=2,此时x﹣=,∴ymax∴x=.故答案为:.12.(5分)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)= ﹣1 .【解答】解:由题意,y=f(x)+x2是奇函数,且f(1)=1,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(﹣1)=﹣3所以g(﹣1)=f(﹣1)+2=﹣3+2=﹣1故答案为:﹣1.13.(5分)已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= 6 .【解答】解:∵f′(x)=(x﹣c)2+2x(x﹣c)=3x2﹣4cx+c2,且函数f(x)=x (x﹣c)2在x=2处有极大值,∴f′(2)=0,即c2﹣8c+12=0,解得c=6或2.经检验c=2时,函数f(x)在x=2处取得极小值,不符合题意,应舍去.故c=6.故答案为6.14.(5分)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1] .【解答】解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数所以[1,+∞)⊆[a,+∞),故有a≤1故答案为(﹣∞,1]三.解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.15.(12分)函数f(x)=Asin(ωx﹣)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;(2)设a∈(0,),则f()=2,求a的值.【解答】解:(Ⅰ)∵函数f(x)的最大值是3,∴A+1=3,即A=2.﹣﹣﹣﹣﹣(1分)∵函数图象的相邻两条对称轴之间的距离为,∴最小正周期T=π,∴ω=2.﹣﹣﹣﹣﹣﹣(3分)所以f(x)=2sin(2x﹣)+1.﹣﹣﹣﹣﹣﹣(4分)令,即,∵x∈[0,π],∴f(x)的单调减区间为.﹣﹣﹣﹣﹣(8分)(Ⅱ)∵f()=2sin(α﹣)+1=2,即 sin(α﹣)=,﹣﹣﹣﹣﹣﹣(9分)∵0<α<,∴﹣<α﹣<,∴α﹣=,∴α=.﹣﹣﹣﹣﹣﹣(12分)16.(12分)甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.【解答】解:(1)设Ak ,Bk分别表示甲、乙在第k次投篮投中,则P(Ak )=,P(Bk)=,k∈(1,2,3).记“甲获胜”为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知:P(C)=P(A1)+P()+P()=+==.﹣﹣﹣﹣(5分)(2)ξ的所有可能为:1,2,3,由独立性知:P(ξ=1)=P(A1)+P()==,P(ξ=2)=P()+P()=+()2()2=,P(ξ=3)=P()=()2()2=,综上知,ξ的分布列为:ξ123P﹣﹣﹣﹣﹣﹣(9分)∴Eξ==(次)﹣﹣﹣﹣﹣﹣(11分)∴甲获胜的概率为;甲的投篮次数的期望为次.﹣﹣﹣﹣﹣﹣(12分)17.(14分)如图,在四棱锥P﹣ABCD中,PA丄平面ABCD,AB丄BC,∠BCA=45°,PA=AD=2,AC=1,DC=(Ⅰ)证明PC丄AD;(Ⅱ)求二面角A﹣PC﹣D的正弦值;(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.【解答】(本小题满分13分)证明:(Ⅰ)∵在△ADC中,AD=2,AC=1,DC=∴AC2+AD2=CD2,∴AD⊥AC,…(1分)如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),B(﹣,,0),P(0,0,2),得=(0,1,﹣2),=(2,0,0),∴=0,∴PC⊥AD.…(4分)解:(Ⅱ),,设平面PCD的一个法向量=(x,y,z),则,不妨令z=1,得=(1,2,1),可取平面PAC的一个法向量=(1,0,0),于是cos<>==,从而sin<>=,所以二面角A﹣PC﹣D的正弦值为.…(8分)(Ⅲ)设点E的坐标为(0,0,h),其中h∈[0,2],由此得=(),由=(2,﹣1,0),故,∵满足异面直线BE与CD所成的角为30°,∴=cos30°=,解得h=,即AE=.…(13分)18.(14分)已知函数f(x)=x﹣a+lnx,(a为常数).(1)当a=5时,求f(x)的极值;(2)若f(x)为增函数,求实数a的取值范围.【解答】解:函数y=f(x)的定义域为(0,+∞),﹣﹣﹣﹣﹣﹣(1分)(1)当a=5时,令f'(x)=0得,或x=4﹣﹣﹣﹣﹣﹣(3分)f'(x),f(x)随x的变化情况如下表x4(4,+∞)f'(x)+0__0+f(x)递增递减﹣6+ln4递增由上表可得函数的极大值为=,极小值为f(4)=﹣6+ln4.﹣﹣﹣﹣﹣﹣(7分)(2)由题意得在区间(0,+∞)恒成立,﹣﹣﹣﹣(8分)即在区间(0,+∞)恒成立,∴在区间(0,+∞)恒成立.﹣﹣﹣﹣(10分)∵,当且仅当,即x=1时等号成立.∴=4﹣﹣﹣﹣(13分)所以a的取值范围是(﹣∞,4].﹣﹣﹣﹣(14分)19.(14分)设函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(1)若函数f(x)仅在x=0处有极值,求a的取值范围;(2)若对于任意的a∈[﹣2,2],不等式f(x)≤1在x∈[﹣1,1]恒成立,求b的取值范围.【解答】解:(1)求导函数可得f'(x)=x(4x2+3ax+4),﹣﹣﹣﹣﹣﹣(1分)显然x=0不是方程4x2+3ax+4=0的根.为使f(x)仅在x=0处有极值,必须4x2+3ax+4≥0成立,﹣﹣﹣﹣﹣﹣(3分)即有△=9a2﹣64≤0,解得.所以a的取值范围是.﹣﹣﹣﹣﹣﹣(6分)(2)由条件a∈[﹣2,2],可知△=9a2﹣64<0,从而4x2+3ax+4>0恒成立.﹣﹣﹣﹣﹣﹣(8分)当x<0时,f'(x)<0;当x>0时,f'(x)>0.因此函数f(x)在[﹣1,1]上的最大值是f(1)与f(﹣1)两者中的较大者.﹣﹣﹣﹣﹣﹣(11分)为使对任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,当且仅当,即在a∈[﹣2,2]上恒成立.﹣﹣﹣﹣﹣﹣(13分)所以b≤﹣4,因此满足条件的b的取值范围是(﹣∞,﹣4].﹣﹣﹣﹣﹣﹣(14分)20.(14分)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.【解答】解:(Ⅰ)求导函数,可得f′(x)=e x+2ax﹣e∵曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴k=2a=0,∴a=0∴f(x)=e x﹣ex,f′(x)=e x﹣e令f′(x)=e x﹣e<0,可得x<1;令f′(x)>0,可得x>1;∴函数f(x)的单调减区间为(﹣∞,1),单调增区间为(1,+∞)(Ⅱ)设点P(x0,f(x)),曲线y=f(x)在点P处的切线方程为y=f′(x)(x﹣x0)+f(x)令g(x)=f(x)﹣f′(x0)(x﹣x)﹣f(x)∵曲线在该点处的切线与曲线只有一个公共点P,∴g(x)有唯一零点∵g(x)=0,g′(x)=(1)若a≥0,当x>x0时,g′(x)>0,∴x>x时,g(x)>g(x)=0当x<x0时,g′(x)<0,∴x<x时,g(x)>g(x)=0,故g(x)只有唯一零点x=x,由P的任意性a≥0不合题意;(2)若a<0,令h(x)=,则h(x)=0,h′(x)=e x+2a 令h′(x)=0,则x=ln(﹣2a),∴x∈(﹣∞,ln(﹣2a)),h′(x)<0,函数单调递减;x∈(ln(﹣2a),+∞),h′(x)>0,函数单调递增;①若x=ln(﹣2a),由x∈(﹣∞,ln(﹣2a)),g′(x)>0;x∈(ln(﹣2a),+∞),g′(x)>0,∴g(x)在R上单调递增∴g(x)只有唯一零点x=x;②若x0>ln(﹣2a),由x∈(ln(﹣2a),+∞),h(x)单调递增,且h(x)=0,则当x∈(ln(﹣2a),x0),g′(x)<0,g(x)>g(x)=0任取x1∈(ln(﹣2a),x),g(x1)>0,∵x∈(﹣∞,x1),∴g(x)<ax2+bx+c,其中b=﹣e﹣f′(x).c=∵a<0,∴必存在x2<x1,使得∴g(x2)<0,故g(x)在(x2,x1)内存在零点,即g(x)在R上至少有两个零点;③若x<ln(﹣2a),同理利用,可得g(x)在R上至少有两个零点;综上所述,a<0,曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P(ln(﹣2a),f(ln(﹣2a))).。
2018年云南省玉溪市高考数学模拟试卷(01)

2018年云南省玉溪市高考数学模拟试卷(01)一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.64.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.76.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2:3 B.1:3 C.1:4 D.1:610.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是.12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有个零点.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是.14.(5分)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是.15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q=最大?19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证:=(2)求证:(1+)(1+)…(1+)<4.21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.2018年云南省玉溪市高考数学模拟试卷(01)参考答案与试题解析一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:集合A={x||x|≤4,x∈R}={x|﹣4≤x≤4},B={x|(x+5)(x﹣a)≤0},由A⊆B,可得B≠∅,即有(5﹣4)(﹣4﹣a)≤0且(5+4)(4﹣a)≤0,解得a≥4,则则“A⊆B”是“a>4”的必要不充分条件,故选B.2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④【解答】解:由题意,m,n是两条不同的直线,α,β,γ是三个不同的平面考察①选项,此命题正确,若m⊥α,则m垂直于α中所有直线,由n∥α,知m⊥n;考察②选项,此命题不正确,因为垂直于同一平面的两个平面的位置关系是平行或相交;考察③选项,此命题不正确,因为平行于同一平面的两条直线的位置关系是平行、相交或异面;考察④选项,此命题正确,因为α∥β,β∥γ,所以α∥γ,再由m⊥α,得到m ⊥γ.故选C.3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.4.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或【解答】解:若S3、S9、S6成等差数列,则S3+S6=2S9,若公比q=1,则S3=3a1,S9=9a1,S6=6a1,即3a1+6a1=18a1,则方程不成立,即q≠1,则=,即1﹣q3+1﹣q6=2﹣2q9,即q3+q6=2q9,即1+q3=2q6,即2(q3)2﹣q3﹣1=0,解得q3=,故选:A.5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.7【解答】解:根据框图的流程,当输入x1=6,x2=9时,不满足|x1﹣x2|=3<2,当输入x3<7.5时,满足|x3﹣x1|<|x3﹣x2|,则执行x2=x3.输出P==8.5⇒x3=11(舍去);当输入x3≥7.5时,不满足|x3﹣x1|<|x3﹣x2|,则执行x1=x3,输出P==8.5⇒x3=8.故选:C.6.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解答】解:由图象可知函数的周期为π,振幅为1,所以函数的表达式可以是y=sin(2x+φ).代入(﹣,0)可得φ的一个值为,故图象中函数的一个表达式是y=sin(2x+),即y=sin2(x+),所以只需将y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变.故选A.7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)【解答】解:存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,等价于x∈[2,4],m>(x2﹣2x+5)min.令f(x)=x2﹣2x+5=(x﹣1)2+4∴函数的图象开口向上,对称轴为直线x=1∵x∈[2,4],∴x=2时,f(x)min=f(2)=22﹣2×2+5=5∴m>5故选:B.8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)【解答】解:∵奇函数y=f(x)在[﹣1,0]上为单调递减函数∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ),故选:D.9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2:3 B.1:3 C.1:4 D.1:6【解答】解:如图所示,∵点P满足++=,∴=,∴.∴△PAB的面积与△ABC的面积比=AP:AC=1:3.故选:B.10.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:A、因正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的,故A不对;B、因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越平缓,故B正确;C、球是个对称的几何体,下半球因下面窄上面宽,所以水的高度增加的越来越慢;上半球恰相反,所以水的高度增加的越来越快,则图象先平缓再变陡;故C 正确;D、图中几何体两头宽、中间窄,所以水的高度增加的越来越慢后再越来越慢快,则图象先平缓再变陡,故D正确.故选A.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是(﹣∞,0).【解答】解:∵命题p:“存在x∈R,使4x+2x+1+m=0”,∴p为真时,m=﹣(2x)2﹣2×2x,存在x∈R成立∴m的取值范围是:m<0又∵非p”是假命题∴p是真命题∴m∈(﹣∞,0)故答案为:(﹣∞,0)12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有1个零点.【解答】解:当a>3时,由于次二次函数f(x)=x2﹣ax+1,可得f(0)=1>0,f(2)=5﹣2a<0,即f(0)f(2)<0,故函数f(x)=x2﹣ax+1在区间(0,2)上恰好有一个零点,故答案为:1.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是<<.【解答】解:函数f(x)=lnx,0<a<b<c<1,设g(x)==,g′(x)=,可得0<x<e时,g′(x)>0,g(x)递增,由0<a<b<c<1,可得g(a)<g(b)<g(c),即<<.故答案为:<<.14.(5分)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是(2,10).【解答】解:(1,1),两数的和为2,共1个,(1,2),(2,1),两数的和为3,共2个,(1,3),(2,2),(3,1),两数的和为4,共3个,(1,4),(2,3),(3,2),(4,1),两数的和为5,共4个…∵1+2+3+4+5+6+7+8+9+10=55,∴第57个数对在第11组之中的第2个数,从而两数之和为12,应为(2,10);故答案为:(2,10).15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是2.【解答】解:由三视图还原原几何体如图,该几何体为五面体ABCDEF,其中面ABCD为等腰梯形,EF∥BC∥AD,EF在平面ABCD上的射影在梯形ABCD的中位线上,分别过E、F作BC、AD的垂线,把原几何体分割为两个四棱锥及一个三棱柱,则几何体的体积V=.故答案为:2.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα【解答】解:∵α∈(0,π),∴,又,∴,∴=.17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.【解答】解:(1)依题意,以O为坐标原点建立直角坐标系,则A(3,﹣4),B (6,﹣3),C(5﹣m,﹣3﹣m),∵A,B,C能构成三角形,则A、B、C三点不共线,若A、B、C三点共线,则=t⇔(3,1)=t(2﹣m,1﹣m),即,解得;∴当m≠时,A,B,C能构成三角形;(2)∵=(2﹣m,1﹣m),m∈[1,2],∴2=(2﹣m)2+(1﹣m)2=2m2﹣6m+5=2(m﹣)2+,其对称轴为m=,当m∈[1,]时,该函数单调递减,当m∈[,2]时,该函数单调递增,∴当m=1或m=2时,2取得最大值1.∵对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,∴﹣x2+x+3≥=1,即x2﹣x﹣2≤0,解得:﹣1≤x≤2.∴x的取值范围为[﹣1,2].18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q=最大?【解答】解:因为,所以…(4分)≥2=,当且仅当v=40时取等号;当v0≥40时,Q≤50,所以v=40,Q max=50…(8分)当0<v0<40时,…(12分)19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.【解答】解:以DA、DC、DD1所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系如图,则D(0,0,0),A(a,0,0).B(a,a,0),C(0,a,0),E(0,a,),A1(a,0,a).…(3分)(1)设直线A1E与平面BDD1B1所成的角为α.因为AC⊥平面BDD1B1,所以平面BDD1B1的法向量为,又.,所以s.…(6分)(2)设=(x,y,1)为平面A1DB的法向量,∵,∴x=﹣1,y=1…(8分)∴又…(11分)即点E到平面A1DB的距离为.…(12分)20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证:=(2)求证:(1+)(1+)…(1+)<4.【解答】(1)证明:当n≥2时,,…(1分)所以…(4分)故…(5分)(2)证明:当n≥2时,…(6分)=…(8分)=…(10分)=.…(11分)当n=1时,…(12分)综上所述,对任意n∈N*,不等式都成立.…(13分)21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.【解答】.解:(1)f'(x)=﹣[x2+(a﹣2)x﹣3a﹣3]e3﹣x=﹣(x﹣3)(x+a+1)e3﹣x由﹣a﹣1=3得a=﹣4,当a=﹣4时,f′(x)=﹣(x﹣3)2e3﹣x≤0,此时函数在(﹣∞,+∞)上为减函数,当a<﹣4时,﹣a﹣1>3,由f'(x)<0⇒x<3或x>﹣a﹣1,f'(x)>0⇒3<x <﹣a﹣1.∴f(x)单调减区间为(﹣∞,3),(﹣a﹣1,+∞),单调增区间为(3,﹣a﹣1).当a>﹣4时,﹣a﹣1<3,f'(x)<0⇒x>3或x<﹣a﹣1,f'(x)>0⇒﹣a﹣1<x<3.∴f(x)单调减区间为(﹣∞,﹣a﹣1),(3,+∞),单调增区间为(﹣a﹣1,3).(2)由(1)知,当a>0时,﹣a﹣1<0,f(x)在区间[0,3]上的单调递增,在区间[3,4)]单调递减,而f(0)=﹣(2a+3)e3<0,f(4)=(2a+13)e﹣1>0,f(3)=a+6.那么f(x)在区间[0,4]上的值域是F=[﹣(2a+3)e3,a+6]又g(x)=(a2+)e x(a>0),在[0,4]上是增函数,对应的值域为G=[a2+,(a2+)e4],∵a>0,∴﹣(2a+3)e3<a+6≤a2+<(a2+)e4,|f(x1)﹣g(x2)|<1等价为g(x2)﹣f(x1)<1若存在(a>0),x1,x2∈[0,4]使得|f(x1)﹣g(x2)|<1成立,只需要g min(x)﹣f max(x)<1,∴a2+﹣a﹣6<1,得4a2﹣4a﹣3<0,得﹣<a<∵a>0,∴0<a<∴a的取值范围为(0,).。
2018年云南省玉溪市高考数学模拟试卷附答案解析

2018年云南省玉溪市高考数学模拟试卷(07)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={m,﹣3},N={x|2x2+7x+3<0,x∈Z},如果M∩N≠∅,则m等于()A.﹣1 B.﹣2 C.﹣2或﹣1 D.2.(5分)已知函数f(x)=,则f(f(1))+f(log3)的值是()A.7 B.2 C.5 D.33.(5分)为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图),要测算A,B两点的距离,测量人员在岸边定出基线BC,测得BC=50m,∠ABC=105°,∠BCA=45°,就可以计算出A,B两点的距离为()A.50m B.50m C.25m D.m4.(5分)设m,n是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题:①若α∥β,m⊂α,n⊂β,则m∥n;②若m⊥α,m∥β,则α⊥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.其中错误命题的序号是()A.①④B.①③C.②③④D.②③5.(5分)函数y=x•|cosx|的图象大致是()A.B.C.D.6.(5分)函数y=的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为等比数列的公比的数是()A.B.C.D.7.(5分)已知向量,,若+2与垂直,则k=()A.﹣3 B.﹣2 C.1 D.﹣18.(5分)计算(x+)dx的值为()A.B.+ln2 C.+ln2 D.3+ln29.(5分)已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为()A.24﹣B.24﹣C.24﹣πD.24﹣10.(5分)下列命题中为真命题的是()A.若B.直线a,b为异面直线的充要条件是直线a,b不相交C.“a=1是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题p:”∃x∈R,x2﹣x﹣1>0”,则命题p的否定为:”∀x∈R,x2﹣x﹣1≤0”11.(5分)已知各项均为正数的等比数列{a n}中,成等差数列,则=()A.﹣1或3 B.3 C.27 D.1或2712.(5分)已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称,则下列结论中正确的是()A.f(4.5)<f(7)<f(6.5)B.f(7)<f(4.5)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(4.5)<f(6.5)<f(7)二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)已知向量,,且直线2xcosα﹣2ysinα+1=0与圆(x﹣cosβ)2+(y+sinβ)2=1相切,则向量与的夹角为.14.(4分)已知2+=4×,3+=9×,4+=16×,…,观察以上等式,若9+=k×;(m,n,k均为实数),则m+n﹣k=.15.(4分)设x、y满足约束条件,则目标函数z=x2+y2的最大值为.16.(4分)定义在R上的函数f(x),对∀x∈R,满足f(1﹣x)=f(1+x),f(﹣x)=﹣f(x),且f(x)在[0,1]上是增函数.下列结论正确的是.(把所有正确结论的序号都填上)①f(0)=0;②f(x+2)=f(﹣x);③f(x)在[﹣6,﹣4]上是增函数;④f(x)在x=﹣1处取得最小值.三、解答题:(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.18.(12分)已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°.(Ⅰ)求证:直线SA∥平面BDE;(Ⅱ)求直线BD与平面SBC所成角的正弦值.20.(12分)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(Ⅰ)分别求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设,若恒成立,求c的最小值.21.(12分)某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+﹣1450(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(14分)已知函数f(x)=xe﹣x+(x﹣2)e x﹣a(e≈2.73).(Ⅰ)当a=2时,证明函数f(x)在R上是增函数;(Ⅱ)若a>2时,当x≥1时,f(x)≥恒成立,求实数a的取值范围.2018年云南省玉溪市高考数学模拟试卷(07)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={m,﹣3},N={x|2x2+7x+3<0,x∈Z},如果M∩N≠∅,则m等于()A.﹣1 B.﹣2 C.﹣2或﹣1 D.【解答】解:由集合N中的不等式2x2+7x+3<0,因式分解得:(2x+1)(x+3)<0,解得:﹣3<x<﹣,又x∈Z,∴x=﹣2,﹣1,∴N={﹣2,﹣1},∵M∩N≠∅,∴m=﹣1或m=﹣2.故选C2.(5分)已知函数f(x)=,则f(f(1))+f(log3)的值是()A.7 B.2 C.5 D.3【解答】解:由题意可得,f(1)=log21=0,f(f(1))=f(0)=90+1=2f()=+1=+1=5∴=7故选A3.(5分)为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图),要测算A,B两点的距离,测量人员在岸边定出基线BC,测得BC=50m,∠ABC=105°,∠BCA=45°,就可以计算出A,B两点的距离为()A.50m B.50m C.25m D.m【解答】解:由题意及图知,∠BAC=30°,又BC=50m,∠BCA=45°由正弦定理得AB==50m故选A4.(5分)设m,n是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题:①若α∥β,m⊂α,n⊂β,则m∥n;②若m⊥α,m∥β,则α⊥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.其中错误命题的序号是()A.①④B.①③C.②③④D.②③【解答】解:①若α∥β,m⊂α,n⊂β,则m、n不想交,但可能平行也可能异面,故①不正确;②∵m∥β,∴过m作平面与β相交,交线为n,则m∥n,∵m⊥α,∴n⊥α,∴根据面面垂直的判定,可得α⊥β,故②正确;③∵n⊥α,m⊥α,∴m∥n,∵n⊥β,∴m⊥β,故③正确;④α⊥γ,β⊥γ,m⊥α,α∥β,则m⊥β,故④不正确.综上,错误命题的序号是为①④,故选A.5.(5分)函数y=x•|cosx|的图象大致是()A.B.C.D.【解答】解:设函数y=f(x)=x|cosx|,则f(﹣x)=﹣x|cosx|=﹣f(x),即函数为奇函数,故其图象关于原点对称,排除C,D,又当x≥0时,f(x)=x|cosx|≥0,故在x轴下方无图象,故排除B,故选A6.(5分)函数y=的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为等比数列的公比的数是()A.B.C.D.【解答】解:函数y=的等价于,表示圆心在(5,0),半径为3的上半圆(如图所示),圆上点到原点的最短距离为2(点2处),最大距离为8(点8处),若存在三点成等比数列,则最大的公比q应有8=2q2,即q2=4,q=2,最小的公比应满足2=8q2,即q2=,解得q=又不同的三点到原点的距离不相等,故q≠1,∴公比的取值范围为≤q≤2,且q≠1,故选:D7.(5分)已知向量,,若+2与垂直,则k=()A.﹣3 B.﹣2 C.1 D.﹣1【解答】解:∵=(,3),又∵∴==0∴k=﹣3故选A8.(5分)计算(x+)dx的值为()A.B.+ln2 C.+ln2 D.3+ln2【解答】解:(x+)dx==2+ln2﹣=ln2+;故选B.9.(5分)已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为()A.24﹣B.24﹣C.24﹣πD.24﹣【解答】解:该几何体是由一个长方体截去半个圆柱所得,其中长方体的体积为V1=4×3×2=24;半个圆柱的体积为V2==,则V=24﹣.故选A.10.(5分)下列命题中为真命题的是()A.若B.直线a,b为异面直线的充要条件是直线a,b不相交C.“a=1是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题p:”∃x∈R,x2﹣x﹣1>0”,则命题p的否定为:”∀x∈R,x2﹣x﹣1≤0”【解答】解:对于A,只有当x>0时,结论成立;对于B,直线a,b不相交,直线a,b有可能平行;对于C,直线x﹣ay=0与直线x+ay=0互相垂直时,a=±1;对于D,显然成立.故选D.11.(5分)已知各项均为正数的等比数列{a n}中,成等差数列,则=()A.﹣1或3 B.3 C.27 D.1或27【解答】解:∵各项均为正数的等比数列{a n}中,公比为q,∵成等差数列,∴a3=3a1+2a2,可得a1q2=33a1+2a1q2,解得q=﹣1或3,∵正数的等比数列q=﹣1舍去,故q=3,∴====27,故选C;12.(5分)已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称,则下列结论中正确的是()A.f(4.5)<f(7)<f(6.5)B.f(7)<f(4.5)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(4.5)<f(6.5)<f(7)【解答】解:定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称,可知函数是周期为4的函数,x∈[0,2]函数是增函数,函数的对称轴为x=2,f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5),可得f(4.5)<f(7)<f(6.5).故选:A.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)已知向量,,且直线2xcosα﹣2ysinα+1=0与圆(x﹣cosβ)2+(y+sinβ)2=1相切,则向量与的夹角为60°.【解答】解:∵直线2xcosα﹣2ysinα+1=0与圆(x﹣cosβ)2+(y+sinβ)2=1相切,∴=1解得向量==故两向量的夹角为60°故答案为60°14.(4分)已知2+=4×,3+=9×,4+=16×,…,观察以上等式,若9+=k×;(m,n,k均为实数),则m+n﹣k=79.【解答】解:通过观察可得,n+=(n≥2,n∈N*),所以由9+=k×,得n=m=92﹣1=80,k=92=81,所以m+n﹣k=80+80﹣81=79.故答案为:79.15.(4分)设x、y满足约束条件,则目标函数z=x2+y2的最大值为52.【解答】解:作出不等式组表示的平面区域,得到如图的四边形OABC,其中A(0,2),B(4,6),C(2,0),O为原点设P(x,y)为区域内一个动点,则|OP|=表示点P到原点O的距离∴z=x2+y2=|OP|2,可得当P到原点距离最远时z达到最大值因此,运动点P使它与点B重合时,z达到最大值=42+62=52∴z最大值故答案为:5216.(4分)定义在R上的函数f(x),对∀x∈R,满足f(1﹣x)=f(1+x),f(﹣x)=﹣f(x),且f(x)在[0,1]上是增函数.下列结论正确的是①②④.(把所有正确结论的序号都填上)①f(0)=0;②f(x+2)=f(﹣x);③f(x)在[﹣6,﹣4]上是增函数;④f(x)在x=﹣1处取得最小值.【解答】解:因为定义在R上的函数f(x),对∀x∈R,函数满足f(﹣x)=﹣f (x),所以函数是奇函数,定义域是R,所以f(0)=0;①正确;又函数满足f(1﹣x)=f(1+x),所以函数关于x=1对称,可得f(x+2)=f(﹣x);②正确;f(x+2)=f(﹣x);f(﹣x)=﹣f(x),可得f(x+4)=f(x),函数的周期是4,f(x)在[﹣6,﹣4]上不是单调函数,③不正确;f(x)在[0,1]上是增函数.函数又是奇函数,函数关于x=1对称[1,2]是减函数;所以函数在[﹣1,0]也是增函数,[﹣2,﹣1]上是减函数,所以函数在x=﹣1球的最小值,④正确;正确结果是:①②④.故答案为:①②④.三、解答题:(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.【解答】解:(1)f(x)===故f(x)的最小正周期为T==8(2)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2﹣x,g(x)).由题设条件,点(2﹣x,g(x))在y=f(x)的图象上,从而==当时,时,因此y=g(x)在区间上的最大值为18.(12分)已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.【解答】解:(1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,由于覆盖它的且面积最小的圆是其外接圆,∴圆心是Rt△OPQ的斜边PQ的中点C(2,1),半径r=|OC|==,∴圆C的方程是(x﹣2)2+(y﹣1)2=5.(2)设直线l的方程是:y=x+b.∵CA⊥CB,∴圆心C到直线l的距离是=,即,解之得,b=﹣1±.∴直线l的方程是:y=x﹣1±.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°.(Ⅰ)求证:直线SA∥平面BDE;(Ⅱ)求直线BD与平面SBC所成角的正弦值.【解答】解:(I)如图,连接EO,∵四棱锥S﹣ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,∴O是AC的中点,∵E是侧棱SC的中点,∴EO是△ASC的中位线,∴EO∥SA,∵SA⊂面ASC,EO不包含于面ASC,∴直线SA∥平面BDE.(II)过点O作CB的平行线作x轴,过O作AB的平行线作y轴,以OS为z轴,建立如图所示的空间直角坐标系,∵四棱锥S﹣ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°,∴SA=4,SO=2,∴B(2,2,0),C(﹣2,2,0),S(0,0,2),D(﹣2,﹣2,0),∴,,,设面SBC的法向量为,则,,∴,∴,设直线BD与平面SBC所成角为θ,则sinθ=|cos<>|=||=.20.(12分)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(Ⅰ)分别求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设,若恒成立,求c的最小值.【解答】解:(Ⅰ)设d、q分别为数列{a n}、数列{b n}的公差与公比,a1=1.由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{b n}的前三项,∴(2+d)2=2(4+2d)⇒d=±2.>a n,∵a n+1∴d>0.∴d=2,∴a n=2n﹣1(n∈N*).由此可得b1=2,b2=4,q=2,∴b n=2n(n∈N*).(Ⅱ),①∴.②①﹣②,得=+2(++…+)﹣,∴T n=3﹣.∴T n+﹣=3﹣≤2,∴满足条件恒成立的最小整数值为c=3.21.(12分)某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+﹣1450(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【解答】解:(1)∵每件商品售价为0.05万元,∴x千件商品销售额为0.05×1000x万元,①当0<x<80时,根据年利润=销售收入﹣成本,∴L(x)=(0.05×1000x)﹣x2﹣10x﹣250=﹣x2+40x﹣250;②当x≥80时,根据年利润=销售收入﹣成本,∴L(x)=(0.05×1000x)﹣51x﹣+1450﹣250=1200﹣(x+).综合①②可得,L(x)=;(2)①当0<x<80时,L(x)=﹣x2+40x﹣250=﹣(x﹣60)2+950,∴当x=60时,L(x)取得最大值L(60)=950万元;②当x≥80时,L(x)=1200﹣(x+)≤1200﹣2=1200﹣200=1000,当且仅当x=,即x=100时,L(x)取得最大值L(100)=1000万元.综合①②,由于950<1000,∴年产量为100千件时,该厂在这一商品的生产中所获利润最大.22.(14分)已知函数f(x)=xe﹣x+(x﹣2)e x﹣a(e≈2.73).(Ⅰ)当a=2时,证明函数f(x)在R上是增函数;(Ⅱ)若a>2时,当x≥1时,f(x)≥恒成立,求实数a的取值范围.【解答】解:(Ⅰ)当a=2时,f(x)=xe﹣x+(x﹣2)e x﹣2,f(x)的定义域为R,f′(x)=e﹣x﹣xe﹣x+e x﹣2+(x﹣2)e x﹣2=(x﹣1)(e x﹣2﹣e﹣x)=e﹣x(x﹣1)(e x﹣1﹣1)(e x﹣1+1).当x≥1时,x﹣1≥0,e x﹣1﹣1≥0,所以f′(x)≥0,当x<1时,x﹣1<0,e x﹣1﹣1<0,所以f′(x)≥0,所以对任意实数x,f′(x)≥0,所以f(x)在R上是增函数;(II)当x≥1时,f(x)≥恒成立,即(x﹣2)e2x﹣a﹣x2+3x﹣1≥0恒成立,设h(x)=(x﹣2)e2x﹣a﹣x2+3x﹣1(x≥1),则h′(x)=(2x﹣3)(e2x﹣a﹣1),令h′(x)=(2x﹣3)(e2x﹣a﹣1)=0,解得,,(1)当1<<,即2<a<3时,x(1,)(,)(,+∞)h′(x)+0﹣0+h(x)单调递增极大值单调递减极小值单调递增所以要使结论成立,则h(1)=﹣e2﹣a+1≥0,h()=﹣e3﹣a+≥0,即e2﹣a ≤1,e3﹣a≤,解得a≥2,a≥3﹣ln,所以3﹣ln≤a<3;(2)当=,即a=3时,h′(x)≥0恒成立,所以h(x)是增函数,又h(1)=﹣e﹣1+1>0,故结论成立;(3)当,即a>3时,x(1,)(,)(,+∞)h′(x)+0﹣0+h(x)单调递增极大值单调递减极小值单调递增所以要使结论成立,则h(1)=﹣e2﹣a+1≥0,h()=﹣+2a﹣3≥0,即e2﹣a≤1,a2﹣8a+12≤0,解得a≥2,2≤a≤6,所以3<a≤6;综上所述,若a>2,当x≥1时,f(x)≥恒成立,实数a的取值范围是3﹣ln≤a≤6.…(12分)。
2018年云南省玉溪市高考数学模拟试卷(01)

2018年云南省玉溪市高考数学模拟试卷(01)一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.64.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.76.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2:3 B.1:3 C.1:4 D.1:610.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是.12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有个零点.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是.14.(5分)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是.15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q=最大?19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证:=(2)求证:(1+)(1+)…(1+)<4.21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.2018年云南省玉溪市高考数学模拟试卷(01)参考答案与试题解析一、选择题(本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合A={x||x|≤4,x∈R},B={x|(x+5)(x﹣a)≤0},则“A⊆B”是“a >4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:集合A={x||x|≤4,x∈R}={x|﹣4≤x≤4},B={x|(x+5)(x﹣a)≤0},由A⊆B,可得B≠∅,即有(5﹣4)(﹣4﹣a)≤0且(5+4)(4﹣a)≤0,解得a≥4,则则“A⊆B”是“a>4”的必要不充分条件,故选B.2.(5分)下列命题中,m,n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④【解答】解:由题意,m,n是两条不同的直线,α,β,γ是三个不同的平面考察①选项,此命题正确,若m⊥α,则m垂直于α中所有直线,由n∥α,知m⊥n;考察②选项,此命题不正确,因为垂直于同一平面的两个平面的位置关系是平行或相交;考察③选项,此命题不正确,因为平行于同一平面的两条直线的位置关系是平行、相交或异面;考察④选项,此命题正确,因为α∥β,β∥γ,所以α∥γ,再由m⊥α,得到m ⊥γ.故选C.3.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.4.(5分)已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或【解答】解:若S3、S9、S6成等差数列,则S3+S6=2S9,若公比q=1,则S3=3a1,S9=9a1,S6=6a1,即3a1+6a1=18a1,则方程不成立,即q≠1,则=,即1﹣q3+1﹣q6=2﹣2q9,即q3+q6=2q9,即1+q3=2q6,即2(q3)2﹣q3﹣1=0,解得q3=,故选:A.5.(5分)下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.7【解答】解:根据框图的流程,当输入x1=6,x2=9时,不满足|x1﹣x2|=3<2,当输入x3<7.5时,满足|x3﹣x1|<|x3﹣x2|,则执行x2=x3.输出P==8.5⇒x3=11(舍去);当输入x3≥7.5时,不满足|x3﹣x1|<|x3﹣x2|,则执行x1=x3,输出P==8.5⇒x3=8.故选:C.6.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解答】解:由图象可知函数的周期为π,振幅为1,所以函数的表达式可以是y=sin(2x+φ).代入(﹣,0)可得φ的一个值为,故图象中函数的一个表达式是y=sin(2x+),即y=sin2(x+),所以只需将y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变.故选A.7.(5分)若存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,则m的取值范围为()A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(﹣∞,13)【解答】解:存在实数x∈[2,4],使x2﹣2x+5﹣m<0成立,等价于x∈[2,4],m>(x2﹣2x+5)min.令f(x)=x2﹣2x+5=(x﹣1)2+4∴函数的图象开口向上,对称轴为直线x=1∵x∈[2,4],∴x=2时,f(x)min=f(2)=22﹣2×2+5=5∴m>5故选:B.8.(5分)已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)【解答】解:∵奇函数y=f(x)在[﹣1,0]上为单调递减函数∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ),故选:D.9.(5分)△ABC所在平面上一点P满足++=,则△PAB的面积与△ABC 的面积比为()A.2:3 B.1:3 C.1:4 D.1:6【解答】解:如图所示,∵点P满足++=,∴=,∴.∴△PAB的面积与△ABC的面积比=AP:AC=1:3.故选:B.10.(5分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:A、因正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的,故A不对;B、因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越平缓,故B正确;C、球是个对称的几何体,下半球因下面窄上面宽,所以水的高度增加的越来越慢;上半球恰相反,所以水的高度增加的越来越快,则图象先平缓再变陡;故C 正确;D、图中几何体两头宽、中间窄,所以水的高度增加的越来越慢后再越来越慢快,则图象先平缓再变陡,故D正确.故选A.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填写在题中横线上)11.(5分)已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是(﹣∞,0).【解答】解:∵命题p:“存在x∈R,使4x+2x+1+m=0”,∴p为真时,m=﹣(2x)2﹣2×2x,存在x∈R成立∴m的取值范围是:m<0又∵非p”是假命题∴p是真命题∴m∈(﹣∞,0)故答案为:(﹣∞,0)12.(5分)若a>3,则函数f(x)=x2﹣ax+1在区间(0,2)上恰好有1个零点.【解答】解:当a>3时,由于次二次函数f(x)=x2﹣ax+1,可得f(0)=1>0,f(2)=5﹣2a<0,即f(0)f(2)<0,故函数f(x)=x2﹣ax+1在区间(0,2)上恰好有一个零点,故答案为:1.13.(5分)已知函数f(x)=lnx,0<a<b<c<1,则,,的大小关系是<<.【解答】解:函数f(x)=lnx,0<a<b<c<1,设g(x)==,g′(x)=,可得0<x<e时,g′(x)>0,g(x)递增,由0<a<b<c<1,可得g(a)<g(b)<g(c),即<<.故答案为:<<.14.(5分)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是(2,10).【解答】解:(1,1),两数的和为2,共1个,(1,2),(2,1),两数的和为3,共2个,(1,3),(2,2),(3,1),两数的和为4,共3个,(1,4),(2,3),(3,2),(4,1),两数的和为5,共4个…∵1+2+3+4+5+6+7+8+9+10=55,∴第57个数对在第11组之中的第2个数,从而两数之和为12,应为(2,10);故答案为:(2,10).15.(5分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体积是2.【解答】解:由三视图还原原几何体如图,该几何体为五面体ABCDEF,其中面ABCD为等腰梯形,EF∥BC∥AD,EF在平面ABCD上的射影在梯形ABCD的中位线上,分别过E、F作BC、AD的垂线,把原几何体分割为两个四棱锥及一个三棱柱,则几何体的体积V=.故答案为:2.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知α∈(0,π)且cos(α﹣)=.求cosα【解答】解:∵α∈(0,π),∴,又,∴,∴=.17.(12分)已知向量=3i﹣4j,=6i﹣3j,=(5﹣m)i﹣(3+m)j,其中i,j分别是平面直角坐标系内x轴与y轴正方向上的单位向量.(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,求x的取值范围.【解答】解:(1)依题意,以O为坐标原点建立直角坐标系,则A(3,﹣4),B (6,﹣3),C(5﹣m,﹣3﹣m),∵A,B,C能构成三角形,则A、B、C三点不共线,若A、B、C三点共线,则=t⇔(3,1)=t(2﹣m,1﹣m),即,解得;∴当m≠时,A,B,C能构成三角形;(2)∵=(2﹣m,1﹣m),m∈[1,2],∴2=(2﹣m)2+(1﹣m)2=2m2﹣6m+5=2(m﹣)2+,其对称轴为m=,当m∈[1,]时,该函数单调递减,当m∈[,2]时,该函数单调递增,∴当m=1或m=2时,2取得最大值1.∵对任意m∈[1,2],不等式2≤﹣x2+x+3恒成立,∴﹣x2+x+3≥=1,即x2﹣x﹣2≤0,解得:﹣1≤x≤2.∴x的取值范围为[﹣1,2].18.(12分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q=最大?【解答】解:因为,所以…(4分)≥2=,当且仅当v=40时取等号;当v0≥40时,Q≤50,所以v=40,Q max=50…(8分)当0<v0<40时,…(12分)19.(12分)如图,边长为a的正方体ABCD﹣A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离.【解答】解:以DA、DC、DD1所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系如图,则D(0,0,0),A(a,0,0).B(a,a,0),C(0,a,0),E(0,a,),A1(a,0,a).…(3分)(1)设直线A1E与平面BDD1B1所成的角为α.因为AC⊥平面BDD 1B1,所以平面BDD1B1的法向量为,又.,所以s.…(6分)(2)设=(x,y,1)为平面A1DB的法向量,∵,∴x=﹣1,y=1…(8分)∴又…(11分)即点E到平面A1DB的距离为.…(12分)20.(13分)在数列{a n}中,a1=1,a n=n2[1+++…+](n≥2,n∈N)(1)当n≥2时,求证:=(2)求证:(1+)(1+)…(1+)<4.【解答】(1)证明:当n≥2时,,…(1分)所以…(4分)故…(5分)(2)证明:当n≥2时,…(6分)=…(8分)=…(10分)=.…(11分)当n=1时,…(12分)综上所述,对任意n∈N*,不等式都成立.…(13分)21.(14分)已知函数f(x)=(x2+ax﹣2a﹣3)•e3﹣x(a∈R);(1)讨论f(x)的单调性;(2)设g(x)=(a2+)e x(a>0),若存在(a>0),x1,x2∈[0,4]使得|f (x1)﹣g(x2)|<1成立,求a的取值范围.【解答】.解:(1)f'(x)=﹣[x2+(a﹣2)x﹣3a﹣3]e3﹣x=﹣(x﹣3)(x+a+1)e3﹣x由﹣a﹣1=3得a=﹣4,当a=﹣4时,f′(x)=﹣(x﹣3)2e3﹣x≤0,此时函数在(﹣∞,+∞)上为减函数,当a<﹣4时,﹣a﹣1>3,由f'(x)<0⇒x<3或x>﹣a﹣1,f'(x)>0⇒3<x <﹣a﹣1.∴f(x)单调减区间为(﹣∞,3),(﹣a﹣1,+∞),单调增区间为(3,﹣a﹣1).当a>﹣4时,﹣a﹣1<3,f'(x)<0⇒x>3或x<﹣a﹣1,f'(x)>0⇒﹣a﹣1<x<3.∴f(x)单调减区间为(﹣∞,﹣a﹣1),(3,+∞),单调增区间为(﹣a﹣1,3).(2)由(1)知,当a>0时,﹣a﹣1<0,f(x)在区间[0,3]上的单调递增,在区间[3,4)]单调递减,而f(0)=﹣(2a+3)e3<0,f(4)=(2a+13)e﹣1>0,f(3)=a+6.那么f(x)在区间[0,4]上的值域是F=[﹣(2a+3)e3,a+6]又g(x)=(a2+)e x(a>0),在[0,4]上是增函数,对应的值域为G=[a2+,(a2+)e4],∵a>0,∴﹣(2a+3)e3<a+6≤a2+<(a2+)e4,|f(x1)﹣g(x2)|<1等价为g(x2)﹣f(x1)<1若存在(a>0),x1,x2∈[0,4]使得|f(x1)﹣g(x2)|<1成立,只需要g min(x)﹣f max(x)<1,∴a2+﹣a﹣6<1,得4a2﹣4a﹣3<0,得﹣<a<∵a>0,∴0<a<∴a的取值范围为(0,).。
2018年云南省玉溪市高考数学模拟试卷(02)

2018年云南省玉溪市高考数学模拟试卷(02)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若全集U=R,集合,则M∩(∁U N)等于()A.{x|x<﹣2}B.{x|x<﹣2或x≥3}C.{x|x≥3}D.{x|﹣2≤x<3} 2.(5分)与函数y=10lg(x﹣1)的图象相同的函数是()A.y=x﹣1B.y=|x﹣1|C.D.3.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.(5分)在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.5.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()A.只有一个零点B.至少有一个零点C.无零点D.无法判断6.(5分)二次函数f(x)满足f(x+2)=f(﹣x+2),又f(0)=3,f(2)=1,若在[0,m]上有最大值3,最小值1,则m的取值范围是()A.(0,+∞)B.[2,+∞)C.(0,2]D.[2,4]7.(5分)设奇函数f (x )的定义域为R,且f(x+4)=f(x),当x∈[4,6]时f (x)=2x+1,则f (x )在区间[﹣2,0]上的表达式为()A.f(x)=2x+1B.f(x)=﹣2﹣x+4﹣1C.f(x)=2﹣x+4+1D.f(x)=2﹣x+1 8.(5分)正实数x1,x2及函数f(x)满足,且f(x1)+f(x2)=1,则f(x1+x2)的最小值为()A.4B.2C.D.二、填空题:本大题共6小题,每小题5分,满分30分.9.(5分)已知命题P:“对任何x∈R,x2+2x+2>0”的否定是.10.(5分)函数f(x)=+lg(3x+1)的定义域是.11.(5分)设g(x)=,则g(g())=.12.(5分)下列命题:(1)梯形的对角线相等;(2)有些实数是无限不循环小数;(3)有一个实数x,使x2+2x+3=0;(4)x2≠y2⇔x≠y或x≠﹣y;(5)命题“a、b 都是偶数,则a+b是偶数”的逆否命题“若a+b不是偶数,则a、b都不是偶数”;(6)若p或q”为假命题,则“非p且非q”是真命题;(7)已知a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0.其中真命题的序号是.(把符合要求的命题序号都填上)13.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是.14.(5分)函数f(x)的图象与函数g(x)=()x的图象关于直线y=x对称,则f(2x﹣x2)的单调减区间为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.15.(12分)已知函数f(x)=sin2x+sinx•cosx+2cos2x,x∈R(1)求函数f(x)的最小正周期和单调递减区间;(2)函数f(x)的图象可以由函数y=sin2x的图象经过怎样的变换得到?16.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(I)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(Ⅱ)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)17.(14分)如图,棱锥P﹣ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2.(1)求证:BD⊥平面PAC;(2)求二面角P﹣CD﹣B的大小;(3)求点C到平面PBD的距离.18.(14分)已知函数f(x)对任意x,y∈R,满足f(x)+f(y)=f(x+y)+2,当x>0时,f(x)>2.(1)求证:f(x)在R上是增函数;(2)当f(3)=5时,解不等式:f(a2﹣2a﹣2)<3.19.(14分)若函数f(x)对定义域中任意x均满足f(x)+f(2a﹣x)=2b,则函数f(x)的图象关于点(a,b)对称.(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;(2)已知函数g(x)在(﹣∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(﹣∞,0)上的解析式;(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.20.(14分)设M是满足下列条件的函数构成的集合:①方程f(x)﹣x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.(1)若函数f(x)为集合M中的任意一个元素,证明:方程f(x)﹣x=0只有一个实根;(2)判断函数是否是集合M中的元素,并说明理由;(3)设函数f(x)为集合M中的元素,对于定义域中任意α,β,当|α﹣2012|<1,|β﹣2012|<1时,证明:|f(α)﹣f(β)|<2.2018年云南省玉溪市高考数学模拟试卷(02)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若全集U=R,集合,则M∩(∁U N)等于()A.{x|x<﹣2}B.{x|x<﹣2或x≥3}C.{x|x≥3}D.{x|﹣2≤x<3}【解答】解:∵全集U=R,M={x|x>2,或x<﹣2 },N={x|﹣1<x<3},∴C U N={x|x≤﹣1,或x≥3},M∩(C U N)={x|x<﹣2,或x≥3},故选B.2.(5分)与函数y=10lg(x﹣1)的图象相同的函数是()A.y=x﹣1B.y=|x﹣1|C.D.【解答】解:函数y=10lg(x﹣1)的定义域为{x|x>1},且y=x﹣1对于A,它的定义域为R,故错;对于B,它的定义域为R,故错;对于C,它的定义域为{x|x>1},解析式也相同,故正确;。
2018年云南省玉溪市高考数学模拟试卷(04)

2018年云南省玉溪市高考数学模拟试卷(04)一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.(5分)已知i为虚数单位,则复数﹣1+i的模等于()A.B.C.D.22.(5分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i3.(5分)若复数(a2﹣3a+2)+(a﹣1)i是纯虚数,则实数a的值为()A.1 B.2 C.1或2 D.﹣14.(5分)如图,D是△ABC的边AB的中点,则向量等于()A.B.C.D.5.(5分)已知向量=(4,﹣2),向量=(x,5),且∥,那么x的值等于()A.10 B.5 C.D.﹣106.(5分)已知、是两个单位向量,那么下列命题中的真命题是()A.B.C.D.7.(5分)下列各式中,值为的是()A.sin15°cos15° B.cos2﹣sin2C.D.8.(5分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(5分)有以下四个命题:①如果且,那么;②如果,那么或;③△ABC中,如果,那么△ABC是钝角三角形;④△ABC中,如果,那么△ABC为直角三角形.其中正确命题的个数是()A.0 B.1 C.2 D.310.(5分)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=1,φ= B.ω=1,φ=﹣C.ω=2,φ= D.ω=2,φ=﹣二、填空题(本大题共4小题,每小题5分,满分20分.)11.(5分)设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为.12.(5分)已知向量满足与的夹角为60°,则=.13.(5分)已知两个单位向量,的夹角为,若向量=,,则=.14.(5分)已知向量=(1,﹣3),=(4,2),若⊥(+λ),其中λ∈R,则λ=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(12分)已知函数f(x)=4cosxsin(x)﹣1.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.16.(12分)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,那么要满足上述的要求,并且获利最大,甲、乙两车间应当各生产多少箱?17.(14分)已知函数,x∈R,且(1)求A的值;(2)设,,,求cos(α+β)的值.18.(14分)如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.19.(14分)在海岸A处,发现北偏东45°方向,距离A nmile的B处有一艘走私船,在A处北偏西75°的方向,距离A2nmile的C处的缉私船奉命以nmile/h的速度追截走私船,此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜.(1)求线段BC的长度;(2)求∠ACB的大小;水秀中华(参考数值:)(3)问缉私船沿北偏东多少度的方向能最快追上走私船?20.(14分)已知函数f(x)=ax3﹣+1(x∈R),其中a>0.(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若在区间[﹣]上,f(x)>0恒成立,求a的取值范围.2018年云南省玉溪市高考数学模拟试卷(04)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.(5分)已知i为虚数单位,则复数﹣1+i的模等于()A.B.C.D.2【解答】解:.所以,复数﹣1+i的模等于.故选C.2.(5分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i【解答】解:复数===2﹣i故选B.3.(5分)若复数(a2﹣3a+2)+(a﹣1)i是纯虚数,则实数a的值为()A.1 B.2 C.1或2 D.﹣1【解答】解:由a2﹣3a+2=0得a=1或2,且a﹣1≠0得a≠1∴a=2.故选B.4.(5分)如图,D是△ABC的边AB的中点,则向量等于()A.B.C.D.【解答】解:∵D是△ABC的边AB的中点,∴=(+)∵=﹣,∴=(﹣﹣)=﹣+故选:A5.(5分)已知向量=(4,﹣2),向量=(x,5),且∥,那么x的值等于()A.10 B.5 C.D.﹣10【解答】解:∵=(4,﹣2),=(x,5),且∥,∴4×5=﹣2x,解之得x=﹣10故选:D6.(5分)已知、是两个单位向量,那么下列命题中的真命题是()A.B.C.D.【解答】解:根据题意,设θ为、的夹角,据此依次分析选项:对于A、、是两个单位向量,则、的方向不一定相同,则=不一定成立,A错误;对于B、•=||||cosθ,当、不垂直时,•≠0,B错误;对于C、•=||||cosθ=cosθ≤1,C错误;对于D、、是两个单位向量,即||=||,则有2=2,D正确;故选:D.7.(5分)下列各式中,值为的是()A.sin15°cos15° B.cos2﹣sin2C.D.【解答】解:sin15°cos15°=sin30°=,排除A项.cos2﹣sin2=cos=,排除B项.==,排除C项由tan45°=,知选D.故选D8.(5分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(5分)有以下四个命题:①如果且,那么;②如果,那么或;③△ABC中,如果,那么△ABC是钝角三角形;④△ABC中,如果,那么△ABC为直角三角形.其中正确命题的个数是()A.0 B.1 C.2 D.3【解答】解:①∵且,∴,与不一定相等,故①不正确;②∵,∴,或,或,故不正确;③在△ABC中,∵,∴,∴∠ABC是钝角,故△BAC是钝角三角形,因此正确;④在△ABC 中,∵,∴,即AB ⊥BC ,∴∠ABC=90°,∴△ABC 是直角三角形,故正确.综上可知:只有③④正确,即正确命题的个数是2. 故选C .10.(5分)已知函数y=sin (ωx +φ)(ω>0,|φ|<)的部分图象如图所示,则( )A .ω=1,φ=B .ω=1,φ=﹣C .ω=2,φ=D .ω=2,φ=﹣【解答】解:由图象可知:T==π,∴ω=2;(,1)在图象上,所以 2×+φ=,φ=﹣.故选D .二、填空题(本大题共4小题,每小题5分,满分20分.)11.(5分)设复数z 满足(1+i )z=2,其中i 为虚数单位,则z 的虚部为 ﹣1 . 【解答】解:由(1+i )z=2,得:.所以,z 的虚部为﹣1. 故答案为﹣1.12.(5分)已知向量满足与的夹角为60°,则=.【解答】解:根据题意,•=||||cos60°=1,2=||2﹣4•+4||2=13,则2=,故答案为.13.(5分)已知两个单位向量,的夹角为,若向量=,,则=﹣12.【解答】解:由已知可得,=∴=()•()=6=6﹣4×﹣16=﹣12故答案为:﹣1214.(5分)已知向量=(1,﹣3),=(4,2),若⊥(+λ),其中λ∈R,则λ=.【解答】解:∵⊥(+λ),∴•(+λ)=0.∴(1,﹣3)•(4+λ,2﹣3λ)=0,即(4+λ)﹣3(2﹣3λ)=0.解得λ=.故答案为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(12分)已知函数f(x)=4cosxsin(x)﹣1.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.【解答】解:(Ⅰ)∵f(x)=4cosxsin(x+)﹣1,=4cosx(sinx+cosx)﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.16.(12分)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,那么要满足上述的要求,并且获利最大,甲、乙两车间应当各生产多少箱?【解答】解:设甲车间加工原料x箱,乙车间加工原料y箱,…(1分)根据题意,得约束条件…(4分)画出可行域.…(7分)目标函数z=280x+200y,…(8分)即,…(9分)作直线并平移,得直线经过点A(15,55)时z取最大值.…(11分)所以当x=15,y=55时,z取最大值.…(12分)17.(14分)已知函数,x∈R,且(1)求A的值;(2)设,,,求cos(α+β)的值.【解答】解:(1),解得A=2(2),即,即因为,所以,,所以.18.(14分)如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.【解答】解:(1)证明:因为DE⊥EF,CF⊥EF,所以四边形CDEF为矩形,由AD=5,DE=4,得AE=GE==3,由GC=4,CF=4,得BF=FG==4,所以EF=5,在△EFG中,有EF2=GE2+FG2,所以EG⊥GF,又因为CF⊥EF,CF⊥FG,得CF⊥平面EFG,所以CF⊥EG,所以EG⊥平面CFG,即平面DEG⊥平面CFG.(2)解:在平面EGF中,过点G作GH⊥EF于H,则GH==,因为平面CDEF⊥平面EFG,得GH⊥平面CDEF,=16.19.(14分)在海岸A处,发现北偏东45°方向,距离A nmile的B处有一艘走私船,在A处北偏西75°的方向,距离A2nmile的C处的缉私船奉命以nmile/h的速度追截走私船,此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜.(1)求线段BC的长度;(2)求∠ACB的大小;(参考数值:)(3)问缉私船沿北偏东多少度的方向能最快追上走私船?【解答】解:(1)在△ABC中,∠CAB=45°+75°=120°,…(1分)由余弦定理,得BC2=AB2+AC2﹣2AB•ACcos∠CAB…(2分)=+22﹣2×(﹣1)×2×(﹣)=6,…(3分)水秀中华所以,BC=.…(4分)(2)在△ABC中,由正弦定理,得=,所以,sin∠ACB=…(6分)==.…(7分)又∵0°<∠ACB<60°,∴∠ACB=15°.…(8分)(3)设缉私船用th在D处追上走私船,如图,则有CD=10t,BD=10t.在△ABC中,又∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=…(8分)==.…(10分)∴∠BCD=30°,又因为∠ACB=15°…(12分)所以1800﹣(∠BCD+∠ACB+75°)=180°﹣(30°+15°+75°)=60°即缉私船沿北偏东60°方向能最快追上走私船.(14分)20.(14分)已知函数f(x)=ax3﹣+1(x∈R),其中a>0.(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若在区间[﹣]上,f(x)>0恒成立,求a的取值范围.【解答】(Ⅰ)解:当a=1时,f(x)=,∴f(2)=3;水秀中华∵f′(x)=3x2﹣3x,∴f′(2)=6.所以曲线y=f(x)在点(2,f(2))处的切线方程为y﹣3=6(x﹣2),即y=6x﹣9;(Ⅱ)解:f′(x)=3ax2﹣3x=3x(ax﹣1).令f′(x)=0,解得x=0或x=.以下分两种情况讨论:(1)若0<a≤2,则;当x变化时,f′(x),f(x)的变化情况如下表:当时,f(x)>0,等价于即.解不等式组得﹣5<a<5.因此0<a≤2;(2)若a>2,则当x变化时,f′(x),f(x)的变化情况如下表:,当时,f(x)>0等价于即水秀中华解不等式组得或.因此2<a<5.综合(1)和(2),可知a的取值范围为0<a<5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年云南省玉溪市高考数学模拟试卷(05)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)“m=1”是“直线x﹣y=0和直线x+my=0互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为()A.B.C.D.13.(5分)设a=30.5,b=log32,c=cos2,则()A.c<b<a B.c<a<b C.a<b<c D.b<c<a4.(5分)设向量,若,则=()A.﹣3 B.3 C.D.5.(5分)已知集合,集合N={y|y=3x,x>0},则如图所示的韦恩图中阴影部分所表示的集合为()A.(2,+∞)B.[0,1)∪(2,+∞)C.[0,1]∪(2,+∞)D.[0,1]∪[2,+∞)6.(5分)由曲线xy=1,直线y=x,x=3及x轴所围成的曲边四边形的面积为()A.B.C.D.4﹣ln37.(5分)函数y=1﹣2sin2(x+)是()A.最小正周期为π的偶函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为2π的奇函数8.(5分)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行9.(5分)设a<b,函数y=(x﹣a)2(x﹣b)的图象可能是()A.B.C.D.10.(5分)已知不等式组所表示的平面区域为面积等于的三角形,则实数k的值为()A.﹣1 B.﹣ C.D.111.(5分)以双曲线的右焦点为圆心且与双曲线的渐近线相切的圆的方程是()A. B.(x﹣3)2+y2=3 C.=3 D.(x﹣3)2+y2=9 12.(5分)函数f(x)=Asin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位二、填空题:本大题共4个小题,每小题4分,共16分.请把答案填在答题纸的相应位置上.13.(4分)设非零向量满足,则=.14.(4分)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n个图形中小正方形的个数是.15.(4分)已知F是抛物线y=x2的焦点,M、N是该抛物线上的两点,|MF|+|NF|=3,则线段MN的中点到x轴的距离为.16.(4分)已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,给出关于f(x)的下列命题:①函数y=f(x)在x=2取到极小值;②函数f(x)在[0,1]是减函数,在[1,2]是增函数;③当1<a<2时,函数y=f(x)﹣a有4个零点;④如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最小值为0.其中所有正确命题是(写出正确命题的序号).三、解答题:本大题共6个小题,满分74分.解答应写出必要的文字说明、证明过程或演算步骤.请将解答过程写在答题纸的相应位置.17.(12分)△ABC的内角A、B、C所对的边分别为a,b,c,且(I)求角C;(II)求的最大值.18.(12分)在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且.(I)求a n与b n;(II)设,求T n的值.19.(12分)如图,四棱锥P﹣ABCD中,PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,AD∥BC,AB=AD=PB,BC=2AD.点E在棱PA上,且PE=2EA.(I)求证:CD⊥平面PBD;(II)求二面角A﹣BE﹣D的余弦值.20.(12分)小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)21.(12分)已知椭圆(a>b>0)的离心率为、F2分别为椭圆C的左、右焦点,过F2的直线l与C相交于A、B两点,△F1AB的周长为.(I)求椭圆C的方程;(II)若椭圆C上存在点P,使得四边形OAPB为平行四边形,求此时直线l的方程.22.(14分)已知函数f(x)=xlnx+ax(a∈R)(I)若函数f(x)在区间[e2,+∞)上为增函数,求a的取值范围;(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.2018年云南省玉溪市高考数学模拟试卷(05)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)“m=1”是“直线x﹣y=0和直线x+my=0互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当m=1时,两直线的方程分别为x﹣y=0,与x+y=0,可得出此两直线是垂直的;当两直线垂直时1×1+(﹣1)×m=0,可解得,m=1,所以“m=1”可得出“直线x﹣y=0和直线x+my=0互相垂直”,由“直线x﹣y=0和直线x+my=0互相垂直”可得出“m=1”所以“m=1”是“直线x﹣y=0和直线x+my=0互相垂直”的充要条件,故选C2.(5分)如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为()A.B.C.D.1【解答】解:由三视图可知,该几何体是四棱锥,底面为边长为1的正方形,高为1的四棱锥,所以体积为V=×1×1×1=.故选A.3.(5分)设a=30.5,b=log32,c=cos2,则()A.c<b<a B.c<a<b C.a<b<c D.b<c<a【解答】解:∵,0=log31<log32<log33=1,又∵,∴cos2<0,所以c<b<a.故选A.4.(5分)设向量,若,则=()A.﹣3 B.3 C.D.【解答】解:∵=(cosα,﹣1),=(2,sinα),⊥,∴2cosα﹣sinα=0,∴tanα=2.∴tan(α﹣)===.故选C.5.(5分)已知集合,集合N={y|y=3x,x>0},则如图所示的韦恩图中阴影部分所表示的集合为()A.(2,+∞)B.[0,1)∪(2,+∞)C.[0,1]∪(2,+∞)D.[0,1]∪[2,+∞)【解答】解:,N={y|y=3x,x>0}={y|y>1},则阴影部分为{x|x∈M∪N且x∉M∩N},M∪N={x|x≥0},M∩N={x|1<x≤2},所以,即阴影部分为{x|x∈M∪N且x∉M∩N}={x|0≤x≤1或x>2},即[0,1]∪(2,+∞),故选C.6.(5分)由曲线xy=1,直线y=x,x=3及x轴所围成的曲边四边形的面积为()A.B.C.D.4﹣ln3【解答】解:由xy=1得,由得x D=1,所以曲边四边形的面积为:,故选C.7.(5分)函数y=1﹣2sin2(x+)是()A.最小正周期为π的偶函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为2π的奇函数【解答】解:因为函数y=f(x)=1﹣2sin2(x+)=cos2(x+)=﹣sin2x,x∈R;所以函数y=f(x)的最小正周期为T==π,且f(﹣x)=﹣sin2(﹣x)=sin2x=﹣f(x),所以f(x)是定义域R上的奇函数.故选:B.8.(5分)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【解答】解:A、若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面,故A错误;B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行或相交,故B错误;C、设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a,故C 正确;D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,排除D.故选C.9.(5分)设a<b,函数y=(x﹣a)2(x﹣b)的图象可能是()A.B.C.D.【解答】解:由题,=(x﹣a)2的值大于等于0,故当x>b时,y>0,x<b时,y≤0.对照四个选项,C选项中的图符合故选C.10.(5分)已知不等式组所表示的平面区域为面积等于的三角形,则实数k的值为()A.﹣1 B.﹣ C.D.1【解答】解:∵不等式组所表示的平面区域三角形,如图:平面为三角形所以过点(2,0),∵y=kx﹣1,与x轴的交点为(,0),y=kx﹣1与y=﹣x+2的交点为(),三角形的面积为:=,解得:k=1.故选D.11.(5分)以双曲线的右焦点为圆心且与双曲线的渐近线相切的圆的方程是()A. B.(x﹣3)2+y2=3 C.=3 D.(x﹣3)2+y2=9【解答】解:由已知,双曲线中,c2=6+3,c=3,焦点在x轴上,故圆心(3,0),渐近线方程:y=±x,又圆与渐近线相切,∴圆心到渐近线距离即为半径长,r==,∴所求圆的方程为(x﹣3)2+y2=3,故选B.12.(5分)函数f(x)=Asin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【解答】解:由已知中函数f(x)=Asin(ωx+φ)(其中)的图象,过(,0)点,()点,易得:A=1,T=4()=π,即ω=2即f(x)=sin(2x+φ),将()点代入得:+φ=+2kπ,k∈Z又由∴φ=∴f(x)=sin(2x+),设将函数f(x)的图象向左平移a个单位得到函数g(x)=sin2x的图象,则2(x+a)+=2x解得a=﹣故将函数f(x)的图象向右平移个长度单位得到函数g(x)=sin2x的图象,故选A二、填空题:本大题共4个小题,每小题4分,共16分.请把答案填在答题纸的相应位置上.13.(4分)设非零向量满足,则=120°.【解答】解:因为,所以,所以,所以,即,所以,由向量夹角的范围可得.故答案为:120°14.(4分)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n个图形中小正方形的个数是.【解答】解:∵a1=1,a2=3,a3=6,a4=10,∴a2﹣a1=2,a3﹣a2=3,a4﹣a3=4,…a n ﹣a n=n,﹣1等式两边同时累加得a n﹣a1=2+3+…+n,即,所以第n个图形中小正方形的个数是.故答案为15.(4分)已知F是抛物线y=x2的焦点,M、N是该抛物线上的两点,|MF|+|NF|=3,则线段MN的中点到x轴的距离为.【解答】解:抛物线的焦点为(0,),准线为y=﹣,过M,N分别作准线的垂线,则|MM'|=|MF|,|NN'|=|NF|,所以|MM'|+|NN'|=|MF|+|NF|=3,所以中位线|PP′|==,所以中点P到x轴的距离为|PP′|﹣=﹣=.故答案为:.16.(4分)已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,给出关于f(x)的下列命题:①函数y=f(x)在x=2取到极小值;②函数f(x)在[0,1]是减函数,在[1,2]是增函数;③当1<a<2时,函数y=f(x)﹣a有4个零点;④如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最小值为0.其中所有正确命题是①③④(写出正确命题的序号).【解答】解:由图象可知当﹣1<x<0,2<x<4时,f′(x)>0,此时函数单调递增,当0<x<2,4<x<5时,f′(x)<0,此时函数单调递减,所以当x=0或x=4时,函数取得极大值,当x=2时,函数取得极小值.所以①正确.②函数在[0,2]上单调递减,所以②错误.③因为x=0或x=4时,函数取得极大值,当x=2时,函数取得极小值.所以f(0)=2,f(4)=2,f(2)=0,因为f(﹣1)=f(5)=1,所以由函数图象可知当1<a<2时,函数y=f(x)﹣a有4个零点;正确.④因为函数在[﹣1,0]上单调递增,且函数的最大值为2,所以要使当x∈[﹣1,t]时,f(x)的最大值是2,则t≥0即可,所以t的最小值为0,所以④正确.故答案为:①③④.三、解答题:本大题共6个小题,满分74分.解答应写出必要的文字说明、证明过程或演算步骤.请将解答过程写在答题纸的相应位置.17.(12分)△ABC的内角A、B、C所对的边分别为a,b,c,且(I)求角C;(II)求的最大值.【解答】解:(I)∵∴即由余弦定理cosC==∵C∈(0,π)∴(II)由题意可得====2sin(A)∵A∈(0,π)∴∴∴的最大值为218.(12分)在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且.(I)求a n与b n;(II)设,求T n的值.【解答】解(Ⅰ)设等差数列{a n}的公差为d,∵差数列{a n}的前n项和为S n,数列{b n}为等比数列,且,∴,即,解得:.∴a n=a1+(n﹣1)d=3+(n﹣1)•3=3n,.(Ⅱ)T n=a n b1+a n﹣1b2+a n﹣2b3+…+a1b n=3n•1+3(n﹣1)•3+3(n﹣2)•32+…+3×2×3n﹣2+3•3n﹣1=n•3+(n﹣1)•32+(n﹣2)•33+…+2•3n﹣1+3n.∴.∴=(32+33+…+3n+1)﹣3n==.∴.19.(12分)如图,四棱锥P﹣ABCD中,PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,AD∥BC,AB=AD=PB,BC=2AD.点E在棱PA上,且PE=2EA.(I)求证:CD⊥平面PBD;(II)求二面角A﹣BE﹣D的余弦值.【解答】解:(Ⅰ)证明:因为PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,所以AB⊥BC.PB⊥底面ABCD.而CD⊂底面ABCD,所以PB⊥CD.在底面ABCD中,因为∠ABC=∠BAD=90°,AB=AD=BC,所以BD=CD=BC,所以BD⊥CD.又因为PB∩BD=B,所以CD⊥平面PAC(Ⅱ)解:设平面EBD的法向量为=(x,y,1),B(0,0,0),E,,D(1,1,0),则,即,又∵平面ABE的法向量为=(0,1,0),∴cos==.即二面角A﹣BE﹣D的大小的余弦值为.20.(12分)小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)【解答】解:(1)设大货车运输到第x年年底,该车运输累计收入与总支出的差为y万元,则y=25x﹣[6x+x(x﹣1)]﹣50=﹣x2+20x﹣50(0<x≤10,x∈N)由﹣x2+20x﹣50>0,可得10﹣5<x<10+5∵2<10﹣5<3,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入﹣总支出,∴二手车出售后,小张的年平均利润为=19﹣(x+)≤19﹣10=9当且仅当x=5时,等号成立∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.21.(12分)已知椭圆(a>b>0)的离心率为、F2分别为椭圆C的左、右焦点,过F2的直线l与C相交于A、B两点,△F1AB的周长为.(I)求椭圆C的方程;(II)若椭圆C上存在点P,使得四边形OAPB为平行四边形,求此时直线l的方程.【解答】解:(I)∵椭圆离心率为,∴=,∴a=c,又△F1AB周长为4,∴4a=4,解得a=,∴c=1,b=,∴椭圆C的标准方程为:;(II)设点A(x1,y1),B(x2,y2),P(x0,y0),当斜率不存在时,这样的直线不满足题意,∴设直线l的斜率为k,则直线l的方程为:y=k(x﹣1),将直线l的方程代入椭圆方程,整理得:(2+3k2)x2﹣6k2x+3k2﹣6=0,∴x1+x2=,故y1+y2=k(x1+x2)﹣2k=﹣2k=,∵四边形OAPB为平行四边形,∴=+,从而,,又P(x0,y0)在椭圆上,∴,整理得:,12k4+8k2=4+12k2+9k4,3k4﹣4k2﹣4=0,解得k=±,故所求直线l的方程为:y=±(x﹣1).22.(14分)已知函数f(x)=xlnx+ax(a∈R)(I)若函数f(x)在区间[e2,+∞)上为增函数,求a的取值范围;(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.【解答】(Ⅰ)解:由f(x)=xlnx+ax,得:f′(x)=lnx+a+1∵函数f(x)在区间[e2,+∞)上为增函数,∴当x∈[e2,+∞)时f′(x)≥0,即lnx+a+1≥0在区间[e2,+∞)上恒成立,∴a≥﹣1﹣lnx.又当x∈[e2,+∞)时,lnx∈[2,+∞),∴﹣1﹣lnx∈(﹣∞,﹣3].∴a≥﹣3;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,即x•lnx+ax>k(x﹣1)+ax﹣x恒成立,也就是k(x﹣1)<x•lnx+ax﹣ax+x恒成立,∵x∈(1,+∞),∴x﹣1>0.则问题转化为k对任意x∈(1,+∞)恒成立,设函数h(x)=,则,再设m(x)=x﹣lnx﹣2,则.∵x∈(1,+∞),∴m′(x)>0,则m(x)=x﹣lnx﹣2在(1,+∞)上为增函数,∵m(1)=1﹣ln1﹣2=﹣1,m(2)=2﹣ln2﹣2=﹣ln2,m(3)=3﹣ln3﹣2=1﹣ln3<0,m(4)=4﹣ln4﹣2=2﹣ln4>0.∴∃x0∈(3,4),使m(x0)=x0﹣lnx0﹣2=0.∴当x∈(1,x0)时,m(x)<0,h′(x)<0,∴在(1,x0)上递减,x∈(x0,+∞)时,m(x)>0,h′(x)>0,∴在(x0,+∞)上递增,∴h(x)的最小值为h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0+1=x0﹣1,代入函数h(x)=得h(x0)=x0,∵x0∈(3,4),且k<h(x)对任意x∈(1,+∞)恒成立,∴k<h(x)min=x0,∴k≤3,∴k的值为1,2,3.第21页(共21页)。