Mapping High-Resolution Surface Shortwave Net RadiationFrom Landsat Data

合集下载

介绍卫星的英语作文

介绍卫星的英语作文

Satellite: A technological marvel in the skySatellites have become an integral part of our modern lives, orbiting the Earth and performing a wide range of tasks that are crucial for communication, navigation, and weather monitoring. These remarkable technological achievements are not just floating objects in space; they are the backbone of our modern society, connecting usacross vast distances and enabling us to understand our planet better.One of the most significant roles of satellites is in communication. Many of us rely on satellites to stay connected with loved ones, whether it's through phone calls, text messages, or social media. Satellites transmit signals between ground stations, enabling seamless communication across the globe. This technology has transformed the waywe stay in touch, making it possible to stay connected even in remote areas where traditional phone lines or internet cables are not available.Apart from communication, satellites also play acrucial role in navigation. The Global Positioning System (GPS) is a widely used technology that relies on a networkof satellites to determine a person's location accurately. This technology is not just used by individuals but also by businesses, governments, and emergency services to plan routes, track assets, and respond to emergencies.Weather monitoring is another important function of satellites. By observing the Earth from space, satellites can provide valuable data on weather patterns, climate change, and natural disasters. This information is crucial for meteorologists to predict weather conditions and issue warnings to the public, enabling them to prepare for potential hazards.Satellites also play a role in Earth observation, providing high-resolution images of our planet's surface. These images are used for a wide range of applications, including mapping, urban planning, environmental monitoring, and disaster response. Satellites can capture images of remote areas that are difficult to access, providing valuable insights into the state of our planet.The development of satellites has been a remarkablefeat of human engineering. These complex machines must withstand the extreme conditions of space, including thevacuum of space, extreme temperatures, and radiation. The precision and reliability of satellite technology are remarkable, and it is a testament to the dedication and expertise of the engineers and scientists who design and build them.In conclusion, satellites are a remarkable testament to human ingenuity and technology. They play a crucial role in our lives, connecting us across vast distances, enabling us to navigate with precision, and providing us with valuable information about our planet. As technology continues to advance, we can expect satellites to become even more capable and play an even more significant role in our future.**卫星:天空中的科技奇迹**卫星已经成为我们现代生活中不可或缺的一部分,它们环绕地球运行,执行着对于通信、导航和天气监测至关重要的各种任务。

城市水体提取

城市水体提取

文献出处:Remote Sensing
作者:Wei Wu
出版日期:2018.10
Impact Factor:4.118
目录
CONTENTS
1 2 3 4
5
研究背景 研究现状 研究方法 实验结论
方法重现
3
目 录 研究背景
研究背景
4
目 录 研究背景
1. 遥感技术以其面积大、集成度高、速度快、周期短等优点,被广泛应用于地表 水体的圈定的与动态监测中。 2.城市地表水,如河流、水库和池塘,对城市生态系统和局部微气候有重大影响, 及时准确地绘制城市地表水图对于城市规划和灾害评估至关重要。 3.城市地表水体小而窄,测绘需要用高分辨率图像,由于阴影与水在光谱特征上的 相似性,城市水图阴影噪声去除困难。
22
目录
实验结论
实验结论
23
2.水体提取精度分析
按试验地点分列的三种方法的分类准确性摘要。TSUWI:两级城市水指数; NDWI:归一化差水指数;HRWI:高分辨率水指数;SVM:支持向量机
24
2.水体提取精度分析
McNemar对TSUWI与NDWI、HRWI和SVM准确性差异的2项检验摘要
25
3.阈值稳定性分析
UWI、USI、NDWI和HRWI的水像素阈值变化和分布。虚线显示12 个测试点时最佳 阈值的最大值和最小值。“x”符号显示每个站点的最佳阈值。
26
3.阈值稳定性分析
UWI、USI、NDWI和HRWI在接近最佳阈值的12个测试点(a-I)的准确度:(A)广州;(B)阿克苏;(C)成 都;(D)拉萨;(E)南昌;(F)青岛;(G)上海;(H)石加特;(I)福州;(J)哈尔滨;(K)银川;(L)东莞。

超分算法原理

超分算法原理

超分算法原理Super-resolution algorithm is a technique used in digital image processing to enhance the resolution of an image beyond its original quality.超分辨率算法是数字图像处理中的一种技术,用于提高图像的分辨率,使其超出原始质量。

One of the primary principles behind super-resolution algorithms is to use information from multiple low-resolution images to construct a single high-resolution image.超分辨率算法的主要原理之一是利用多个低分辨率图像的信息构建单个高分辨率图像。

By combining the finer details from different low-resolution images, the super-resolution algorithm is able to produce an image with enhanced sharpness and clarity.通过合并不同低分辨率图像中的细节,超分辨率算法能够产生具有增强锐度和清晰度的图像。

There are various approaches to implementing super-resolution algorithms, including interpolation-based methods, reconstruction-based methods, and learning-based methods.实现超分辨率算法的方法有很多种,包括基于插值的方法、基于重建的方法以及基于学习的方法。

Interpolation-based methods involve using mathematical techniques to estimate the missing high-frequency information in a low-resolution image.基于插值的方法涉及使用数学技术来估计低分辨率图像中丢失的高频信息。

(整理)当代摄影测量双语教学词汇表

(整理)当代摄影测量双语教学词汇表

精品文档Glossary of《Introduction to Modern Photogrammetry》《当代摄影测量》双语教学词汇表AAbbe comparator principle阿贝比长原理aberration 像差absolute flying height 绝对航高absolute orientation 绝对定向absorption 吸收access 存取、访问accessory 附件、辅助设备accident error 偶然误差accuracy 精度、准确度accuracy assessment 精度评定acquisition 获取active remote sensing 主动式遥感adaptability 适应性adjustment 平差adjacent 邻接adjacent flight line 相邻航线adjacent area 邻接区域adjoining sheets 邻接图幅aerial camera 航空摄影机aerial photograph 航摄像片aerial photographic gap 航摄漏洞aerial photogrammetry航空摄影测量aerial remote sensing 航空遥感aerophotogrammetry 航空摄影测量aerotriangulation 空中三角测量block triangulation区域网三角测量strip triangulation航带法空中三角测量independent model triangulation独立模型法空中三角测量bundle triangulation光束法空中三角测量affine rectification 仿射纠正affined transformation 仿射变换aggregation 聚合、聚集air base 摄影基线airbone imagery 机载影像airborne sensor 机载传感器alignment 排列成行、对准algebra 代数algorithm 算法allocation 配置altimeter 测高仪altitude 高度、高程ambiguity 模糊、不定性anaglyph 互补色anaglyphical stereoscopic viewing互补色立体观察analog 模拟analog/digital conversion 模数转换analog photogrammetry 模拟摄影测量analytical aerotriangulation解析空中三角测量analytical photogrammetry 解析摄影测量analytical plotter 解析测图仪ancillary data 辅助数据angular field of view 像场角angular momentum 角动量animation 动画annotation 注释、注记annotated photograph 调绘像片aperture 光圈、孔径relative ~ 相对孔径effective ~ 有效孔径approximation 近似值、逼近archive 档案archiving 存档architectural photogrammetry建筑摄影测量archaeological photogrammetry考古摄影测量artificial intelligence 人工智能artificial target 人工标志(点)aspect 方位aspect map 坡向图assessment 评定、估价astigmatism 像散atlas 地图集atmospheric haze 大气蒙雾atmospheric refraction 大气折光atmospheric window 大气窗口atmospheric transmission 大气传输atmospheric transmissivity 大气透过率attenuation 衰减attitude 姿态attitude parameter 姿态参数attribute 属性autocollimation 自准直autocorrelation 自相关automatic triangulation自动空中三角测量azimuth angle 方位角azimuth resolution 方位角分辨率Bbackprojection 逆投影backup 备份ballistic camera 弹道摄影机ballistic photogrammetry弹道摄影测量bandwidth 波段宽barrel 圆筒、桶形失真baseline 基线base-height ratio 基-高比batch process 批处理baud rate 波特率Bayes classification 贝叶斯分类bilinear interpolation 双线性内插binary image 二值影像biomedical photogrammetry生物医学摄影测量biostereometrics 生物立体量测学black-and-white film 黑白片blinking method of stereoscopic viewing 闪闭法立体观察block adjustment 区域网平差blunder detection 粗差探测bulk processing 粗处理bundle of rays 光束boundary 边界breakline 断裂线bridging of models 模型连接brightness 亮度Ccadastral mapping 地籍制图calibration 检校camera calibration 摄影机检校carrier phrase measurement载波相位测量Cartesian coordinates 笛卡尔坐标cartography 地图学characteristic curve of photographic emulsion 感光特性曲线check point 检查点chromatic 彩色的classification 分类classifier 分类器close-range photogrammetry近景摄影测量clustering 聚类cognitive mapping 认知制图collinearity condition 共线条件collinearity equations 共线方程color enhancement 彩色增强color infrared film 彩色红外片color film 彩色片coma 彗星像差combined adjustment 联合平差comparator 坐标量测仪compensation 补偿complementary colors 互补色component 组件、分量compression 压缩computer aided mapping 机助测图computer vision 计算机视觉computer-aided cartography计算机辅助制图condition equations 条件方程confidence 置信度coverage 覆盖conformal 正形的、等角的contact printing 接触晒印content of information 信息量contour lines 等高线contour interval 等高距constraint 约束contrast enhancement 反差增强contrast coefficient 反差系数control point 控制点control photostrip 骨架航线convergent photography 交向摄影convolution operators 卷积算子coordinate grid 坐标格网coordinate system 坐标系photographic coordinate system 像平面坐标系image space coordinate system 像空间坐标系object coordinate system物方坐标系coplanarity equation 共面方程correlation efficient 相关系数corresponding image point 同名像点corresponding image rays 同名光线corresponding epipolar line 同名核线cosine transformation 余弦变换covariance 协方差covariance matrix 协方差矩阵crest 山脊、峰顶cross-section 断面cyberspace 信息空间、赛博空间cycle slip 周跳Ddata acquisitation 数据获取data compression 数据压缩data mining 数据挖掘data snooping 数据探测法data transmission 数据传输data processing 数据处理data warehouse 数据仓库datum 基准deformation 变形densitometer 密度计density slicing 密度分割depression 抑制、衰减depth of field 景深detector 探测器developing 显影diagonal matrix 对角矩阵diaphragm 光圈differential 差分differential method of photogrammetric mapping 分工法测图differential rectification 微分纠正diffraction 衍射diffusion 扩散、漫射digital/analog transform 数/模转换digital correlation 数字相关digital earth 数字地球digital image 数字影像digitizer 数字化器digitization 数字化digitized image 数字化影像digital mapping 数字测图digital mosaic 数字镶嵌digital surface model数字表面模型(DSM)digital terrain model数字高程模型(DTM)digital orthophoto map数字正射影像(DOM)digital orthoimage 数字正射影像digital photogrammetry 数字摄影测量digital raster graphic数字栅格地图(DRG)digital rectification 数字纠正digital tracing table 数控绘图桌dimensional 维one- dimensional一维的two- dimensional 二维的three- dimensional 三维的disparity 不同、差异displacement of image 像点位移distortion of lens 物镜畸变差distribution function 分布函数direct line transformation直接线性变换(DLT)direct scheme of digital rectification直接法纠正direction cosines 方向余弦discrimination 辨别、区分dispersion 分散、散射drainage 水系drawing 绘图drift angle 偏流角dynamic 动态的Eearth curvature 地球曲率earth ellipsoid 地球椭球eccentricity 偏心、偏心率edge detection 边缘检测edge enhancement 边缘增强eigenvalue 特征值eigenvector 特征向量electromagnetic spectrum 电磁波谱elements of interior orientation内方位元素elements of exterior orientation外方位元素elements of relative orientation相对定向元素elements of absolute orientation绝对定向元素elements of rectification 纠正元素emulsion 药膜encoding 编码enhancement 增强entity 实体entropy (信息)熵entropy coding 熵编码environment 环境epipolar line 核线epipolar plane 核面epipolar correlation 核线相关epipolar resampling 核线重采样epipole 核点equalization of histogram 直方图均衡equivalent vertical photograph等效竖直像片equally tilted photography 等倾摄影error circle 误差圆Ethernet 以太网expert system 专家系统ES exposure 曝光exposure station 摄站exponential 指数的exterior orientation 外部定向event 事件Ffalse color film 假彩色片false color photography 假彩色摄影false color composite 假彩色合成feature 特征feature coding 特征编码feature extraction 特征提取feature selection 特征选择fiducial marks 框标mechanical fiducial marks机械框标optical fiducial marks光学框标field curvature像场弯曲field of view 视场filtering 滤波fixing 定影flight block 摄影分区flight height (flying height)航高flight line 摄影航线flight plan of aerial photography航摄计划flight strip 航带flying height 航高absolute ~ 绝对航高relative ~ 相对航高flying trace 航迹floating mark 浮游测标flux 通量、流动focal distance 焦距focal length 焦距focal plane 焦平面format 像幅forward motion compensation (FMC)向前运动补偿Fourier transformation 傅立叶变换fractal 分数维frame camera 框幅式摄影机free net adjustment 自由网平差frequency 频率Fresnel 菲滠耳fuzzy classifier method 模糊分类法fuzzy image 模糊影像GGaussian distribution 高斯分布generalization 综合geodetic origin 大地原点generation 产生geodetic datum 大地基准geodetic database 大地测量数据库geocentric coordinate system地心坐标系geodetic origin 大地原点geodetic datum 大地基准geographic coding 地理编码geoid 大地水准面geomatics 测绘学geometric correction 几何校正geometric rectification 几何纠正geometric registration of image图像几何配准geometric model 几何模型geostationary 地球静止的geo-synchronous satellite 地球同步卫星gnomonic 球心的goniometer 测角器、测向器gradients 梯度graphic 图形的grating 格子、光栅gravity 重力grey level 灰度级grey scale 灰度级grey wedge 光契grid 格网ground nadir point 地底点gross error detection 粗差检测GPS aerotriangulation GPS空中三角测量Gruber point 标准配置点Hheight displacement 投影差high-pass filtering 高通滤波histogram equalization 直方图均衡histogram 直方图histogram specification直方图规格化histogram equalization直方图均衡化hologram photography 全息摄影hologrammetry 全息摄影测量homogeneous 均质的、齐次的homologous image point 同名像点homomorphic filtering 同态滤波horizon camera 地平线摄影机horizontal 水平的、平面的horizontal parallax 左右视差(x-parallax)horizontal parallax difference左右视差较hot spots 热点hough transformation 霍夫变换Huffman 霍夫曼hue 色度hypergraph 超图hypermedia 超媒体hyperspectral 高光谱、超光谱hypertext 超文本hypothesis 假设Iidentified photograph 调绘片index contour 计曲线illuminance of ground 地面照度image,imagery 影像image coding 影像编码image correlation 影像相关image description 影像描述image digitization 影像数字化image enhancement 影像增强image fusion 影像融合image interpretation 影像解译image matching 影像匹配image mosaic 影像镶嵌image motion compensation像移补偿image overlaying 影像复合image pyramids 影像金字塔image quality 影像质量image recognition 影像识别image registration 影像配准image resolution 影像分辨力image restoration 影像复原image motion compensation像移补偿(IMC)image segmentation 图像分割image space coordinate system像空间坐标系image transformation 图像变换image understanding 图像理解imaging equation 构像方程imaging radar 成像雷达imaging spectrometer 成像光谱仪incident angle 入射角independent model aerial triangulation 独立模型法空中三角测量indirect scheme of digital rectification 间接法纠正industrial photogrammetry工业摄影测量inertial measurement unit (IMU)惯性测量装置information extraction 信息提取infrared film 红外片infrared photography 红外摄影infrared remote sensing 红外遥感infrared scanner 红外扫描仪inner 内部的inner orientation 内定向instrument 仪器、设备integration 集成intensity 亮度interactive 交互interest point 兴趣点、有利点interferogram 干涉图interferometry 干涉测量学interior orientation 内部定向interometry SAR 干涉雷达(INSAR)interoperability 互操作interpolation 内插bilinear interpolation 双线性内插nearest-neighbor interpolation邻近像元内插invariant 不变量irradiance 辐射照度isocenter of photograph 像等角点isometric 等角、等值的isometric parallel 等比线iteration method 迭代法iteration method with variable weights选权迭代法intersection 相交inverse matrix 逆矩阵Kkey-in 键盘输入key word 关键字kinematic positioning 动态定位knickpoint 转折点、裂点Llaboratory 实验室Landsat 陆地卫星landform 地形landscape map 景观地图large format camera大像幅摄影机(LFC)latent 潜在的lateral tilt 旁向倾角(roll)lateral overlap(side overlap,side lap)旁向重叠layover 雷达图像移位least squares correlation最小二乘相关leveling of model 模型置平linear array sensor 线阵列传感器linear features 线特征linear transformation 线性变换linearization 线性化logarithmic 对数的longitudinal tilt 航向倾角(pitch)longitudinal overlap(end overlap,forward overlap)航向重叠low-pass 低通Mmagazine 暗盒magnification 放大manual 人工的manuscript map 原图map compilation 地图编辑map legend 图例map projection 地图投影map revision 地图更新mapping satellite 测图卫星marine charting 海洋测绘mathematical expectation 数学期望maximum likelihood classification最大似然分类matrix 矩阵mean square error 中误差measuring mark 测标mechanics 力学median filters 中值滤波器mesh 网、网格metadata 元数据meteosat 气象卫星minimum distance classification最小距离分类metric camera 量测摄影机microwave remote sensing 微波遥感method of least squares 最小二乘法microwave radiation 微波辐射microwave radiometer 微波辐射计modulation transfer function调制传递函数(MTF)moiré莫尔条纹monocomparator 单像坐标量测仪mount 安装、座架mosaic 镶嵌optical mosaic 光学镶嵌digital mosaic 数字镶嵌most probable value 最或然值multicollimator 多投影准直仪multiplex 多倍仪multistage rectification 多级纠正multispectral camera 多光谱摄影机multispectral photography多光谱摄影multispectral remote sensing多光谱遥感multispectral scanner多光谱扫描仪(MSS)multi-temporal analysis 多时相分析multi-temporal remote sensing多时相遥感multiplicity 多重性、相重性Nnadir point 底点navigation 导航negative 负片neighborhood method 邻元法nodal point 节点front nodal point 前节点rear nodal point 后节点neutral network 神经网络nonlinear 非线性的non-metric camera 非量测摄影机non-topographic photogrammetry非地形摄影测量normal case photography 正直摄影normal distribution 正态分布normal equation 法方程式normalization 正交化Ooblique 倾斜的oblique photography 倾斜摄影object space coordinate system物空间坐标系object spectrum characteristics地物波谱特性object oriented 面向对象observation 观测值observation equation 误差方程式occlusion 遮蔽offset 移位off-line 离线、脱机on-line 在线、联机on-line aerial triangulation联机空中三角测量one-dimensional 一维的opacity 不透明的operator 算子optical axis of lens 物镜主光轴optical rectification 光学纠正optical-mechanical rectification光机械学纠正optical projection 光学投影optical transfer function光学传递函数(OTF)orthogonal matrix 正交矩阵orientation elements 方位元素orientation point 定向点orthogonal projection 正射投影orthographic 正射的orthogonal matrix 正交矩阵orthoimage 正射影像orthophoto 正射像片orthophotomap 正射影像地图orthophoto stereomate正射影像立体配对片orthophoto technique 正射影像技术outline map 略图outstanding point 明显地物点overlap 重叠Ppackage 包panchromatic film 全色片panoramic camera 全景摄影机panoramic photography 全景摄影panoramic distortion 全景畸变parallax 视差parallax difference 视差较parallel-averted photography等偏摄影parameter 参数parameter estimation 参数估计pass point 加密点pattern recognition 模式识别perceived model 视模型perigee 近地点perspective center 透视中心phase transfer function相位传递函数(PTF)photogrammetric distortion摄影测量畸变差photogrammetric workstation摄影测量工作站photogrammetry 摄影测量terrestrial ~ 地面摄影测量two-medium ~ 双介质摄影测量biomedical ~ 医学摄影测量photography 摄影学photographic baseline 摄影基线photographic bundle of rays 摄影光束photographic coordinate system摄影测量坐标系photographic interpolation摄影测量内插photographic paper 相纸photographic processing 摄影处理photographic scale 摄影比例尺photo base 像片基线photo coordinate system像平面坐标系photo interpretation 像片判读photo map 像片平面图photo mosaic 像片镶嵌photo nadir point 像底点photoplan 像片平面图photo rectification 像片纠正photo scale 像片比例尺phototheodolite 摄影经纬仪physiological parallax 生理视差picture format 像幅pinhole 小孔(成像)pixel 像元planarity 平面性、平面条件platform 平台platen 压平板、平台plot 平面图、略图plumb line 铅垂线point marking 刺点point transfer 转点point of interest 兴趣点polar 极、极地的polar coordinates 极坐标polarized 极化polarization 极化polygon 多边形polynomial 多项式positive 正片power spectrum 功率谱precision 精密度precision estimation 精度估计prediction 预测、推估prick point 刺点primary color 原色principal component transformation 主分量变换principal distance of photo 像片主距principal distance 主距principal line 像主纵线principal plane 像主垂面principal point 像主点principal point of photograph 像主点principle of geometric reverse几何反转原理printer 印相机prism 棱镜precision estimation 精度估计probable error 或然误差probability 概率论processing 处理bulk processing 粗处理precision processing 精处理product 产品production 生产、产量projection 投影projection center 投影中心projection printing 投影晒印propagation of errors 误差传播protocol 协议prototype 原型pseudo-color image 伪彩色影像pseudo range measurement 伪距测量pushbroom imaging 推扫式成像pyramids 金字塔Qquadtree 四叉树qualitative 定性的quality control 质量控制quantitative 定量的quantizing 量化quantization 量化quantum 量子query 查询、检索Rradargrammetry 雷达图象测量radial distortion 径向畸变radial triangulation 辐射三角测量radiant 辐射的radiation correction 辐射校正radiograph X光照相radiometry 辐射测量radiometric correction 辐射校正radiometer 辐射计random error 随机误差、偶然误差random variable 随机变量raster grid 栅格网raster to vector conversion栅格-矢量转换ratio transformation 比值变换real-aperture radar 真实空径雷达real-time photogrammetry实时摄影测量reconstruction 重建rectifier 纠正仪rectification 纠正affine rectification 仿射纠正reduction 归化redundancy 余redundant information 余信息refinement 改正reflectance spectrum 反射波谱region of target 目标区region of search 搜索区relative flying height 相对航高relative orientation 相对定向relaxation 松池reliability 可靠性relief displacement 投影差resampling 重采样remote sensing 遥感aerial remote sensing 航空遥感space remote sensing 航天遥感remote sensing of resources 资源遥感environmental remote sensing环境遥感geological remote sensing 地质遥感ocean remote sensing 海洋遥感forest remote sensing 森林遥感atmospheric remote sensing大气遥感infrared remote sensing 红外遥感microwave remote sensing 微波遥感multi-spectral remote sensing多光谱遥感active remote sensing 主动遥感passive remote sensing 被动遥感remote sensing platform 遥感平台representation 显示、表达reseaux 网格resection 后方交会residual 残差resolution 分解力、分辨率ground resolution 地面分解力space resolution 空间分辨率temporal resolution 时间分辨率temperature resolution 温度分辨率resolving power of lens 物镜分辨力restitution 测图、成图、复原、恢复restoration 恢复retrieval 检索return beam vidicon camera反束光导(RBV)管摄影机reversal film 反转片roam 漫游rotation matrix 旋转矩阵route 路径Ssampling 采样sampling interval 采样间隔satellite altimetry 卫星测高satellite attitude 卫星姿态satellite-borne sensor 星载遥感器saturation 饱和度scaling of model 模型缩放scanner 扫描仪searching area 搜索区seasat 海洋卫星segmentation 分割self-calibration 自检校semiconductor 半导体semi-metric camera 半量测摄影机sensitivity 感光度sensitometry 感光测定sensitization 感光sensitometry 感光度测定sensitive material 感光材料sensor 传感器sequential 序列的shadow 阴影shutter 快门sidelap 旁向重叠side-looking radar侧视雷达(SLR)similarity 相似、相似性simulation 模拟single image 单张像片singularity 奇异性small format aerial photography小像幅摄影space intersection 空间前方交会space photography 航天摄影space photogrammetry航天摄影测量space remote sensing 航天遥感space resection 空间后方交会Spacelab 空间实验室space shuttle 航天飞机spatial 空间的spatial domain 空间域specification 规范、说明spectral 光谱的spectral sensitivity 光谱感光度spectrograph 摄谱仪spectrometer 波谱测定仪spectroradiometer 光谱辐射仪spectrum character curve波谱特征曲线spectrum response curve波谱响应曲线spectrum feature space 波谱特征空间sphere 球面、球体spline 样条squint 斜视static 静态的stellar camera 恒星摄影机standard deviation 标准差standard error 标准差statistical 统计的statoscope 高差仪stereocamera 立体摄影机stereocomparator 立体坐标量测仪stereometer 立体量测仪stereo pair 立体像对stereo plotter 立体测图仪stereoscope 立体镜bridge-type ~ 桥式立体镜mirror ~ 反光立体镜stereoscopic vision 立体视觉stereoscopic observation 立体观测stereopair 立体像对stereophotogrammetry立体摄影测量stereoscopic model 立体观测模型stop-number 光圈号数stochastic 随机的strips 航线、航带strip aerial triangulation航带法空中三角测量sub pixel 子像素sun-synchronous satellite太阳同步卫星superimposition 叠加supervised classification 监督分类surface model 表面模型survey adjustment 测量平差survey mark 测量标志surveying and mapping 测绘surveying 测量学elementary surveying 普通测量topographic survey 地形测量control surveying 控制测量sweep 扫描swing angle 像片旋角(yaw)symmetry 对称synthetic aperture radar合成空径雷达system integration 系统集成systematic error 系统误差Ttangential distortion 切向畸变target area 目标区template 模板terrestrial camera 地面摄影机terrestrial photogrammetry地面摄影测量texture enhancement 纹理增强texture analysis 纹理分析thematic map 专题地图thematic mapper 专题制图仪(TM)theodolite 经纬仪thermal radiation 热辐射thermal infrared imagery 热红外影像threshold 阈值tie point 连接点tilt angle of photograph 像片倾角tilt displacement 倾斜位移tracing 跟踪transparent negative 透明负片transparent positive 透明正片triangulated irregular network不规则三角网(TIN)triple 三倍的、三重的true-orthophoto 真正射影像two-medium photogrammetry toning 调色topographic map 地形图topology 拓扑toponomastics, toponymy 地名学trainning field 训练区transmittance 透光率translation 平移、移动transparent 透明的transverse 横轴、横向的triangulation 三角测量aerial ~ 空中三角测量analogue aerial ~ 模拟法空三测量analytical aerial ~ 解析法空三测量block ~ 区域网空中三角测量strip ~ 航带法空中三角测量independent model ~独立模型法空中三角测量bundle ~ 光束法空中三角测量trichromatic 三色的Uuncertainty 不确定性underwater camera 水下摄影机under photogrammetry水下摄影测量universal method of photogrammetric unit matrix 单位矩阵unit weight 单位权unsupervised classification非监督分类update 更新urban mapping 城市制图user interface 用户界面mapping 全能法测图Vvanishing point 灭点、合点variance 方差variance-covariance 方差-协方差vectograph method of stereoscopic viewing 偏振光立体观察vector 矢量vectorization 矢量化verifiability 置信度verification 确认vertical 竖直的、高程的vertical exaggeration 高程扩张vertical parallax上下视差(y-parallax)vertical photography 竖直摄影viewpoint 视点virtual reality 虚拟现实visual 目视的visual interpretation 目视判读visualization 可视化voxel 体素Wwavelet 小波wavelength 波长weight 权weight function 权函数weight matrix 权矩阵weighted mean 加权平均数whiskbroom 横扫式workstation 工作站XX-ray photogrammetry X射线摄影测量Yyan angle 航偏角y-tilt 航向倾角Zzenith angle 天顶角zonal rectification 分带纠正zone 带zone generation 区域增长zoom 缩放zoom in 缩小zoom out 放大注:更详细的摄影测量与遥感专业词汇请查阅:1、《英汉测绘词汇》. 测绘出版社2、《测绘学名词》. 测绘出版社, 2002缩写词CAC Computer-aided Cartography 机助地图制图CCD Charge-coupled Device 电荷偶合器件DCBD Digital Cadastral Database 数字地籍数据库DLG Digital Line Graph 数字线划图DRG Digital Raster Graphics 数字栅格图DOQ Digital Orthophoto Quadrangle 数字正射影像图DPW Digital Photogrammetric Workstation摄影测量工作站GLONASS Global Orbiting Navigation Satellite System [俄罗斯]全球轨道导航卫星系统GPS Global Positioning System 全球定位系统ERTS earth resources technology satellite 地球资源卫星ETM Enhancement Thermatic Mapper 增强型专题制图仪HRSC High Resolution Stereo CameraIFOV Instantaneous Field of View 瞬时视场IFSAR Interometry SAR干涉雷达IMU Inertial Measurement Unit 惯性测量装置INS Inertial Navigation System 惯性导航系统ISS Inertial Surveying System 惯性测量系统LIDAR Light Detection and Ranging 激光探测和测距LIS Land Information System 土地信息系统MTF Modulation Transfer Function 调制传递函数NDVI Normalized Difference Vegetative IndexNSDI National Spatial Data Infrastructure 国家空间数据基础设施RMSE root mean square error 均方根差,中误差SAR Synthetic Aperture Radar 合成空径雷达SDI Spatial Data Infrastructure 空间数据基础设施SLAR Side Looking Airborne Radar 侧视雷达WGS84 World Geodetic System for 1984 1984年世界大地坐标系学会、组织名称ACSM American Congress on Surveying and Mapping 美国测绘学会ASPRS American Society for Photogrammetry and Remote Sensing美国摄影测量与遥感学会CSGPC Chinese Society of Geodesy, Photogrammetry and Cartography 中国测绘学会ESA European Space Agency 欧洲空间局FIG Federation International of Geometres 国际测量师联合会ICA International Cartographic Association 国际制图协会ISO International Organization for Standardization 国际标准化组织ISPRS International Society for Photogrammetry and Remote Sensing国际摄影测量与遥感学会IUSM International Union of Surveying and Mapping 国际测量联合会NASA National Aeronautics and Space Administration [美国]国家航空与航天局NASDA National Space Development Agency [日本]国家宇宙开发事业团NGCC National Geomatics Center of China [中国]国家基础地理信息中心。

物探专业术语

物探专业术语

物探专业术语物探专业术语1、观测系统测线上激发点和接收点的相对位置关系。

为了得到能够系统地追踪目的层有效波的地震记录,在野外资料采集时必须适当地安排和选择激发点与接收点的相互位置,即要选择合理的观测系统。

2、二维地震勘探沿着地表的一条直线进行勘测,就能够研究该测线下面不同地层界面的形状和位置,这种勘测方法称为二维地震勘探,相应的观测系统称为2D观测系统。

3、三维地震勘探如果在地表的某一平面内连续地进行观测,就能够最佳地研究该平面下不同地震界面的形状和位置,这种勘测方法称为三维地震勘探,相应的观测系统称为3D观测系统。

4、多次覆盖对界面上某一点进行观测称为采样或覆盖。

若对每个点只观测一次,称为单次覆盖,如观测多次,则称为多次覆盖。

5、覆盖次数对界面上某一点进行观测的次数。

覆盖次数的设计:假如目的层反射波能量强,连续性好,能够可靠地追踪,那么每个反射点只需要勘测一次就足够了。

但是实际情况并非如此,有效反射波总是与各种干扰波重叠干涉。

当勘探深度增大时,由于多次波和散射波相对加强,信噪比变得更低,单次覆盖效果不佳,因此现在广泛采用多次覆盖系统。

基本思路:用一组单次覆盖系统,其中每一种都可以沿侧线连续追踪同一反射界面,当资料处理合适时,反射层应该位于每个地震剖面的相同地段。

6、炸药震源炸药震源是脉冲震源。

炸药在外界的影响下迅速放出气体和高热,形成高压气团而急剧膨胀,在很短的瞬间将冲击力作用于周围物体,即形成所谓的冲击波。

在爆炸中心,物体被粉碎、破坏或产生非弹性形变。

在破坏带及非弹性形变带外,形成岩石的弹性变带,此时冲击波变成弹性波传播出去。

常用的炸药是硝氨炸药。

经验表明,炸药激发的地震振动是衰减很快的似正弦脉冲,脉冲的前缘很陡,能量高度集中。

在均匀介质中爆炸时形成中心对称的膨胀型震源,主要产生纵波。

7、可控震源这是50年代问世的一种新型震源,因为它产生一个延续时间从几秒到几十秒,频率随时间变化的正弦振动,故称为连续振动震源;又因为扫描的频率范围及振动的延续长度都可以事先控制和改变,故称可控震源。

high_definition_和_high_resolution__概述及解释说明

high_definition_和_high_resolution__概述及解释说明

high definition 和high resolution 概述及解释说明1. 引言1.1 概述高清晰度(High Definition)和高分辨率(High Resolution)是在现代科技快速发展的背景下,广泛应用于各个领域的概念。

随着技术的进步,从电视、摄影到计算机显示器等,人们对图像质量和精细度要求越来越高。

高清晰度和高分辨率成为满足这一需求的重要技术指标。

本文旨在全面介绍和解释高清晰度和高分辨率的概念、发展历程、应用领域以及优势,并探讨它们之间的相似之处、区别,以及彼此之间的影响与补充关系。

最后,文章将总结其重要性,并展望未来对于这两个概念在技术发展中可能带来的变化。

1.2 文章结构本文将按照以下章节进行介绍:- 引言:对文章主题进行概述,并简要介绍文章内容和目的。

- 高清晰度(High Definition):定义和解释该概念,回顾其技术发展历程,并探讨其应用领域和优势。

- 高分辨率(High Resolution):给出对该概念的定义和解释,追溯其技术发展历程,并讨论其应用领域和优势。

- 对比与联系:比较高清晰度和高分辨率之间的相似之处和区别,探究它们彼此之间的影响与补充关系。

- 结论:总结高清晰度和高分辨率在各个领域中的重要性,并展望对技术发展可能带来的影响。

1.3 目的本文旨在提供关于高清晰度和高分辨率概念的全面解释和说明。

通过讨论它们的定义、技术发展历程、应用领域和优势,读者将能够更好地理解这两个概念及其在现代科技中的重要性。

同时,文章将进一步比较它们之间的相似之处与区别,探究彼此之间的影响与补充关系,并探讨未来可能出现的趋势。

通过具体实例和详细解释,读者将更加深入地了解这两个概念以及它们对于不同领域的实际应用意义。

2. 高清晰度(High Definition)2.1 定义和解释高清晰度(High Definition,简称HD)是指图像或视频中能够呈现出更多细节和更真实的色彩的特征。

磁共振成像技术中英文名词对照

磁共振成像技术中英文名词对照
AmericanNationalStandardsInstitute
美国国家标准协会
Smearingeffect
涂抹效应
Magnetophosphene
磁致光幻觉
Penetrationpanel
波导板
Rundowneffect
退化效应
Off-resonance
失振
Fullwidthathalf-maximum,FWHM
感兴趣区
Spinecho,SE
自旋回波
Spinecho-echoplanarimaging,SE-EPI
自旋-平面回波成像
SENSitivityencoding,SENSE
敏感度编码
siMultaneousacquisitionofspatialharmony,SMASH
空间协调同步采集
Signal-to-noiseratio,SNR
Centralprocessingunit,CPU
中央处理单元
Touchscreen
触摸屏
Systemsoftware
系统软件
Operatingsystem,OS
操作系统
Applicationsoftware
应用软件
Worklist
工作表
Filetransferprotocal,FTP
文件传输
Send/receive
刺激回波采集模式
ShortTIinversionrecovery,STIR
短反转时间的反转恢复序列
T1-weightedimaging,T1WI
T1加权成像
T2prepared-fastgradientrecalledecho,T2-FGRET2

infoq

infoq

Launch and introductory mission infoMars Reconnaissance Orbiter Artist's concept. Credit: NASA/JPLNASA's Mars Reconnaissance Orbiter, launched in 2005, is searching for evidence that water persisted on the surface of Mars for a long period of time. While other Mars missions have shown that water flowed across the surface in Mars' history, it remains a mystery whether water was ever around long enough to provide a habitat for life.Science goals of the missionMars Reconnaissance Orbiter seeks to obtain science data that will provide researchers with information for locating safe landing sites for future missions and tell researchers about the history of water on Mars. The spacecraft instruments will zoom in for extreme close-up images of the Martian surface in order to analyze minerals, look for subsurface water, trace how much dust and water are distributed in the atmosphere, and monitor daily global weather.These studies will help determine if there are deposits of minerals that form in water over long periods of time, detect any shorelines of ancient seas and lakes, and analyze deposits placed in layers over time by flowing water. It will also be able to tell if the underground ice discovered by the Mars Odyssey orbiter is the top layer of a deep ice deposit, or if it is a shallow layer in equilibrium with the current atmosphere and its seasonal cycle of water vapor.The orbiter's primary mission ends about three Earth years after launch, in November 2008. For details on all mission stages, see the Mission Timeline (NASA).Science InstrumentsDuring its two-year primary science mission, the Mars Reconnaissance Orbiter will conduct eight different science investigations at Mars. The investigations are functionally divided into three purposes: global mapping, regional surveying, and high-resolution targeting of specific spots on the surface.Mars Reconnaissance Orbiter Instruments Artist's concept showing spacecraft instruments monitoring water cycle on Mars. Credit: NASA/JPLHiRISE (High Resolution Imaging Science Experiment) This high-resolution, visible-range camera can reveal small objects in the debris(废墟碎片)blankets (毯子)of mysterious gullies(沟渠)and details of geologic structure of canyons(峡谷), craters(喷火口), and layered deposits (层状矿床).CTX (Context Camera) This camera will provide wide area views to help provide a context for high-resolution analysis of key spots on Mars provided by HiRISE and CRISM.MARCI (Mars Color Imager) This weather camera will monitor clouds and dust storms.CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) This spectrometer covers the range of visible and near-infrared light, useful for identifying minerals, especially those likely formed in the presence of water.MCS (Mars Climate Sounder) This atmospheric profiler will detect vertical variations of temperature, dust, and water vapor concentrations in the Martian atmosphere.SHARAD (Shallow Radar) This sounding radar will probe beneath the Martian surface to see if water ice is present at depths greater than one meter.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mapping High-Resolution Surface Shortwave Net Radiation From Landsat DataDongdong Wang,Shunlin Liang,Fellow,IEEE,and Tao HeAbstract—Maps of high-resolution surface shortwave net radia-tion(SSNR)are important for resolving differences in the surface energy budget at the ecosystem level.The maps can also bridge the gap between existing coarse-resolution SSNR products and point-basedfield measurements.This study presents a modified hybrid method to estimate both instantaneous and daily SSNR from Landsat data.SSNR values are directly linked to Land-sat top-of-atmosphere reflectance by extensive radiative transfer simulation.Regression coefficients are pre-calculated and stored in a look-up table(LUT).Atmospheric water vapor is a key parameter affecting SSNR,and three methods of treating water vapor are evaluated in this parison between Landsat retrievals andfield measurements at six AmeriFlux sites shows that the hybrid method with water vapor as a dimension of LUT can estimate SSNR with a root mean square error of77.5W/m2 (instantaneous)and36.1W/m2(daily).The method of water vapor correction produces similar results.However,a generic LUT that covers all levels of water vapor results in much larger errors.Index Terms—Albedo,daily radiation,Enhanced Thematic Mapper Plus(ETM+),hybrid method,Landsat,net radiation, water vapor correction.I.I NTRODUCTIONS HORTW A VE net radiation at Earth’s surface is the differ-ence between incident shortwave radiation at the surface and shortwave radiation reflected back to the atmosphere by the surface.Surface shortwave net radiation(SSNR)is closely related to the surface(all-wave)net radiation during the day-time[1].Surface net radiation plays essential roles in many land processes(e.g.,evapotranspiration[2]and snow melting [3])and boundary layer weather conditions[4].Hence,efforts have been made to estimate surface net radiation from SSNR e.g.,[5].Meanwhile,estimating SSNR has also become an important research topic[6],[7].SSNR varies temporally and spatially due to differences in solar geometry,atmospheric conditions and underlying surface reflectivity.Current SSNR data are typically available at two scales:point-basedfield measurements at local scales[8]and coarse-resolution products at regional or global scales derived from satellites[9]or data assimilation[10].However,SSNR data at intermediate scales,which are important for character-izing heterogeneous terrestrial features,are simply missing. High-resolution SSNR data are important for resolving dif-ferences in the surface energy budget at the ecosystem level.Manuscript received March2,2013;revised April26,2013;accepted May31,2013.Date of publication June28,2013;date of current version November25,2013.The authors are with the Department of Geographical Sciences,University of Maryland,College Park,MD20742USA(e-mail:ddwang@). Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/LGRS.2013.2266317They can also bridge the gap between existing coarse-resolution SSNR products and point-basedfield measurements and be used to validate coarse-resolution data.Gowda et al.pointed out that existing coarse-resolution data are insufficient for the man-agement of irrigation in agriculture[11].A minor difference in management over similar patches can result in different energy fluxes[12].Differences in surface radiation and energy balance at local scales also have important implications in many bound-ary layer variables,such as wind speed,air temperature,and relative humidity[13].High-resolution data of surface radiation are also needed in the study of heterogeneous urban landscapes [14].The surface roughness and surface energy budget of urban areas are unique and serve important roles in modern atmo-spheric models[15].Nevertheless,the study of urban energy budget is still limited partially due to the availability of spatially explicit data[16].With the time coverage dated back to1980s [17],the Landsat multispectral data record[Thematic Mapper (TM),Enhanced Thematic Mapper Plus(ETM+)]is a valuable data source for mapping SSNR at such high spatial resolution. It is common to estimate SSNR from incident solar radiation and surface albedo data,based on its definition[18]–[20].How-ever,high-resolution products of both incident solar radiation and surface albedo are unavailable.Many studies have used Landsat reflectance and downward radiation calculated from preset atmospheric parameters[13],[21].This type of approach typically works better for clear-sky conditions[22],[23].An-other problem with such albedo-based methods is that each of the two products contains uncertainties.To avoid the possibility of error addition from the two variables,an alternative is to estimate SSNR as one variable.Kim and Liang developed a hy-brid method to retrieve SSNR from Moderate Resolution Imag-ing Spectroradiometer(MODIS)top-of-atmosphere(TOA)and surface reflectance data[7].Their hybrid method estimates SSNR without separating cloudy and clear-sky conditions.Kim and Liang compared their hybrid method with the existing method[6]and found that results improved in terms of reducing both root mean square error(RMSE)and bias[7].This hybrid method also performs well when compared to another method where all inputs are from MODIS high-level products[24]. The method in Kim and Liang[7]is designed for retrieving instantaneous SSNR,and a daily value has to be interpolated approximately from a sinusoidal model[25].In this letter,we modify the hybrid method to estimate SSNR directly from Landsat TOA reflectance by separating clear and cloudy models according to cloud coverage.We also extend the method to derive daily SSNR by assuming a stable atmospheric condition during the daytime.Atmospheric water vapor is a key factor af-fecting SSNR.In addition to the water vapor correction method proposed by Kim and Liang[7],we evaluate two other methods of treating water vapor.A brief summary of our methodology is1545-598X©2013IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission.See /publications_standards/publications/rights/index.html for more information.Fig.1.Model predictability in terms of relative RMSE for three types of sky conditions.Results from the method of generic LUT (WV3)are shown here.given in Section II.Data and results will be in Section III,and the final section is a discussion and some concluding remarks.II.M ETHODOLOGYThe basic idea of hybrid retrieval methods is to link variables of interest to satellite observations through simulation of physi-cal models.Kim and Liang found a strong relationship between SSNR,MODIS surface and TOA reflectance [7].The hybrid retrieval method cannot be applied to Landsat data directly since the surface method is not a standard product of Landsat.Although atmospheric correction of Landsat data is rather mature [26],surface reflectance is available only for clear-sky conditions.It is difficult to interpolate surface reflectance on cloudy days from temporally sparse Landsat data.Therefore,we constructed regression models that link SSNR directly to spectral TOA reflectance.The model is given asS n =c 0+r i •c i (1)where S n is instantaneous SSNR,r i is the Landsat TOAspectral reflectance at Band i (i =1,2,3,4,5,7),c i is the regression coefficient for the band,and c 0is the offset.We build regression models for separate cases of clear-sky or cloudy-sky conditions and mixed cases of all-sky conditions.Our analysis found that SSNR can be estimated more reliably from TOA reflectance if clear-sky and cloudy-sky conditions are separated (see Fig.1in the next section for more details).The regression coefficients are stored in a look-up table (LUT)and depend on solar zenith angle (SZA).Based on the method used for treating water vapor,the coefficients may also depend on water vapor concentration.Kim and Liang derived regression coefficients for one fixed level of water vapor u 0[7].An empirical correction is then applied to adjust the retrieved SSNR to any level of water vapor u .The correction coefficient C w is calculated as [7]C w = a −b lg u c√d cos 2θs +1a −b lg u 0c√d cos 2θs +1(2)where θs is SZA,a ,b ,c ,and d are constants derived from simu-lation,and their values are taken from Kim and Liang’s paper [7].We call this empirical correction method WV1.We also evaluated two other methods that account for atmospheric water vapor:WV2and WV3.In WV2,the concentration of water vapor is used as an additional dimension of LUT.The regressioncoefficients are derived for various levels of water vapor (five inthis letter:0.5,2.0,4.0,6.0,and 12.0g/cm 2).A suitable set of coefficients is selected or interpolated according to the actual value of water vapor.In WV3,there is only one set of generic regression coefficients,and they are based on a simulation of all five levels of water vapor.The generic LUT is supposed to consider the effects of water vapor implicitly.The critical part of developing the hybrid algorithm is radia-tive transfer simulation.MODTRAN 5[27]is used to establish the training data sets in this letter.In our simulation,ten SZA values are used (0◦,15◦,30◦,45◦,55◦,60◦,65◦,70◦,75◦,and 80◦).For each SZA,a database containing 245surface spectra is used as the inputs of surface reflectance.The spectra database is extracted from ASTER [28]and U.S.Geological Survey (USGS)[29]spectral libraries.The atmospheric parameters mainly include information about water vapor and aerosols,for clear-sky cases,or clouds,for cloudy-sky cases.A previous study found that aerosol and cloud type are not the main factors affecting retrieval accuracy [30].One aerosol type (rural)and one cloud type (stratus)is used in this study.Eight aerosol optical depth (AOD)values at 550nm (0.00,0.05,0.10,0.15,0.20,0.40,0.60,and 0.80)and five cloud extinction coefficients (5.0,20.0,50.0,128.0,and 200.0)are used.Elevation is set to the sea level in all the simulations.The normalized elevation coefficients in [7]are used to correct the impacts of elevation on SSNR.Compared with instantaneous SSNR,daily SSNR is more important for the study of daily surface energy budget.To calculate daily SSNR,atmospheric conditions are assumed tobe fairly invariant during the day.Thus,daily SSNR,S dailyn ,can be computed as the integral of instantaneous SSNR,S instn ,over the daytimeS daily n =daytimeS inst n (t )dt.(3)Given latitude and day of year,SZA can be calculated easily forany time of the day,and S instn can be simulated from the radia-tive transfer model for the given SZA.Then,S daily n is obtained through integration for various combinations of latitude,day of year,atmospheric condition and surface condition.Similar to the instantaneous model,the regression models are used to link the TOA reflectance and daily shortwave net radiationS dailyn =c 0+r i •c i .(4)Different from the LUT for instantaneous SSNR,the LUT fordaily SSNR has two more variables as an index,latitude,and day of year.For the purpose of comparison,we also apply the albedo-based method to calculate SSNR for the clear-sky cases.The incoming solar radiation S ↓is calculated using the following equation [23]:S ↓=I 0dcos θs τm (5)where I 0is the solar constant,d is the Sun-Earth distance,τis atmospheric transmittance,and m is a unitless number for air mass.The narrow-to-broadband conversion coefficients [31]are used to calculate surface albedo from Landsat spectral surface reflectance,which is generated by the LEDPAS software [26].WANG et al.:MAPPING HIGH-RESOLUTION SURFACE SHORTWAVE NET RADIATION FROM LANDSAT DATA 461TABLE II NFORMATION OF S IX A MERI F LUX S ITES AND C ORRESPONDINGL ANDSAT D ATA U SED FOR VALIDATIONIII.D ATA AND R ESULTSLandsat 5/TM and Landsat 7/ETM+data from 2003to 2005over six AmeriFlux sites were used in the study (Table I).The Landsat L1T data were downloaded from the U.S.Geological Survey data archive and have been geometrically and radiomet-rically corrected.To ensure the quality of geometric registration and cloud detection,we selected 101scenes with nominal cloud cover less than 30%.The LEDAPS software [26]was applied to each scene to obtain the cloud mask and surface reflectance.In situ measurements at the six AmeriFlux sites were used to validate Landsat SSNR retrievals.Measurements of flux vari-ables are available every 30min.The measurement closest to the Landsat overpass time was chosen to validate instantaneous SSNR.The integrated value on the overpass day was used to validate daily SSNR.For WV1and WV2,the concentration of water vapor is needed to perform water vapor correction or choose suitable regression coefficients from the LUT.The daily North American Regional Reanalysis (NARR)data of total precipitable water produced by National Centers for En-vironmental Prediction (NCEP)were used in this study [32].For each method of handling water vapor,the clear-sky and cloudy-sky models were constructed separately.When the cloud mask was available,a model was chosen according to whether cloud was present.We also generated regression coefficients for all-sky conditions.When the cloud mask was unavailable,the all-sky model was used.Fig.1compares the uncertainties of the regression models under various sky conditions.All models have increased errors with an increase in SZA.However,for the cloudy-sky cases,the change of relative error with SZA is very small.When SZA is small,the relative RMSE (root mean square relative error)of the clear-sky model is much smaller than that of the cloudy-sky model.This feature is expected because surface information is limited when cloud is present.An increase in SZA creates longer atmospheric scattering paths,which lead to larger errors in the clear-sky model.When SZA is greater than 65◦,the clear-sky model produces an even larger error than the cloud-sky pared with the clear-sky or cloudy-sky model,the all-sky model has a much larger error.When the cloud mask is available,it is better to use the separate model of clear-sky or cloudy-sky instead of the mixed all-sky model.Fig.2shows the predictability of the clear-sky models with various methods of treating water vapor.For all models,un-certainties increase with SZA.One generic group of regression coefficients for all levels of water vapor (WV3)producestheFig.2.Model predictability in terms of relative RMSE for clear-sky models with various methods to treat the atmospheric water vapor.Results from WV2at three concentrations (0.5,2.0,and 6.0g/cm 2)of water vapor and WV3are shown here.TABLE IIS UMMARY OF V ALIDATION R ESULTS OF I NSTANTANEOUS AND D AILY SSNR.RMSE AND B IAS A RE IN THE U NIT OF W/m 2.T HE N UMBERS IN P ARENTHESES A RE R ELATIVE RMSE (R OOT M EAN S QUARE R ELATIVEE RROR )OR R ELATIVE B IAS (M EAN OF R ELATIVE D IFFERENCE)largest error.When water vapor concentration is known (WV2),the models have similar but much smaller RMSE values,and RMSE slightly increases as the concentration of water vapor increases.The validation results of instantaneous and daily SSNR retrievals are given in Table II and Fig.3.A total of 382pixels from year 2003to 2005covering the six AmeriFlux sites were extracted from the downloaded Landsat images.Instantaneous SSNR retrievals from the method using water vapor as additional dimension of LUT (WV2)have an RMSE of 77.5W/m 2(Fig.3).The majority of retrieved SSNR results are close to the 1:1line.Retrievals with large differences exist for both clear-sky and cloudy-sky conditions.One reason is that clear pixels on Landsat images may be blocked by a cloud,and vice versa,because of the relative location of cloud,sun and sensor in space (Fig.4).The RMSE of retrieving daily SSNR is 36.1W/m 2.The relative RMSE of daily retrievals (21.5%)is slightly larger than that of instantaneous SSNR (16.2%).The daily algorithm assumes the stability of atmospheric conditions.However,clear pixels are not always sunny and cloudy pixels are not always overcast during an entire day.This also explains why large overestimation exists for some clear pixels,and large underestimation exists for some cloudy pixels.With regard to the different methods of treating water vapor,WV1and WV2,which rely on the external information of water vapor,have smaller RMSE (Table II).The generic LUT for all levels of water vapor (WV3)produces an RMSE as large as 101.4W/m 2for instantaneous SSNR.In terms of daily SSNR,the results of WV3are similar to those from the other two methods.We compared the hybrid method with the albedo-based method for the clear-sky cases (Table III).Two numbers of transmittance were tested in the albedo-based method.The value of 0.7from [23]leads to a large underestimation of SSNR (−20.4%)in our test.We then increase transmittance to 0.75,which represents a very clear atmosphere [23].This mitigates the problem of underestimation,but the accuracy of the albedo462IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,VOL.11,NO.2,FEBRUARY2014Fig. parison between instantaneous and daily SSNR retrievals (in W/m 2)from WV2(using water vapor as an additional dimension of LUT)and in situ measurements at six AmeriFlux sites.Numbers in parentheses are counts ofobservations.Fig.4.Illustration of view geometry among sun,cloud and sensor,which may cause large errors in retrieving SSNR for clear pixels (a)and cloudy pixels (b)on the Landsat images.TABLE IIIC OMPARISON B ETWEEN THE H YBRID M ETHOD (WV2)AND THE A LBEDO -B ASED M ETHOD FOR E STIMATING I NSTANTANEOUSSSNR U NDER THE C LEAR -S KY CONDITIONSbased method is still worse than that of the hybrid method,in terms of both RMSE and bias.The mapping ability of the presented method is demonstrated in Fig.5.Maps of instantaneous and daily SSNR were gen-erated from one Landsat 5TM scene.The SSNR maps agree well with the color composite image.The dark targets (water,dense vegetation)have larger SSNR values due to smallalbedo,Fig.5.Color composite (Band 3,2,1)of the Landsat 5/TM scene (path 25,row28)acquired on 08/22/2005and the derived maps of instantaneous and daily SSNR (W/m 2).Fig. 6.Spectral response functions of Landsat5/TM reflective bands (Bands 1–5and 7)and downward solar radiation at two concentrations of atmospheric water vapor (0.5and 6.0g/cm 2).whereas the cloudy pixels show smaller SSNR values because of the small amount of incident solar radiation.IV .D ISCUSSIONTo map high-resolution SSNR from Landsat data,this letter modifies the hybrid method proposed by Kim and Liang [7]by directly linking SSNR to Landsat TOA spectral reflectance.The method is extended further to estimate daily SSNR by assuming stable atmospheric conditions within the daytime.Validation re-sults show that the presented method can estimate instantaneous and daily SSNR accurately.RMSE of instantaneous SSNR is 77.5W/m 2,smaller than the error Kim and Liang obtained from MODIS 1km data (93.8W/m 2)[7].RMSE of daily-integrated SSNR in [7]is 3.5MJ/m 2,equivalent to daily mean SSNR of 41.0W/m 2,larger than our error (36.1W/m 2).This improvement can be attributed partially to the finer resolution of the Landsat data,which provides a better match to field measurements.Atmospheric water vapor affects SSNR by regulating the total amount and spectral distribution of shortwave radiation.Water vapor information is needed for accurately estimating SSNR.This letter evaluates three methods of treating water vapor.The inclusion of an external source of water vapor generally produces higher accuracy.The WV3method,which employs a generic LUT to estimate SSNR without the input of water vapor,has the largest error.This result may occur because the six Landsat bands are all in the atmospheric window and carry little information about water vapor (Fig.6).At the Landsat scale,topography is an important factor affecting SSNR.The effects of elevation are corrected using the empirical method proposed by [7].In addition to elevation,slope and azimuth of rugged terrain greatly affect SSNR by changing incoming radiation and surface albedo [33].The incoming radiation changes not only because of the change of incident angle but also due to the variation of diffuse and terrainWANG et al.:MAPPING HIGH-RESOLUTION SURFACE SHORTWAVE NET RADIATION FROM LANDSAT DATA463irradiance[34].Such effects are not well handled by the pre-sented hybrid method.On the contrary,albedo-based methods are able to take the variation of slope and azimuth into account, with the parameterization of incoming radiation[35],[36]. The mismatch between clouds observed from the ground and clouds on a Landsat image(as illustrated in Fig.4)is another major source of error in retrieving SSNR at a30m resolution. The presented method will treat pixels in a cloud shadow as either a dark surface(in clear-sky models)or a thin cloud(in cloudy-sky models).SSNR will be overestimated in either case. For cloudy pixels that are lit by the sun due to a slanted incident path,SSNR will be underestimated.Further study is needed to fully address this issue.R EFERENCES[1]K.Z.Kaminsky and R.Dubayah,“Estimation of surface net radiation inthe boreal forest and northern prairie from shortwaveflux measurements,”J.Geophys.Res.,Atmos.,vol.102,no.D24,pp.29707–29716,Dec.1997.[2]W.P.Kustas and J.M.Norman,“Use of remote sensing for evapotranspi-ration monitoring over land surfaces,”Hydrolog.Sci.J.,Sci.Hydrolog., vol.41,no.4,pp.495–516,Aug.1996.[3]D.Marks and J.Dozier,“Climate and energy exchange at the snow sufacein the Alpine region of the Sierra-Nevada.2.Snow cover energy balance,”Water Resour.Res.,vol.28,no.11,pp.3043–3054,Nov.1992.[4]A.K.Betts,J.H.Ball,A.C.M.Beljaars,ler,and P.A.Viterbo,“The land surface-atmosphere interaction:A review based on ob-servational and global modeling perspectives,”J.Geophys.Res.,Atmos., vol.101,no.D3,pp.7209–7225,Mar.1996.[5]J.H.Kjaersgaard,R.H.Cuenca,F.L.Plauborg,and S.Hansen,“Long-term comparisons of net radiation calculation schemes,”Boundary-Layer Meteorol.,vol.123,no.3,pp.417–431,Jun.2007.[6]B.H.Tang,Z.-L.Li,and R.Zhang,“A direct method for estimating netsurface shortwave radiation from MODIS data,”Remote Sens.Environ., vol.103,no.1,pp.115–126,Jul.2006.[7]H.Y.Kim and S.Liang,“Development of a hybrid method for estimatingland surface shortwave net radiation from MODIS data,”Remote Sens.Environ.,vol.114,no.11,pp.2393–2402,Nov.2010.[8]D.Baldocchi,E.Falge,L.Gu,R.Olson,D.Hollinger,S.Running,P.Anthoni,C.Bernhofer,K.Davis,R.Evans,J.Fuentes,A.Goldstein,G.Katul,w,X.Lee,Y.Malhi,T.Meyers,W.Munger,W.Oechel,K.T.Paw,K.Pilegaard,H.P.Schmid,R.Valentini,S.Verma,T.Vesala, K.Wilson,and S.Wofsy,“FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor, and energyflux densities,”Bull.Amer.Meteorol.Soc.,vol.82,no.11, pp.2415–2434,Nov.2001.[9]Y.C.Zhang,W.B.Rossow,cis,V.Oinas,and M.I.Mishchenko,“Calculation of radiativefluxes from the surface to top of atmosphere based on ISCCP and other global data sets:Refinements of the radiative transfer model and the input data,”J.Geophys.Res.,Atmos.,vol.109, no.D19,p.D19105,Oct.2004.[10]M.M.Rienecker,M.J.Suarez,R.Gelaro,R.Todling,J.Bacmeister,E.Liu,M.G.Bosilovich,S.D.Schubert,L.Takacs,G.-K.Kim,S.Bloom,J.Chen,D.Collins,A.Conaty,A.da Silva,W.Gu,J.Joiner,R.D.Koster, R.Lucchesi,A.Molod,T.Owens,S.Pawson,P.Pegion,C.R.Redder, R.Reichle,F.R.Robertson,A.G.Ruddick,M.Sienkiewicz,and J.Woollen,“MERRA:NASA’s Modern-era retrospective analysis for research and applications,”J.Climate,vol.24,no.14,pp.3624–3648,Jul.2011. [11]P.H.Gowda,P.Colaizzi,S.Evett,T.Howell,and J.Tolk,“Remotesensing based energy balance algorithms for mapping ET:Current status and future challenges,”Trans.ASABE,vol.50,no.5,pp.1639–1644, Sep./Oct.2007.[12]H.M.Jiang,S.Liu,and H.Liu,“A study on energy budget characteristicsover a heterogeneously irrigated cottonfield,”Chin.J.Geophys.,vol.55, no.2,pp.428–440,Feb.2012.[13]W.Q.Ma,Y.Ma,M.Li,Z.Hu,L.Zhong,Z.Su,H.Ishikawa,andJ.Wang,“Estimating surfacefluxes over the North Tibetan Plateau area with ASTER imagery,”Hydrol.Earth Syst.Sci.,vol.13,no.1,pp.57–67, Jan.2009.[14]A.Christen and R.V ogt,“Energy and radiation balance of a centralEuropean city,”Int.J.Climatol.,vol.24,no.11,pp.1395–1421,Sep.2004.[15]A.Martilli, A.Clappier,and M.W.Rotach,“An urban surfaceexchange parameterisation for mesoscale models,”Boundary-Layer Meteorol.,vol.104,no.2,pp.261–304,Aug.2002.[16]Q.Weng,“Thermal infrared remote sensing for urban climate andenvironmental studies:Methods,applications,and trends,”ISPRS J.Photogramm.Remote Sens.,vol.64,no.4,pp.335–344,Jul.2009. [17]J.C.Ju and D.P.Roy,“The availability of cloud-free Landsat ETM plusdata over the conterminous United States and globally,”Remote Sens.Environ.,vol.112,no.3,pp.1196–1211,Mar.2008.[18]G.Cai,Y.Xue,Y.Hu,J.Guo,Y.Wang,and S.Qi,“Quantitative study ofnet radiation from MODIS data in the lower boundary layer in Poyang Lake area of Jiangxi Province,China,”Int.J.Remote Sens.,vol.28, no.19,pp.4381–4389,Sep.2007.[19]J.Zhou,D.Hu,and Q.Weng,“Analysis of surface radiation budgetduring the summer and winter in the metropolitan area of Beijing,China,”J.Appl.Remote Sens.,vol.4,no.1,p.043513,Mar9,2010.[20]C.M.Frey,G.Rigo,and E.Parlow,“Urban radiation balance of twocoastal cities in a hot and dry environment,”Int.J.Remote Sens.,vol.28, no.12,pp.2695–2712,Jun.2007.[21]G.Rigo and E.Parlow,“Modelling the ground heatflux of an urbanarea using remote sensing data,”Theor.Appl.Climatol.,vol.90,no.3/4, pp.185–199,Nov.2007.[22]G.Bisht,V.Venturini,S.Islam,and L.Jiang,“Estimation of the net ra-diation using MODIS(Moderate Resolution Imaging Spectroradiometer) data for clear sky days,”Remote Sens.Environ.,vol.97,no.1,pp.52–67, Jul.2005.[23]D.Long,Y.Gao,and V.P.Singh,“Estimation of daily average netradiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days,”J.Hydrol.,vol.388,no.3/4,pp.217–233,Jul.15,2010.[24]G.Huang,S.Liu,and S.Liang,“Estimation of net surface shortwaveradiation from MODIS data,”Int.J.Remote Sens.,vol.33,no.3,pp.804–825,Feb.2012.[25]D.Wang,S.Liang,R.Liu,and T.Zheng,“Estimation of daily-integratedPAR from sparse satellite observations:Comparison of temporal scal-ing methods,”Int.J.Remote Sens.,vol.31,no.6,pp.1661–1677, Mar.2010.[26]J.G.Masek, E. F.Vermote,N. E.Saleous,R.Wolfe, F.G.Hall,K.F.Huemmrich,F.Gao,J.Kutler,and T.-K.Lim,“A Landsat surface reflectance dataset for North America,1990–2000,”IEEE Geosci.Remote Sens.Lett.,vol.3,no.1,pp.68–72,Jan.2006.[27]A.Berk,G.P.Anderson,P.K.Acharya,L.S.Bernstein,L.Muratov,J.Lee,M.Fox,S.M.Adler-Golden,J.H.Chetwynd,M.L.Hoke, R.B.Lockwood,J.A.Gardner,T.W.Cooley,C.C.Borel,and P.E.Lewis,“MODTRAN5:A reformulated atmospheric band model with auxiliary species and practical multiple scattering options,”in Proc.SPIE,2004, p.5571.[28]A.M.Baldridge,S.J.Hook,C.I.Grove,and G.Rivera,“The ASTERspectral library version2.0,”Remote Sens.Environ.,vol.113,no.4, pp.711–715,Apr.15,2009.[29]R.N.Clark,G.A.Swayze,R.Wise,E.Livo,T.Hoefen,R.Kokaly,andS.J.Sutley,USGS Digital Spectral Library Splib06a.Denver,CO,USA: U.S.Geological Survey,2007.[30]S.Liang,T.Zheng,R.Liu,H.Fang,S.-C.Tsay,and S.Running,“Es-timation of incident photosynthetically active radiation from moderate resolution imaging spectrometer data,”J.Geophys.Res.,Atmos.,vol.111, no.D15,p.D15208,Aug.2006.[31]S.L.Liang,“Narrowband to broadband conversions of land surfacealbedo I Algorithms,”Remote Sens.Environ.,vol.76,no.2,pp.213–238, May2001.[32]F.Mesinger,G.DiMego, E.Kalnay,K.Mitchell,P. C.Shafran,W.Ebisuzaki,D.Jovi´c,J.Woollen,E.Rogers,E.H.Berbery,M.B.Ek, Y.Fan,R.Grumbine,W.Higgins,H.Li,Y.Lin,G.Manikin,D.Parrish, and W.Shi,“North American regional reanalysis,”Bull.Amer.Meteorol.Soc.,vol.87,no.3,pp.343–360,Mar.2006.[33]J.D.Shepherd and J.R.Dymond,“Correcting satellite imagery for thevariance of reflectance and illumination with topography,”Int.J.Remote Sens.,vol.24,no.17,pp.3503–3514,Jan.2003.[34]S.Sandmeier and K.I.Itten,“A physically-based model to correct at-mospheric and illumination effects in optical satellite data of rugged terrain,”IEEE Trans.Geosci.Remote Sens.,vol.35,no.3,pp.708–717, May1997.[35]Y.Gao,D.Long,and Z.-L.Li,“Estimation of daily actual evapotranspi-ration from remotely sensed data under complex terrain over the upper Chao river basin in North China,”Int.J.Remote Sens.,vol.29,no.11, pp.3295–3315,Jun.2008.[36]W.Wu,C.A.S.Hall,F.N.Scatena,and L.J.Quackenbush,“Spatialmodelling of evapotranspiration in the Luquillo experimental forest of Puerto Rico using remotely-sensed data,”J.Hydrol.,vol.328,no.3/4, pp.733–752,Sep.15,2006.。

相关文档
最新文档