精选2019年数学高考第一轮复习模拟题库(含答案)
精选2019年数学高考第一轮复习完整版考核题库(含答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+(2012天津文)2.曲线=xy e 在点A (0,1)处得切线斜率为( ) A .1 B .2 C .e D .1e(2011江西文4) 3.由直线0,3,3==-=y x x ππ与曲线x y cos =所围成的封闭图形的面积为A.21B. 1C. 23D. 3二、填空题4.一份试卷有10个题目,分为,A B 两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有 ▲ 种不同的选答方法.5.已知空间中两点P 1(x ,2,3)和P 2(5,x +3,7)间的距离为6,则x= .6.某小卖部为了了解冰糕销售量y(箱)与气温x(C ︒)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如左所示):由表中数据算得线性回归方程a bx y+=ˆ中的2-≈b ,预测当气温为25C ︒时, 冰糕销量为 杯.分析:线性回归方程a bx y+=ˆ恒过(,)x y ,由表中算得(,)x y =(10,40)代入回归方程,可得a =60,即ˆ260yx =-+,将5x =-代入回归方程,得ˆy =70. 7.已知225,xx-+= 则88x x -+=8.如果在今后若干年内我国国民经济生产总值都保持年平均9%的增长率,则要达到国民经济生产总值比2006年翻两番的年份大约是___.(0374.2109lg ,4771.03lg ,3010.02lg ===)9.已知函数))(2(log )(1*+∈+=N n n n f n ,定义使)()2()1(k f f f ⋅⋅⋅⋅为整数的数)(*∈N k k 叫做企盼数,则在区间[1,2009]内这样的企盼数共有 ▲ 个.10.已知直线,a b 相交于点P 夹角为60,过点P 作直线,又知该直线与,a b 的夹角均为60,这样的直线可作______条11.已知直线l m αβ⊥⊂平面,直线平面,有下列命题:;l m αβ①若∥,则⊥②若αβ∥,则l ∥m ;,,l m l m αβαβ③若∥则⊥;④若⊥则∥。
2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练

2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练1.[xx·洛阳模拟]下列各数中与sinxx°的值最接近的是( ) A.12 B.32 C .-12D .-32答案 C解析 xx°=5×360°+180°+39°, ∴sinxx°=-sin39°和-sin30°接近.选C.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3 答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.[xx·华师附中月考]已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝ ⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35 D .-35答案 B解析 tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 4.已知f (α)=π-απ-α-π-αα,则f ⎝⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13答案 C解析 ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3=-cos π3=-12. 5.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为( )A.13 B .-13C .-223D.223答案 B解析 cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎝ ⎛⎭⎪⎫π2+α+π12=-sin ⎝ ⎛⎭⎪⎫α+π12=-13.选B. 6.已知tan x =2,则sin 2x +1的值为( ) A .0 B.95 C.43 D.53答案 B解析 sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.故选B. 7.[xx·福建泉州模拟]已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12 B .-12C .2D .-2答案 A解析 因为1-sin 2α=cos 2α,cos α≠0,1-sin α≠0,所以(1+sin α)(1-sin α)=cos αcos α,所以1+sin αcos α=cos α1-sin α,所以cos α1-sin α=-12,即cos αsin α-1=12.故选A.8.已知角α的终边上一点P (3a,4a )(a <0),则cos ()540°-α的值是________.答案 35解析 c os(540°-α)=cos(180°-α)=-cos α.因为a <0,所以r =-5a ,所以cos α=-35,所以cos(540°-α)=-cos α=35.9.[xx·北京东城模拟]已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.答案 -125解析 解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213(舍).故tan θ=-125.10.[xx·淮北模拟]sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________. 答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝⎛⎭⎪⎫π-π6·tan ( -π-π3 )= ⎝⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 1.[xx·湖北荆州联考]若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0,sin B -cos A >0, ∴点P 在第二象限.选B.2.[xx·新乡模拟]若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin θcos θ=3716,则sin θ=( )A.35 B.45 C.74D.34答案 D解析 ∵sin θcos θ=3716,∴(sin θ+cos θ)2=1+2sin θcos θ=8+378,(sin θ-cos θ)2=1-2sin θcos θ=8-378,∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴sin θ+cos θ=3+74 ①,sin θ-cos θ=3-74 ②,联立①②得,sin θ=34.3.已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角,所以75°+α是第四象限角, sin(75°+α)=-1-cos2+α=-1213.所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713.4.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°. 解 原式=-sin1200°·cos1290°+cos1020°·(-sin1050°)+tan 945° =-sin120°·cos210°+cos300°·(-sin330°)+tan225° =(-sin60°)·(-cos30°)+cos60°·sin30°+tan45°=32×32+12×12+1=2. 5.[xx·南京检测]已知f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α.(1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解 (1)f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α=sin αcos α-sin αsin αsin α=-cos α.(2)因为α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=-sin α=15,sin α=-15.所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f (α)=-cos α=265.2019年高考数学一轮复习第一章集合与常用逻辑用语 1.3 简单的逻辑联结词、全称量词与存在量词讲义分析解读江苏高考近五年没有考查本部分知识,在复习时主要要理解逻辑联结词“或”“且”“非”的含义,会写含有全称量词与存在量词的命题的否定.五年高考考点一简单的逻辑联结词(xx湖南改编,5,5分)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(填序号).答案②③考点二全称量词与存在量词1.(xx课标Ⅰ改编,3,5分)设命题p:∃n∈N,n2>2n,则¬p为.答案∀n∈N,n2≤2n2.(xx山东,12,5分)若“∀x∈,tan x≤m”是真命题,则实数m的最小值为.答案 13.(xx重庆理改编,2,5分)命题“对任意x∈R,都有x2≥0”的否定为.答案存在x0∈R,使得<04.(xx四川理改编,4,5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则¬p 为.答案∃x∈A,2x∉B三年模拟A组xx模拟·基础题组考点一简单的逻辑联结词1.(苏教选2—1,一,2,变式)若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是.①p且q;②p或q;③ ;④p且q.答案②2.(苏教选2—1,一,2,变式)若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是. 答案p假q假3.(苏教选2—1,一,2,变式)对于命题p、q,若p且q为真命题,则下列四个命题:①p或q是真命题;②p且q是真命题;③p且q是假命题;④p或q是假命题.其中真命题是.答案①③考点二全称量词与存在量词4.(xx江苏南通中学测试)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)5.(xx江苏南京溧水中学质检,2)命题“∀x∈R,x2+2x+5>0”的否定是.答案∃x0∈R,+2x0+5≤06.(xx江苏苏州期中,2)若命题p:∃x∈R,使x2+ax+1<0,则p: .答案∀x∈R,x2+ax+1≥0B组xx模拟·提升题组(满分:30分时间:15分钟)一、填空题(每小题5分,共15分)1.(xx江苏南京师大附中期初调研,8)已知命题p:∃x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是.答案(-∞,1]2.(xx江苏前黄中学第二次学情调研,8)已知下列四个命题,其中真命题的序号是(把所有真命题的序号都填上).(1)命题“∃x∈R,x2+x+1>0”的否定是“∀x∈R,x2+x+1<0”;(2)命题“在△ABC中,若A>B,则sin A>sin B”的逆命题为真命题;(3)“f '(x0)=0”是“函数f(x)在x=x0处取得极值”的充分不必要条件;(4)直线y=x+b不能作为函数f(x)=图象的切线.答案(2)(4)3.(xx江苏泰州一模,5)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)二、解答题(共15分)4.(xx江苏盐城期中,15)设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足<0.(1)若a=1,且p∨q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.解析(1)由x2-4ax+3a2<0,得(x-3a)(x-a)<0,因为a>0,所以a<x<3a,当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3.<0等价于(x-2)(x-3)<0,解得2<x<3,即q为真时,实数x的取值范围是2<x<3.若p∨q为真,则实数x的取值范围是1<x<3.(2)p是q的必要不充分条件等价于q⇒p且p⇒/ q,则有或所以实数a的取值范围是1≤a≤2.C组xx模拟·方法题组方法1 含有逻辑联结词的命题的真假判断1.若命题p:不等式4x+6>0的解集为,命题q:关于x的不等式(x-4)(x-6)<0的解集为{x|4<x<6},则“p且q”“p 或q”“ ”形式的命题中的真命题是.答案p或q,p且q2.分别指出下列各组命题构成的“p∧q”“p∨q”“ ”形式的命题的真假.(1)p:6<6,q:6=6;(2)p:梯形的对角线相等,q:梯形的对角线互相平分;(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式x2+x+2<0无解;(4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.解析(1)∵p为假命题,q为真命题,∴p∧q为假命题,p∨q为真命题,p为真命题.(2)∵p为假命题,q为假命题,∴p∧q为假命题,p∨q为假命题,p为真命题.(3)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题,p为假命题.(4)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题,p为假命题.方法2 全称(存在性)命题真假的判定3.下列命题中的真命题的个数是.①∃x∈R,使得sin x+cos x=;②∃x∈(-∞,0),2x<3x;③∀x∈(0,π),sin x>cos x.答案04.已知命题p:∃x∈R,使tan x=1,命题q:∀x∈R,x2>0.下面结论正确的是.①命题“p∧q”是真命题;②命题“p∧ ”是假命题;③命题“ ∨q”是真命题;④命题“ ∧ ”是假命题.答案④方法3 全称(存在性)命题的否定5.(xx江苏姜堰中学高三期中)命题“∀x∈,sin x>0”的否定是.答案∃x∈,sin x≤06.命题“任意x∈R,|x-2|+|x-4|>3”的否定是.答案存在x∈R,使得|x-2|+|x-4|≤37.判断下列命题是全称命题还是存在性命题,并写出它们的否定:(1)p:对任意的x∈R,x2+x+1=0都成立;(2)p:∃x∈R,x2+2x+5>0.解析(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“存在一个”,因此,p:存在一个x∈R,使x2+x+1≠0成立.(2)由于“∃x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,因而是存在性命题;又由于“存在一个”的否定为“任意一个”,因此,p:∀x∈R,x2+2x+5≤0.方法4 与逻辑联结词、全称(存在性)命题有关的参数问题8.(xx江苏盐城高三(上)期中)命题“∃x∈R,使x2-ax+1<0”是真命题,则a的取值范围是.答案(-∞,-2)∪(2,+∞)9.已知p:函数y=x2+mx+1在(-1,+∞)上单调递增,q:4x2+4(m-2)x+1>0恒成立.若p或q为真,p且q为假,求m的取值范围.解析若函数y=x2+mx+1在(-1,+∞)上单调递增,则-≤-1,∴m≥2,即p:m≥2;若4x2+4(m-2)x+1>0恒成立,则Δ=16(m-2)2-16<0,解得1<m<3,即q:1<m<3.因为p或q为真,p且q为假,所以p、q一真一假,当p真q假时,解得m≥3.当p假q真时,解得1<m<2.综上可知,m的取值范围是{m|m≥3或1<m<2}.。
【新课标】2019届高考数学大一轮复习试题:第四章_三角函数题组23_含解析

题组层级快练(二十三)1.函数f(x)=(1+cos2x)sin 2x 是( ) A .周期为π的奇函数B .周期为π的偶函数C .周期为π2的奇函数D .周期为π2的偶函数答案 D解析 f(x)=(1+cos2x)sin 2x =2cos 2xsin 2x =12sin 22x =1-cos4x 4,则T =2π4=π2且为偶函数.2.下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)答案 A解析 对于选项A ,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选A. 3.函数y =2sin(π6-2x)(x ∈[0,π])的增区间是( )A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]答案 C解析 ∵y =2sin(π6-2x)=-2sin(2x -π6),由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为[π3+k π,5π6+k π],k ∈Z ,∴当k =0时,增区间为[π3,5π6].4.已知f(x)=sin 2x +sinxcosx ,则f(x)的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[-π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]答案 C解析 由f(x)=12sin2x +12(1-cos2x)=2sin (2x -π4)+12,得该函数的最小正周期是π.当2k π-π2≤2x-π4≤2k π+π2,k ∈Z ,即k π-π8≤x ≤k π+3π8,k ∈Z 时,函数f(x)是增函数,即函数f(x)的单调增区间是[k π-π8,k π+3π8],其中k ∈Z .由k =0得到函数f(x)的一个单调增区间是[-π8,3π8],结合各选项知,选C.5.(2016·北京朝阳区期末)已知函数f(x)=sinx +3cosx ,设a =f(π7),b =f(π6),c =f(π3),则a ,b ,c 的大小关系是( )A .a<b<cB .c<a<bC .b<a<cD .b<c<a答案 B解析 f(x)=sinx +3cosx =2sin(x +π3),因为函数f(x)在[0,π6]上单调递增,所以f(π7)<f(π6),而c =f(π3)=2sin 2π3=2sin π3=f(0)<f(π7),所以c<a<b.6.(2016·南昌大学附中)设f(x)=sin (ωx +φ),其中ω>0,则f(x)是偶函数的充要条件是( ) A .f(0)=1 B .f(0)=0 C .f ′(0)=1 D .f ′(0)=0答案 D解析 f(x)=sin (ωx +φ)是偶函数,有φ=k π+π2,k ∈Z .∴f(x)=±cos ωx.而f ′(x)=±ωsin ωx ,∴f ′(0)=0,故选D.7.(2014·天津)已知函数f(x)=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f(x)=3sin ωx +cos ωx =2(sin ωx ×32+cos ωx ×12)=2sin (ωx +π6), 令f(x)=1,得sin (ωx +π6)=12.∴ωx 1+π6=π6+2k π或ωx 2+π6=5π6+2k π.∵|x 1-x 2|min =π3,∴ω(x 2-x 1)=2π3,∴ω=2,∴T =2πω=π.8.如果函数y =3cos(2x +φ)的图像关于点(4π3,0)成中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 A解析 依题意得3cos(8π3+φ)=0,8π3+φ=k π+π2,φ=k π-136π(k ∈Z ),因此|φ|的最小值是π6.9.已知函数y =sin ωx 在[-π3,π3]上是增函数,则实数ω的取值范围是( )A .[-32,0) B .[-3,0)C .(0,32] D .(0,3]答案 C解析 由于y =sinx 在[-π2,π2]上是增函数,为保证y =sin ωx 在[-π3,π3]上是增函数,所以ω>0且π3·ω≤π2,则0<ω≤32. 10.已知函数f(x)=cos(x +π4)·sinx ,则函数f(x)的图像( ) A .关于直线x =π8对称B .关于点(π8,-24)对称C .最小正周期为2πD .在区间(0,π8)上为减函数答案 A解析 化简f(x)=cos(x +π4)·sinx =(22cosx -22sinx)·sinx =24(sin2x +cos2x -1)=12sin(2x +π4)-24,则该函数图像的对称轴为直线x =π8+k π2,k ∈Z ,A 正确;其对称中心(-π8+k π2,-24),k ∈Z ,B 不正确;其最小正周期为π,C 不正确;令π2+2k π≤2x +π4≤3π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z ,D 不正确,故选A.11.若将函数f(x)=sin2x +cos2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.5π4 答案 C解析 f(x)=sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π4,将其图像向右平移φ个单位得到g(x)=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8-φ=2sin ⎝⎛⎭⎫2x +π4-2φ的图像.∵g(x)=2sin ⎝⎛⎭⎫2x +π4-2φ的图像关于y 轴对称,即函数g(x)为偶函数,∴π4-2φ=k π+π2,k ∈Z ,即φ=-k π2-π8,k ∈Z . 因此当k =-1时,φ有最小正值3π8.12.(2015·东北四校模拟)已知函数f(x)=-2sin(2x +φ)(|φ|<π),若f(π8)=-2,则f(x)的一个单调递增区间可以是( )A .[-π8,3π8]B .[5π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 D解析 ∵f(π8)=-2,∴-2sin(2×π8+φ)=-2.即sin(π4+φ)=1.∵|φ|<π,∴φ=π4.∴f(x)=-2sin(2x +π4).由2k π+π2≤2x +π4≤2k π+3π2,得k π+π8≤x ≤k π+5π8(k ∈Z ).当k =0时,π8≤x ≤5π8.13.设f(x)=xsinx ,若x 1,x 2∈[-π2,π2],且f(x 1)>f(x 2),则下列结论中,必成立的是( )A .x 1>x 2B .x 1+x 2>0C .x 1<x 2D .x 12>x 22答案 D14.若y =cosx 在区间[-π,α]上为增函数,则实数α的取值范围是________. 答案 -π<α≤015.将函数y =sin (ωx +φ)(π2<φ<π)的图像,仅向右平移4π3,或仅向左平移2π3,所得到的函数图像均关于原点对称,则ω=________.答案 12解析 注意到函数的两相邻对称中心之间距离是函数周期的一半,即有T 2=23π-(-43π)=2π,T =4π,即2πω=4π,ω=12.16.已知函数f(x)=sinx +acosx 的图像的一条对称轴是x =5π3,则函数g(x)=asinx +cosx 的初相是________.答案 23π解析 f ′(x)=cosx -asinx ,∵x =5π3为函数f(x)=sinx +acosx 的一条对称轴,∴f ′(5π3)=cos 5π3-asin 5π3=0,解得a =-33.∴g(x)=-33sinx +cosx =233(-12sinx +32cosx)=233sin(x +2π3).17.已知函数f(x)=(sinx -cosx )sin2xsinx .(1)求f(x)的定义域及最小正周期; (2)求f(x)的单调递减区间.答案 (1){x ∈R |x ≠k π,k ∈Z } T =π(2)[k π+3π8,k π+7π8](k ∈Z )解析 (1)由sinx ≠0,得x ≠k π(k ∈Z ). 故f(x)的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f(x)=(sinx -cosx)sin2xsinx=2cosx(sinx -cosx) =sin2x -cos2x -1=2sin(2x -π4)-1,所以f(x)的最小正周期为T =2π2=π. (2)函数y =sinx 的单调递减区间为[2k π+π2,2k π+3π2](k ∈Z ).由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ).所以f(x)的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ).18.(2015·重庆理)已知函数f(x)=sin(π2-x)sinx -3cos 2x.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在[π6,2π3]上的单调性.答案 (1)T =π 2-32(2)增区间[π6,5π12],减区间[5π12,2π3]解析 (1)f(x)=sin(π2-x)sinx -3cos 2x =cosxsinx -32(1+cos2x)=12sin2x -32cos2x -32=sin(2x -π3)-32, 因此f(x)的最小正周期为π,最大值为2-32.(2)当x ∈[π6,2π3]时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f(x)单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f(x)单调递减. 综上可知,f(x)在[π6,5π12]上单调递增;在[5π12,2π3]上单调递减.1.将函数f(x)=sin2x(x ∈R )的图像向右平移π4个单位后,所得到的图像对应的函数的一个单调递增区间是( )A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 将函数f(x)=sin2x(x ∈R )的图像向右平移π4个单位后得到函数g(x)=sin2(x -π4)=-cos2x 的图像,则函数g(x)的单调递增区间为[k π,k π+π2],k ∈Z ,而满足条件的只有B.2.(2016·北京顺义一模)已知函数f(x)=cos(2x +π3)-cos2x ,其中x ∈R ,给出下列四个结论:①函数f(x)是最小正周期为π的奇函数;②函数f(x)图像的一条对称轴是直线x =2π3;③函数f(x)图像的一个对称中心为(5π12,0);④函数f(x)的单调递增区间为[k π+π6,k π+2π3],k ∈Z .其中正确的结论的个数是( )A .1B .2C .3D .4答案 C解析 由已知得,f(x)=cos(2x +π3)-cos2x =cos2xcos π3-sin2xsin π3-cos2x =-sin(2x +π6),不是奇函数,故①错.当x =2π3时,f(2π3)=-sin(4π3+π6)=1,故②正确;当x =5π12时,f(5π12)=-sin π=0,故③正确;令2k π+π2≤2x +π6≤2k π+3π2,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z ,故④正确.综上,正确的结论个数为3.3.(2013·浙江理)已知函数f(x)=Aco s(ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 f(x)是奇函数时,φ=π2+k π(k ∈Z ); φ=π2时,f(x)=Acos (ωx +π2)=-Asin ωx 为奇函数.所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,选B.4.已知函数f(x)=sin(2x +φ),其中φ为实数,若f(x)≤|f(π6)|对x ∈R 恒成立,且f(π2)>f(π),则f(x)的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )答案 C解析 由题意知,f(x)在x =π6处取得最大值或最小值,∴x =π6是函数f(x)的对称轴.∴2×π6+φ=π2+k π,φ=π6+k π,k ∈Z .又由f(π2)>f(π),得sin φ<0.∴φ=-56π+2k π(k ∈Z ),不妨取φ=-56π.∴f(x)=sin(2x -5π6).由2k π-π2≤2x -56π≤2k π+π2,得f(x)的单调递增区间是[k π+π6,k π+2π3](k ∈Z ).5.若函数f(x)=Msin (ωx +φ)(ω>0)在区间[a ,b]上是增函数,且f(a)=-M ,f(b)=M ,则函数g(x)=Mcos (ωx +φ)在[a ,b]上( ) A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M答案 C解析 方法一(特值法):取M =2,w =1,φ=0画图像即得答案.方法二:T =2πw ,g(x)=Mcos(wx +φ)=Msin(wx +φ+π2)=Msin[w(x +π2w)+φ],∴g(x)的图像是由f(x)的图像向左平移π2w (即T4)得到的.由b -a =T2,可知,g(x)的图像由f(x)的图像向左平移b -a 2得到的.∴得到g(x)图像如图所示.选C.6.(2015·全国Ⅰ)函数f(x)=cos (ωx +φ)的部分图像如图所示,则f(x)的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(2k π-14,2k π+34),k ∈ZC .(k -14,k +34),k ∈ZD .(2k -14,2k +34),k ∈Z答案 D解析 由题图知,函数f(x)的最小正周期T =(54-14)×2=2,所以ω=π,又(14,0)可以看作是余弦函数与平衡位置的第一个交点,所以cos(π4+φ)=0,π4+φ=π2,解得φ=π4,所以f(x)=cos(πx +π4),所以由2kπ<πx +π4<2k π+π,k ∈Z ,解得2k -14<x<2k +34,k ∈Z ,所以函数f(x)的单调递减区间为(2k -14,2k +34),k ∈Z ,选D.7.(2013·江西理)函数y =sin2x +23sin 2x 的最小正周期T 为________. 答案 π解析 y =sin2x +23sin 2x =sin2x -3cos2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.8.(2015·天津文)已知函数f(x)=sin ωx +cos ωx (ω>0),x ∈R .若函数f(x)在区间(-ω,ω)内单调递增,且函数y =f(x)的图像关于直线x =ω对称,则ω的值为________.答案 π2解析 f(x)=sin ωx +cos ωx =2sin (ωx +π4),因为函数f(x)的图像关于直线x =ω对称,所以f(ω)=2sin (ω2+π4)=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f(x)在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.9.(2013·安徽理)已知函数f(x)=4cos ωx ·sin (ωx +π4)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,π2]上的单调性.答案 (1)1 (2)单调递增区间为[0,π8],单调递减区间为[π8,π2]解析 (1)f(x)=4cos ωx ·sin (ωx +π4)=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx)+2=2sin (2ωx +π4)+ 2.因为f(x)的最小正周期为π,且ω>0,从而有2π2ω=π,故ω=1.(2)由(1)知,f(x)=2sin(2x +π4)+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f(x)单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f(x)单调递减.综上可知,f(x)在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.10.(2015·安徽文)已知函数f(x)=(sinx +cosx)2+cos2x. (1)求f(x)的最小正周期; (2)求f(x)在区间[0,π2]上的最大值和最小值.解析 (1)因为f(x)=sin 2x +cos 2x +2sinxcosx +cos2x =1+sin2x +cos2x =2sin(2x +π4)+1, 所以函数f(x)的最小正周期T =2π2=π.(2)由(1)知,f(x)=2sin(2x +π4)+1.当x ∈[0,π2]时,2x +π4∈[π4,5π4],由正弦函数y =sinx 在[π4,5π4]上的图像知,当2x +π4=π2,即x =π8时,f(x)取最大值2+1;当2x +π4=5π4,即x =π2时,f(x)取最小值0.综上,f(x)在[0,π2]上的最大值为2+1,最小值为0.。
2019年高考数学(文)一轮复习精品资料:专题32基本不等式(押题专练)含解析

2019年高考数学(文)一轮复习精品资料1.设x >0,y >0,且2x +y =6,则9x +3y有( ) A .最大值27 B .最小值27 C .最大值54 D .最小值54 【答案】D【解析】因为x >0,y >0,且2x +y =6, 所以9x+3y≥29x·3y=232x +y=236=54,当且仅当x =32,y =3时,9x +3y有最小值54。
2.已知a ,b 为正实数,函数y =2ae x+b 的图象过点(0,1),则1a +1b的最小值是( )A .3+2 2B .3-2 2C .4D .2 【答案】A【解析】因为函数y =2ae x+b 的图象过(0,1)点,所以2a +b =1,所以1a +1b =2a +b a +2a +b b =3+b a +2a b≥3+22,当且仅当b a =2a b ,即b =2a 时,取等号,所以1a +1b的最小值是3+22。
3.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( )A .1B .6C .9D .16 【答案】B所以1a -1+9b -1=(b -1)+9b -1≥29=2×3=6。
4.设a >1,b >0,若a +b =2,则1a -1+2b的最小值为( ) A .3+2 2 B .6 C .4 2 D .2 2 【答案】A【解析】由a +b =2可得,(a -1)+b =1。
因为a >1,b >0,所以1a -1+2b =⎝ ⎛⎭⎪⎫1a -1+2b (a -1+b )=b a -1+a -b+3≥22+3。
当且仅当ba -1=a -b,即a =2,b =2-2时取等号。
5.已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( )A.32B.53C.94D.256 【答案】A6.已知x >0,y >0,则“xy =1”是“x +y ≥2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】若xy =1,由基本不等式,知x +y ≥2xy =2;反之,取x =3,y =1,则满足x +y ≥2,但xy =3≠1,所以“xy =1”是“x +y ≥2”的充分不必要条件.故选A.7.当x >0时,函数f (x )=2xx 2+1有( ) A .最小值1 B .最大值1 C .最小值2 D .最大值2【答案】B【解析】∵x >0,∴f (x )=2x +1x≤1.故选B. 8.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2 B .2 C .2 2 D .4 【答案】C【解析】由ab =1a +2b ≥22ab,得ab ≥22,当且仅当1a =2b时取“=”.选C.9. -a a +(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.322【答案】B【解析】因为-6≤a ≤3,所以3-a ≥0,a +6≥0.由基本不等式,可知-aa +≤-a +a +2=92,当且仅当a =-32时等号成立. 10.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【答案】A11.设x >0,y >0,且x +4y =40,则lg x +lg y 的最大值是( ) A .40 B .10 C .4 D .2 【答案】D【解析】∵x +4y =40,且x >0,y >0,∴x +4y ≥2x ·4y =4xy (当且仅当x =4y 时取“=”), ∴4xy ≤40.∴xy ≤100.∴lg x +lg y =lg (xy )≤lg 100=2. ∴lg x +lg y 的最大值为2.12.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8 【答案】B13.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞) 【答案】B【解析】∵x >0,y >0,∴x +y 4=⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =2+4x y +y 4x ≥4,∴⎝ ⎛⎭⎪⎫x +y 4min =4,∴m 2-3m >4,解得m <-1或m >4.选B.14.设a >0,b >1,若a +b =2,则2a +1b -1的最小值为( )A .3+2 2B .6C .4 2D .2 2【答案】A【解析】由题可知a +b =2,a +b -1=1,∴2a +1b -1=⎝ ⎛⎭⎪⎫2a +1b -1(a +b -1)=2+b -a+ab -1+1≥3+22,当且仅当b -a=ab -1,即a =2-2,b =2时等号成立.故选A.15.函数y =2x +1x -1(x >1)的最小值为________. 【答案】22+2 【解析】因为y =2x +1x -1(x >1),所以y =2x +1x -1=2(x -1)+1x -1+2≥2+22x -1x -1=22+2. 当且仅当x =1+22时取等号,故函数y =2x +1x -1(x >1)的最小值为22+2. 16.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 【答案】5是5.17.正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,+∞) B.(-∞,3] C .(-∞,6] D .[6,+∞) 【答案】D【解析】因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥10+29=16,由题意,得16≥-x 2+4x +18-m , 即x 2-4x -2≥-m 对任意实数x 恒成立, 而x 2-4x -2=(x -2)2-6, 所以x 2-4x -2的最小值为-6, 所以-6≥-m ,即m ≥6。
精选新版2019年高考数学第一轮复习模拟题库(含标准答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2008浙江理)在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) A .15-B .85C .120-D .2742.已知不等式(x+y)(1x + ay )≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( ) A.2 B.4 C.6 D.8(2006陕西理)3.已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m其中真命题的个数是( )A .0B .1C .2D .3(2005福建理)4.(2005广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m=( )A (B)32(C)83(D)235.若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)6.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,(2008全国1理)D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或7.将椭圆92522y x +=1绕其左焦点按逆时针方向旋转90°,所得椭圆方程是( ) A .19)4(25)4(22=-++y x B .19)4(25)4(22=+++y x C .125)4(9)4(22=-++y x D .125)4(9)4(22=+++y x (1996上海,5)二、填空题8.已知22410x y xy ++-=,则2x y +的最大值为__________9.不等式||52||1x x ->-+的解集是 .10.在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为11.函数3y ax x =-在(,)-∞+∞上是减函数,则实数a 的取值范围是 . 12.已知等差数列的第10项为23,第25项为-22,则此数列的通项公式为 .13.已知数列前n 项和S n =2n -1,则此数列的奇数项的前n 项的和是________14.已知直线l 过点P (2,1),且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为 ▲ .15.已知不等式012>-+bx ax 的解集为}43|{<<x x ,则=a .16.已知向量a 和b的夹角是120°,且2||=a ,5||=b ,则= 。
精选最新2019年高考数学第一轮复习模拟题库(含答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知集合M={1,2,zi},i,为虚数单位,N={3,4},则复数z= ( )A .-2iB .2iC .-4iD .4i (2013年高考江西卷(理))2.直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是( )A .1)B .1)C .(1)D .1) (2006安徽文)二、填空题3.若二项式7()+x a 展开式中,5x 项的系数是7,则)(lim 242nn a a a +++∞→ = .4.三条直线053,082,01=-+=+-=++y ax y x y x 不能围成三角形,则a 的取值集合是 ▲_5.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .6.下列几个命题①方程2(3)0x a x a +-+=的有一个正实根,一个负实根,则0a <。
②函数y =是偶函数,但不是奇函数。
③函数()f x 的值域是[2,2]-,则函数(1)f x +的值域为[3,1]-。
④ 设函数()y f x =定义域为R 且满足(1)(1)f x f x -=-,则函数()y f x =的图象关于y 轴对称。
⑤曲线2|3|y x =-和直线 ()y a a R =∈的公共点个数是m ,则m 的值不可能是1。
图3其中正确的有___________________。
7.在复平面内,复数21i-对应的点到直线1y x =+的距离是 ▲ .8.函数x a y =在]1,0[上的最大值与最小值的和为3,则a 的值为 . 9.已知函数f (x )=(13)x -log 2x ,0<a <b <c ,f (a )f (b )f (c )<0,实数d 是函数f (x )的一个零点.给出下列四个判断:①d <a ;②d >b ;③d <c ;④d >c . 其中可能成立的个数为 ________ .10.已知函数f(x)按下表给出,则满足f(f(x))>f(3)的x 的值为 。
精选最新2019年数学高考第一轮复习模拟题库(含参考答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个(2013年高考北京卷(文)) 2.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(2010浙江理4)3.设数列{}n a 的前n 项和2n S n =,则8a 的值为( )A . 15B . 16C . 49D . 64(2010安徽文)4.如果函数y=sin2x+acos2x 的图象关于直线x=-8π对称,那么a 等于( )A .2B .-2C .1D .-1(1994全国文14)5.设不等式20x x -≤的解集为M ,函数()ln(1||)f x x =-的定义域为N ,则M N ⋂为 (A )[0,1) (B )(0,1) (C )[0,1] (D )(-1,0] (2009陕西卷文)二、填空题6.已知函数1()lg sin 1xf x x x-=++,若()2f m =,则()f m -= .7.数列{}n a 中,)2(112,1,21121≥+===-+n a a a a a n n n ,则其通项公式为=n a 。
(8.对于在区间[a ,b ]上有意义的两个函数)()(x n x m 与,如果对于区间[a ,b ]中的任意x 均有1|)()(|≤-x n x m ,则称)()(x n x m 与在[a ,b ]上是“密切函数”, [a ,b ]称为“密切区间”,若函数43)(2+-=x x x m 与32)(-=x x n 在区间[a ,b ]上是“密切函数”,则密切区间为9.在等差数列{}n a 中,已知33,4,31521==+=n a a a a ,则=n _____________10.函数2y =________; 11.已知函数f(x)= ()2f π'sinx+cosx ,则()4f π= .12.从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中一人上午的活动,一人下午的活动,有多少种不同的方法?13.已知关于x 的方程10x ax --=有一正一负根,则实数a 的取值范围是 .14.已知集合},1|{2R x x y y M ∈-==,}2|{2x y x N -==,则=N M▲ .15.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。
【2019最新】人教版高考理科数学一轮复习练习:阶段检测试题(四) Word版含解析

(C)42π(D)36π该几何体下半部分是高为的圆柱的一半,所以其体积为B.,βπ(D)16π22,所以x=π,所以旋转体一个几何体的三视图如图所示(B)(D)+2,该几何体由两个三棱锥组成A.)(C)③④(D)②④经正方体的表面,按最短路线爬行到达顶点由三视图知其直观图为两个圆台的组合体水面高度随时间变化的变化率先逐渐减小后逐渐增大)(A)1 (B)2-D)2-ABC,1=,BD==,AB=BC=AD=DC=,=,=1,(B) cm3(D) cm3中的虚线长为图,A.则该几何体的外接球的表面积为(D)由三视图知该几何体为四棱锥,分别是对应边的中点,的正方形,h=,R2=,B.为底面的中心(D)建立空间直角坐标系.设A(0,-1,0),B(0,1,0),S(0,0,),M(0, 0,),P(x,y,0),=(0,1,),=(x,y,-).ABCDA1B1C1D1的内切球(B)根据正方体的几何特征知每小题5分解析:由三视图可知,该几何体有两个面是直角三角形,如图,底面是正三角形,最大的面是边长分别为2,=2,=2的面,其面积为×2×=.答案:14.正△ABC与正△BCD所在平面垂直,则二面角ABDC的正弦值为.解析:取BC中点O,连接AO,DO,建立如图所示坐标系,设BC=1,则A(0,0,),B(0,-,0),D(,0,0).所以=(0,0,),=(0,,),=(,,0).设平面ABD的法向量为n=(x0,y0,z0),则·n=0,且·n=0,x0=1,的一个法向量n=(1,-,1).sin<n,>=.:已知函数轴围成的封闭图形绕x轴旋转一周.已知一个三棱锥的所有棱长均为,,AE==.R2=(-R)2+,即内切球的半径是.三、解答题ADEF;所成角的正弦值.EM=AD,则EO⊥平面ABCD,故以轴的正方向建立空间平面直角坐标系E(0,0,),A(3,0,0),C(-1,4,0),F(2,0,),所以=(3,0,-),=(-4,4,0),=(3,-4,).为平面EAC的法向量,则x=1,可得n=(1,1,),cos<,n>===,所成角的正弦值为EF;OEF所成角的正弦值.的边长为2,点E是xyz,O(0,0,1),G(,,0),=(0,1,-1),=(1,0,-1),=(,,-2).n=(1,1,1),==,与平面OEF.求直线PB与平面.于点M,连接FM.是平行四边形.E(0,0,0),B(3,0,0),P(0,0,m),C(3,2,0),F(,1,),的一个法向量为n=(x,y,z),由得z=1,得n=(0,-m,1).的一个法向量为cos<n,a>===.m=2.所成角.PBE==,.正三棱柱ABCA1B1C1底边长为2,E,F分别为BB1,AB的中点.(1)已知M为线段B1A1上的点,且B1A1=4B1M,求证:EM∥平面A1FC;(2)若二面角EA1CF所成角的余弦值为,求AA1的值.(1)证明:取B1A1中点为N,连接BN,则BN∥A1F,又B1A1=4B1M,N为B1A1的中点,则M为B1N的中点.所以EM为△BNB1中位线,则EM∥BN,所以EM∥A1F.因为EM⊄平面A1FC,A1F⊂平面A1FC,故EM∥平面A1FC.(2)解:如图,以F为坐标原点建立空间直角坐标系,设AA1=a.则F(0,0,0),A1(-1,0,a),E(1,0,),C(0,,0),=(-1,,-),=(0,,0),=(2,0,-),=(1,,-a).设平面A1CF法向量为m=(x,y,z),则取z=1,得m=(a,0,1).设平面A1EC法向量为n=(x1,y1,z1),取x1=a,得n=(a,a,4).设二面角EA1CF的平面角为,,=cos<m,n>==.a2=,AA1=.本小题满分所成角的正弦值为,求AD的长.ABCD,而AD⊂平面ABCD,平面PBD,所以AD两两互相垂直轴建立如图所示的空间直角坐标系BDC=可得A(λ,,0),P(0,0,4),,0,-4),=(-,,0),=(0,0,4).由题意可得y=3,则x=4,z=0,得平面PCD的一个法向量22.(本小题满分四边形ABCD为矩形在棱DF上..所以AF⊥B(1,0,0),E(,0,1),P(0,1,),C(1,2,0),=(-,0,1),=(-1,-1,),==,.ADF,所以平面ADF的一个法向量n1==(1,0,0).,=(0,,),=(1,2,0).|==..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是 ( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 (2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))2.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设357log 6,log 10,log 14a b c ===,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>3.在复平面内,复数1i i++(1+3i )2对应的点位于( ) (A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限(2005浙江理) 4.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为(2012新课标理)5.函数41()2x xf x +=的图象( )(A ) 关于原点对称 (B ) 关于直线y =x 对称 (C ) 关于x 轴对称 (D ) 关于y 轴对称(2010重庆理)6.如果直线l 、m 与平面α、β、γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有( ) A .α⊥γ且l ⊥m B .α⊥γ且m ∥βC .m ∥β且l ⊥mD .α∥β且α⊥γ(1996全国文7理5)7.(2009江西卷文)设1F 和2F 为双曲线22221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( )A .32B .2C .52D .38.函数y=ax 2+ bx 与y= ||log b ax (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是( )(2010湖南文8)9.设函数y =f (x )定义在实数集上,则函数y =f (x -1)与y =f (1-x )的图象关于( ) A .直线y =0对称 B .直线x =0对称 C .直线y =1对称 D .直线x =1对称(1997全国文7)10.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .()B .(0)∪(0c .[3-3] D .(-∞,3-)∪(3,+∞)(2011年高考江西卷理科9)11.已知a ,b ,c ,d 为实数,且c >d .则“a >b ”是“a -c >b -d ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件(2009四川文)二、填空题12. 在ABC ∆中,A (1,1),B (4,5),C (—1,1),则与角A 的平分线共线且方向相同的单位向量为 ▲ .13.若向量(3,1),(2,1)AB n =-=,且n AC ⋅=7,那么n BC ⋅等于 .14.已知集合M={x |1-x x>2},N={x ||2x -1|<2},则M∩N= .15.已知a>0,b>0,且lg()lg lg ,a b a b +=+则lg(1)lg(1)a b +++的最小值是 ▲ .16.已知正三棱锥ABC P -主视图如图所示,其中PAB ∆中,2==PC AB cm ,则这个正三棱锥的左视图的面积为 2cm .17.已知△ABC的三个内角A 、B 、C的对边分别是a ,b ,c ,0)2)((,300<--=∠b a b a B ,则ABC ∆解的情况是 ▲ .(填一解、两解或无解)18.给定映射),2(),(:xy y x y x f +→,点(61,61-)的原象是 。
19.若双曲线22221(0,0)x y a b a b -=>>的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的渐近线方程是 ▲ .20.不等式322+-x x 122--≤a a 在R 上的解集是∅,则实数a 的取值范围是21.设复数z 满足1-z1+z =i ,则|1+z |=________.22.已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于 ▲ .23.设,x y 都是整数,且满足()22xy x y +=+,则22x y +的最大可能值为____________.24.已知函数23,0,()1,0,x x f x x x ->⎧=⎨+⎩≤若f (x )=5,则x = ▲ .25.tan 20tan 403tan 20tan 40++的值是 ;26.从0,1,2,3这四个数字中一次随机取两个数字,若用这两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是 ▲ .27.根据右图所示的算法,可知输出的结果为 ▲ .28.函数()(1)sin π1(13)f x x x x =---<<的所有零点之和为 ▲ .29.若ABC ∆的三个内角,,A B C 满足222s i n s i n s i n s i ns i nA B B C C =++,则A ∠= ;30.已知关于x 的方程s i n c o s x xa +=的解集是空集,则实数a 的取值范围是______________.31.已知双曲线22221x y a b-=的离心率为e 。
(1)集合{1,2,3,4},{1,2},,,M N a M b N e ==∈∈>若求 (2)若0<a<4,0<b<2,求32.幂函数()14f x x=的定义域为 ▲ .33.将关于x 的多项式2019321)(x x x x x x f +-+-+-= 表为关于y 的多项式202019192210)(y a y a y a y a a y g ++++= ,其中4-=x y ,则0120a a a +++=解:由题设知,)(x f 和式中的各项构成首项为1,公比为x -的等比数列,由等比数列的求和公式,得:.1111)()(2121++=----=x x x x x f令51)4()(,421+++=+=y y y g y x 得,取,1=y 有615)1(2120210+==++++g a a a a34.已知椭圆E 的左右焦点分别F 1,F 2,过F 1且斜率为2的直线交椭圆E 于P 、Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为 ▲ .0102321Pr int nS n While S S S n n End While n++ ≤ ←←0←←4(第题)图(5)MN FDCBE35.设R y x ∈,,且0≠xy ,则⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+2222411y x y x 的最小值为 . (2011年高考湖南卷理科10)三、解答题36.已知函数2()21,()21f x x g x x x =+=-+(Ⅰ)设集合{|()7}A x f x ==,集合{|()4}B x g x ==,求AB ;(Ⅱ)设集合{|()}C x f x a =≤,集合{|()4}D x g x =≤,若D C ⊆,求a 的取值范围. (本大题满分14分)37. (本题满分16分)已知数列{}n a 的前n 项和n S 和通项n a 满足(1)1n n qS a q =--(*N n ∈,q 是大于0的常数,且1≠q ),数列}{n b 是公比不为..q 的等比数列,n n n b a c +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n n b q 3,2==,是否存在实数λ,使数列}{1n n c c λ++是等比数列?若存在,求出所有可能的实数λ的值,若不存在说明理由;(Ⅲ)数列}{n c 是否能为等比数列?若能,请给出一个符合的条件的q 和n b 的组合,若不能,请说明理由.38.如图,已知三棱柱BCF-ADE 的侧面CFED 与ABFE 都是边长为1的正方形,M 、N 两点分别在AF 和CE 上,且AM=EN .(Ⅰ)求证:平面ABCD ⊥平面ADE ; (Ⅱ)求证: MN//平面BCF ; (Ⅲ)若点N 为EC 的中点,点P 为EF 上的动点,试求PA+PN 的最小值.39.(14分)已知圆221:2280C x y x y +++-=与222:210240C x y x y +-+-=相交于,A B 两点.(1)求公共弦AB 所在的直线方程;(2)求经过,A B 两点且面积最小的圆的方程.40.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,AD ⊥AB ,CD ∥AB ,2AB =,3CD =,直线P A 与底面ABCD 所成角为60°,点M 、N 分别是P A ,PB的中点.(1)求证:MN ∥平面PCD ;(2)求证:四边形MNCD 是直角梯形; (3)求证:DN ⊥平面PCB .41.如图,矩形ABCD 的顶点A 在直线l 上,让矩形ABCD 绕其顶点A 在平面内逆时针旋转,设BAE θ∠=(点E 在直线l 上),0,2πθ⎛⎤∈ ⎥⎝⎦,记点C 到直线l 的距离是h ,(1)若1BC =,求h 关于θ的函数解析式,并确定θ的大小,使h =(2)在(1)的条件下,求()h θ的单调递增区间;(3)若,,AB m AC n ==猜想h 的最大值(不需要解答过程)。
42.已知(2,1),(2,4)a b =--=-,求(1)a 与b 的夹角大小;(2)2(2)a b -的值.43.已知直线l 的参数方程为⎩⎨⎧=+=t y tx 342(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系,若圆C 的极坐标方程为28cos 120ρρθ-+=,试求直线l 被圆C 所截的弦长.44.5位学生完成同一道数学解答题所花的时间分别为,,10,11,9x y (单位:分钟)已知这组数据的平均数为10,方差为2,则x y -=45.写出解不等式0(0)ax b a +>≠的一个算法,并画出流程图。
46.已知圆C 的方程为2222440()x y mx y m m R +--+-=∈。
(1)试求m 的值,使圆C 的面积最小;(2)求与满足(1)中条件的圆C 相切,且过点(1,2)-的直线方程。