课程设计计算书
计量计价课程设计计算书

计量计价课程设计计算书一、项目概述
项目名称:某住宅楼建筑工程
项目地点:XX市XX区
建筑面积:XX平方米
建筑高度:XX米
结构类型:钢筋混凝土框架结构
承包方式:总承包
工程期限:XX天
质量标准:合格
二、建筑工程量清单
序号项目名称单位数量单价(元)合计(元)
1 土方开挖及回填立方米 XX XX XX
2 钢筋混凝土框架结构平方米 XX XX XX
3 外墙涂料平方米 XX XX XX
4 内墙涂料平方米 XX XX XX
5 地面瓷砖平方米 XX XX XX
6 天花板吊顶平方米 XX XX XX
7 水电安装工程项 1 XX XX
8 消防安装工程项 1 XX XX
9 安全文明施工费(不可竞争性费用)项 1 XXX元/建筑面积平方米×XX 平方米 XXX元
三、计量计价分析
根据本项目的特点,我们将对各分项工程的计量计价进行分析。
首先,土方开挖及回填的单价主要由土方开挖、运输、回填等费用组成,具体单价根据实际情况确定。
其次,钢筋混凝土框架结构的单价主要包括钢筋、混凝土、模板等材料的费用,以及人工费、机械费等。
外墙涂料、内墙涂料、地面瓷砖、天花板吊顶等项目的单价主要根据材料的市场价格、人工费等因素确定。
水电安装工程和消防安装工程等项目的单价则根据实际工程量、人工费、材料费等综合确定。
最后,安全文明施工费是一项不可竞争性费用,按照国家及地方有关规定进行计价。
抗震设计课程设计计算书

抗震设计课程设计计算书一、教学目标本课程的教学目标是使学生掌握抗震设计的基本原理和方法,能够运用相关知识对建筑结构进行抗震设计。
具体目标如下:1.掌握地震波的产生和传播原理。
2.了解地震动的特性及其对结构的影响。
3.掌握结构动力学的基本理论。
4.学习抗震设计的基本原则和方法。
5.熟悉抗震设计规范和标准。
6.能够进行地震波的时程分析。
7.能够运用结构动力学理论进行抗震计算。
8.能够根据抗震设计原则进行建筑结构的抗震设计。
9.能够正确运用抗震设计规范进行设计。
情感态度价值观目标:1.培养学生对地震安全的关注和责任感。
2.培养学生对科学研究的兴趣和好奇心。
3.培养学生团队合作和沟通的能力。
二、教学内容本课程的教学内容主要包括以下几个部分:1.地震工程基本概念:地震的产生、传播和特性。
2.结构动力学基本理论:地震波的时程分析、结构的动力响应计算。
3.抗震设计原则和方法:结构体系的抗震设计、抗震设计的计算方法。
4.抗震设计规范和标准:我国抗震设计规范、国际抗震设计标准。
5.抗震设计案例分析:分析实际工程项目中的抗震设计案例,学习抗震设计的实际应用。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:通过教师的讲解,使学生掌握地震工程的基本概念和理论。
2.案例分析法:分析实际工程项目中的抗震设计案例,使学生了解抗震设计的实际应用。
3.实验法:进行结构动力特性测试和抗震性能试验,使学生更好地理解抗震设计原理。
4.讨论法:学生进行小组讨论,培养学生的团队合作和沟通能力。
四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的抗震设计教材作为主要教学资源。
2.参考书:提供相关的专业书籍,供学生深入学习和参考。
3.多媒体资料:制作课件、教学视频等,以直观的方式展示地震工程的基本概念和理论。
4.实验设备:准备结构动力特性测试和抗震性能试验所需的实验设备,为学生提供实践操作的机会。
基坑工程课程设计计算书

基坑工程课程设计计算书
基坑工程课程设计计算书
1.设计要求:
根据给定的基坑工程设计任务,完成基坑工程的计算书。
计算书应包含以下内容:
- 基坑的开挖计算
- 基坑支护结构的设计计算
- 地下水的渗流计算
- 基坑工程的监测计算
2.基坑开挖计算:
- 根据基坑设计要求,计算基坑的开挖深度、开挖体积、开挖面积等参数。
- 根据土壤力学和岩土力学原理,计算和分析不同土壤类型的开挖深度限制和开挖工况。
3.基坑支护结构的设计计算:
- 根据基坑深度和周围土层力学参数,设计合理的基坑支护结构。
- 计算支撑结构的荷载和变形情况,确定支撑结构的类型和尺寸。
4.地下水渗流计算:
- 根据基坑周围的地下水情况,进行水位计算和渗流计算。
- 分析渗流路径、水压力等参数,确定地下水对基坑支护结构的影响。
5.基坑工程监测计算:
- 根据监测点的位置和要求,计算监测点的变形和应力等参数。
- 分析监测数据,评估基坑工程的安全状况。
以上是基坑工程课程设计计算书的基本要求和内容。
具体的计算方法和公式需要根据具体的设计任务和土层情况确定。
设计计算书应简明扼要、准确合理,结合实际情况进行相应的分析和评估。
盖梁课程设计计算书

盖梁课程设计计算书一、课程目标知识目标:1. 学生能够掌握盖梁的基本结构及其在桥梁工程中的作用。
2. 学生能够理解并运用盖梁设计的相关公式,进行简单的盖梁计算。
3. 学生能够了解盖梁施工过程中的质量控制要点。
技能目标:1. 学生能够运用所学知识,独立完成盖梁设计的计算书编写。
2. 学生能够运用盖梁设计软件,进行盖梁的模拟分析和计算。
3. 学生通过实际案例分析,提高解决问题的能力。
情感态度价值观目标:1. 学生培养对桥梁工程事业的热爱和责任感,关注桥梁工程的质量和安全。
2. 学生在学习过程中,培养团队协作和沟通交流的能力,增强集体荣誉感。
3. 学生通过本课程的学习,认识到理论知识在实际工程中的重要性,形成积极向上的学习态度。
课程性质:本课程为桥梁工程专业课程,以理论教学和实践操作相结合的方式进行。
学生特点:学生已具备一定的桥梁工程基础知识,具有较强的学习能力和动手能力。
教学要求:教师需引导学生将理论知识与实际工程相结合,注重培养学生的实际操作能力和解决问题的能力。
在教学过程中,关注学生的情感态度价值观的培养,提高学生的综合素质。
通过本课程的学习,使学生在知识、技能和情感态度价值观方面均取得具体的学习成果。
二、教学内容1. 盖梁结构概述:介绍盖梁的定义、分类、作用及其在桥梁结构中的位置。
教材章节:第一章 桥梁结构概述2. 盖梁设计原理:讲解盖梁设计的基本原理、设计方法和步骤。
教材章节:第二章 桥梁设计原理3. 盖梁设计计算:详细讲解盖梁设计计算书编写过程,包括受力分析、内力计算、配筋计算等。
教材章节:第三章 桥梁结构计算4. 盖梁施工技术:分析盖梁施工过程中的关键技术、质量控制及安全管理。
教材章节:第四章 桥梁施工技术5. 盖梁设计软件应用:介绍盖梁设计软件的使用方法,让学生通过软件进行模拟分析和计算。
教材章节:第五章 桥梁设计软件应用6. 实际案例分析:通过分析实际工程案例,让学生了解盖梁设计在实际工程中的应用。
课程设计计算书1---副本

】(二)计算书1. 加药间溶液池溶液池的容积W 2417bnQ=2αWW 2:溶液池容积(m 3);Q :处理水量(m 3/h );α:混凝剂最大投加量(mg/L ),设计中取30mg/L .b :混合浓度(%),混凝剂溶液一般采用5-20,设计中采用12; n :每日调制次数,设计中取n=2;329.27m =2x 12 x 4173092x 30=W溶液池设置两个,以便交替使用,保证连续投药。
总深H =H 1+H 2+H 3=1++=。
形状采用矩形,H 1为有效高度,取1m ;H 2为安全高度,取;H 3为贮渣深度,取。
溶液池取正方形,边长为F 1/2=2=,取。
所以溶液池尺寸为长×宽×高=××=,则溶液池实际容积为池旁设工作台,宽~,池底坡度为。
底部设置DN100mm 放空管,采用硬聚氯乙烯塑料管,池内壁用环氧树脂进行防腐处理。
沿地面接入药剂稀释用给水管DN80mm 一条,于两池分设放水阀门,按1h 放满考虑。
溶解池;溶解池的容积W 1321m 78.2=x9.273.0=0.3W =W 溶解池取正方形,有效水深H 1=,则 面积F = W 1/H 1,即边长a = F 1/2=,取溶解池深度H =H 1+H 2+H 3=1++=,其中H 2为超高,设为;H 3为贮渣深度,取。
溶解池形状为矩形,则其尺寸为:长×宽×高=××=。
溶解池设为两个。
溶解池放水时间为10分钟,则放水量为:s L t W q /6.4=10×601000×78.2=60=1查水力计算表得放水管管径d 0=50mm ,采用塑料给水管;溶解池底部设管径d=100mm 的排渣管一根。
《投药管投药管流量: q =S L W /21.0=60×60×241000×2×27.960×60×241000×2×2=查水力计算表得投药管管径d =30mm ,实际流速为s 溶解池搅拌设备溶解池搅拌设备采用中心固定式平桨板式搅拌机。
桩基础课程设计计算书

桩基础课程设计计算书桩基础是土木工程中非常重要的一部分,它承担着支撑建筑物的重要作用。
在设计桩基础时,需要进行一系列的计算和分析,以确保其稳定性和安全性。
本文将介绍桩基础课程设计计算书的内容,以及其中涉及的一些重要计算。
一、桩基础设计的背景和意义桩基础是一种常见的基础形式,主要用于承载建筑物的重力和水平力。
它通过将桩打入地下,利用桩与土壤之间的摩擦力和桩端的抗拔力来支撑建筑物。
桩基础的设计需要考虑土壤的性质、桩的类型和尺寸、荷载条件等因素。
二、桩基础设计计算书的内容1. 工程背景和设计要求:介绍工程的背景和设计的基本要求,包括建筑物的类型、土壤条件、设计荷载等。
2. 土壤力学参数的确定:确定土壤的力学参数,包括土壤的强度参数、变形参数等,这些参数将用于后续的计算。
3. 桩的类型和尺寸选择:根据土壤条件和设计荷载,选择合适的桩的类型和尺寸,包括钢筋混凝土桩、预应力混凝土桩等。
4. 桩身的承载力计算:根据桩的类型和尺寸,计算桩身的承载力,考虑桩身与土壤的摩擦力和桩身的抗压能力。
5. 桩端的承载力计算:根据桩的类型和尺寸,计算桩端的承载力,考虑桩端的抗拔能力和桩端的摩擦力。
6. 桩基础的稳定性分析:对桩基础的稳定性进行分析,包括桩身的稳定性和桩端的稳定性,确保桩基础在不同荷载条件下的稳定性。
7. 桩基础的变形分析:对桩基础的变形进行分析,包括桩身的弯曲变形和桩端的沉降变形,确保桩基础在设计寿命内的变形满足要求。
8. 桩基础的设计优化:根据上述分析结果,对桩基础的设计进行优化,包括调整桩的类型和尺寸、增加桩的数量等,以提高桩基础的承载能力和稳定性。
三、桩基础设计计算书的重要性桩基础设计计算书是桩基础设计的重要依据,它包含了桩基础设计的各个环节的计算方法和结果。
通过桩基础设计计算书,可以评估桩基础的承载能力和稳定性,指导工程的施工和监测,确保工程的安全性和可靠性。
四、桩基础设计计算书的应用桩基础设计计算书广泛应用于土木工程领域,包括建筑物的基础设计、桥梁的基础设计、码头的基础设计等。
通风工程课程设计计算书

通风工程课程设计计算书一、课程目标知识目标:1. 学生能理解通风工程的基本概念,掌握通风系统设计的相关理论知识;2. 学生能够运用流体力学和热力学原理,进行通风工程计算;3. 学生能够掌握通风工程中涉及的各类参数及其影响因素,并能够运用相关公式进行计算。
技能目标:1. 学生能够独立完成通风工程课程设计计算书的编写,提高实际操作能力;2. 学生能够运用计算软件(如Excel、VentSim等)进行通风工程计算,提高计算效率;3. 学生能够在课程设计中,运用图表、文字等形式清晰、准确地表达计算结果。
情感态度价值观目标:1. 学生通过课程学习,培养对通风工程领域的兴趣,激发学习热情;2. 学生能够认识到通风工程在实际工程中的重要性,增强职业责任感和使命感;3. 学生在团队协作中,培养沟通、协作能力,提高解决问题的综合素质。
课程性质:本课程为专业核心课程,以理论知识为基础,注重实践操作,旨在培养学生的通风工程设计计算能力。
学生特点:学生具备一定的流体力学、热力学基础知识,具有较强的逻辑思维能力和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,强化计算方法与实际应用的联系,提高学生的实际操作能力和综合素质。
通过课程目标分解,确保学生能够达到预期学习成果,为后续课程学习和职业发展奠定基础。
二、教学内容1. 通风工程基本概念:涵盖通风系统的定义、分类及作用,通风系统设计的基本原则和流程;2. 通风工程计算方法:介绍流体力学、热力学在通风工程中的应用,包括压力分布、流速分布、风量计算等;3. 通风工程参数及其计算:讲解通风系统中涉及的各类参数(如风量、风速、风压等)及其计算方法;4. 通风设备选型与计算:介绍通风设备类型、性能参数,以及设备选型和计算方法;5. 通风系统设计实例:分析典型通风工程案例,使学生掌握通风系统设计的方法和步骤;6. 通风工程计算软件应用:教授常用通风计算软件的操作方法,提高学生计算效率。
隧道工程课程设计计算书

隧道工程课程设计计算书设计参数:-隧道长度:2000m-隧道净宽:10m-隧道净高:6m-土体密度:18.5kN/m3-土体内摩擦角:30°-地下水位:5m-隧道内地下水位:2m-土体内抗剪强度参数:φ=30°计算步骤:1.计算隧道内各个断面的相对稳定性;2.计算隧道支护结构的尺寸和索力;3.计算隧道开挖的顺序和土体的应力状态;4.计算隧道的变位量和不同支护结构的变形量;5.计算隧道内构筑物的稳定性;6.计算隧道坍塌和局部沉降的可能性。
1.相对稳定性计算:计算隧道内两个断面的相对稳定性,以确定隧道开挖顺序和施工方法。
首先计算土体的自重应力,然后计算水压力和隧道开挖导致的土体应力变化。
根据土体内摩擦角和土体内抗剪强度参数,计算土体的剪应力和相对稳定性。
2.支护结构的尺寸和索力计算:根据隧道净高和净宽,计算隧道内的支护结构的尺寸和索力。
使用经验公式或数值模拟方法计算支护结构的索力。
3.土体的应力状态计算:根据施工顺序和隧道支护结构的施工过程,计算隧道开挖时土体的应力状态。
包括计算土体的剪应力和轴向应力。
4.隧道的变位量和变形计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道开挖时的变位量。
使用弹塑性模型计算不同支护结构的变形量。
5.隧道内构筑物的稳定性计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道内构筑物的稳定性。
包括计算构筑物的动力稳定性和长期稳定性。
6.隧道坍塌和局部沉降的可能性计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道开挖过程中的坍塌和局部沉降的可能性。
通过计算应力集中和土体塑性区域的发展,评估土体失稳的可能性。
以上是隧道工程课程设计计算书的主要内容,涉及隧道设计的各个方面。
通过对土体的力学性质、支护结构的尺寸和索力以及隧道开挖过程中土体应力状态的计算,可以确定隧道的稳定性和施工方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 绘制蜗壳单线图一、蜗壳的型式:由水轮机的型式为HL220—LJ —120,可知本水电站采用金属蜗壳。
二、蜗壳主要参数的选择 (参考《水力机械》第二版,水利水电出版社) 断面形状采用圆形断面为了良好的水力性能一般蜗壳的包角取0345ϕ=o 计算m ax Q :KW N N ffr 663295.06300===η(95.098.0~95.0,此处取一发电机效率,f η) 查附表1得:单位流量s m Q /15.1'31=则s m H D Q Q r /09.135.622.115.1'3221max 1max =⨯⨯== 则可求得蜗壳进口断面流量:max0360c Q Q ϕ=o/s m 54.1209.133603453=⨯=︒︒c Q , 蜗壳进口断面平均流速c V 由图4—30查得,s m V c /7.6= 由于水轮机转轮直径小于1800mm,则座环尺寸1)64.1~55.1(D D a = 1)37.1~33.1(D D b =取mm D D a 19206.11== mm D D b 162035.11== 则mm r a 960= mm r b 810=其中b D —座环内径;a D —座环外径;b r —座环内半径;a r —座环外半径。
座环示意图如下图所示三、蜗壳的水力计算 1、对于蜗壳进口断面断面面积 2c 0max 87.17.636034509.13360m V Q V Q F c c c =⨯︒︒⨯=︒==ϕ 断面的半径 m V Q F c17.57.636034509.13360c 0max max =⨯⨯︒︒⨯=︒==ππϕπρ从轴中心线到蜗壳外缘的半径:m r R a 3.1117.5296.02max max =⨯+=+=ρ 2、对于中间任一断面:设i ϕ为从蜗壳鼻端起算至计算面i 处的包角,则该计算断面处的max 360ii Q Q ϕ=o,i ρ=,2i a i R r ρ=+ 其中:mm r s m V s m Q a c 960,/7.6,/09.133max ===表 1座环尺寸(mm )60 2.182 0.326 0.322 1.604 75 2.727 0.407 0.360 1.680 90 3.273 0.488 0.394 1.749 105 3.818 0.570 0.426 1.812 120 4.363 0.651 0.455 1.871 135 4.909 0.733 0.483 1.926 150 5.454 0.814 0.509 1.978 165 6.000 0.895 0.534 2.028 180 6.545 0.977 0.558 2.076 195 7.090 1.058 0.581 2.121 210 7.636 1.140 0.602 2.165 225 8.181 1.221 0.624 2.207 240 8.727 1.302 0.644 2.248 255 9.272 1.384 0.664 2.288 270 9.818 1.465 0.683 2.326 285 10.363 1.547 0.702 2.364 300 10.908 1.628 0.720 2.400 315 11.454 1.710 0.738 2.436 330 11.999 1.791 0.755 2.470 345 12.545 1.872 0.772 2.504§2 尾水管单线图的绘制根据已知的资料,得此水电站尾水管对应的尺寸如下:(单位:m ) 型式1Dh L 5B4D 4h 6h 1L 5h参数 1 2.6 4.5 2.720 1.35 1.35 0.675 1.82 1.22 尺寸 1.2 3.12 5.4 3.264 1.62 1.62 0.81 2.184 1.464 散段三部。
1、进口直锥段直锥圆管高度m h h h h 28.162.1217.012.3413=--=--= 进口锥管上下直径:m D 26.13= m D 62.14= 2、肘管:肘管是一90o 变截面弯管,其进口为圆断面,出口为矩形断面。
水流在肘管中由于转弯受到离心力的作用,使得压力和流速的分布很不均匀,而在转弯后流向水平段时又形成了扩散,因而在肘管中产生了较大的水力损失。
一般推荐使用的合理半径4(0.6~1.0)R D =,外壁6R 用上限,内壁7R 用下限。
m D R 62.10.146=⨯= m D R 972.06.047=⨯=3、出口扩散段:m 216.3184.2-4.51212==-=︒L L L ,长度取α 尾水管单线图如下图所示:§3 拟定转轮流道尺寸根据《水电站机电设计手册》——水力机械分册,已知1' 1.0D m =时,220HL 型的尺寸可以m D 2.11=时的转轮流道尺寸,如图:§4 厂房起重设备的设计水电站厂房内桥式起重机的容量大小通常取决于起吊最重件(发电机转子带轴重)的重量,其跨度决定于桥式起重机标准系列尺寸,起重机台数取决于机组台数的多少,大小和机组安装检修方式。
发电机的型号是SF630-12/2600,额定电压为6300千伏,磁极对数为6。
发电机的极距cm pS K f f 08.436263009244=⨯⨯==τ 其中,f S --发电机的额定容量;P--磁极对数;f K --系数,一般为8~10,这里取9。
定子内径cm pD i 64.16408.4314.3622=⨯⨯==τπ定子铁芯长度cm n CD S l e i fi 95.15450064.1641036300262=⨯⨯⨯=-其中,C--系数,取6103-⨯; e n --额定转数。
035.0002.050095.15464.164<=⨯=e i i n l D ,造型采用悬式。
发电机总重量t n S K G f f 7.48)5006300(9)(3/23/21≈⨯==θ式中:f S ——发电机额定容量;θn ——额定转速;1K ——系数,对悬式发电机取8—10;对伞式发电机取7—9;对水内冷式发电机取6—7。
发电机转子重量按总重量一半估算即t t G f 10035.242/〈=,并且机组台数为3台,所以选择一台单小车桥式起重机,型号为100/20T T 。
其具体数据如下:取跨度:16L m =; 起重机最大轮压:35.9T ; 起重机总重:77.3T ; 小车轨距:4400T L mm =; 小车轮距:2900T K mm =; 大车轮距;6250K mm =;大梁底面至轨道面距离:130F mm =; 起重机最大宽度:8616B mm =; 轨道中心至起重机外端距离:1400B mm =; 轨道中心至起重机顶端距离:3692H mm =; 主钩至轨面距离:1474h mm =;吊钩至轨道中心距离(主):122655,1900L mm L mm ==; 副吊钩至轨道中心距离:341300,2355L mm L mm ==; 轨道型号:100QU 。
§5 厂房轮廓尺寸主要参考《水电站机电设计手册》——水力机械分册和《水电站厂房设计》——水利水电出版社。
一、主厂房总长度的确定:1、厂房总长度取决于机组段的长度、机组台数和装配场长度。
于是总长L L nL L a ∆++=1其中n 为机组台数,1L 为机组段长度, a L 为安装间长度,L ∆为端机组段附加长度。
(1)机组段长度的确定机组段的长度1L 按下式计算:1x x L L L +-=+。
1L 应是蜗壳层、尾水管层、发电机层中的最大值。
蜗壳层:m R m m R 028.2,5.1,504.2211===δ m R L x 004.45.1504.211=+=+=+δ m R L x 528.35.1028.212=+=+=-δ 则 m L L L x x 532.7528.3004.41=+=+=-+; 尾水管层:m m B 5.1,264.32==δm B L L x x 132.35.12264.322=+=+==-+δ 则m L L L x x 264.6132.3132.31=+=+=-+;发电机层:m b m m 3,3.0,2.333===δφ(因在两台机组之间设楼梯时取34m :,此处取3m )。
m b L x 4.33.02322.32233=++=++=+δφ,m b L x 4.33.02322.32233=++=++=-δφ 则m L L L x x 8.64.34.31=+=+=-+由以上计算的各层1L ,其中蜗壳层1L 最大为7.532m ,故取m L 5.71= 其中:1R ——蜗壳x +方向最大平面尺寸;2R ——蜗壳x -方向最大平面尺寸;1δ——蜗壳层外部混凝土厚度,初步设计时取1.2~1.5m ,此处取1.5m ; B ——尾水管宽度(已知资料); 2δ——尾水管边墩混凝土厚度,一般取1.5~2.0m ; 3φ——发电机风罩内径;3δ——发电机风罩壁厚,一般取0.3~0.4m ;b ——两台机组之间风罩外壁静距,一般取1.5~2.0m ,如设楼梯取3--4m 。
(2)、端机组段长度的确定取m D L 24.02.12.02.01=⨯==∆,其中:L ∆——安全裕量,采用一台起重机吊装发电机转子时取0.2~0.3。
m L L L 74.724.05.712=+=∆+=3、装配场尺寸确定装配场与主机室宽度相等,以便利用起重机沿主厂房纵向运行。
装配厂长度一般约为机组段1L 的1.0~1.5倍。
对于混流式和悬式发电机采用偏小值,因此取1.2。
m L L 95.72.12.113=⨯==因此,可得主厂房总长度为:m L L L L 74.31974.75.722321=++⨯=++=,取32m 。
二、主厂房宽度的确定以机组中心线为界,厂房宽度B 可分为上游侧宽度s B 和下游侧宽度x B 两部分。
x s B B B +=,332s B A φδ=++,其中,m A m m 4,3.0,2.333===δφ,A ——风罩外壁至上游内侧的静距。
所以,m A B s 9.543.022.3233=++=++=δφ x B 除满足发电机层要求,还要满足蜗壳y -方向和混凝土厚要求。
对于发电机层:332x B A φδ=++。
其中,A ——风罩外壁至下游墙内侧的静距,主要用于主通道取2m 。
所以,m A B x 9.323.022.3233=++=++=δφ 对于蜗壳层y -方向为:x y x B m L B 〈=+=+=-588.23.0288.23δ 故取m B X 9.3=因此m B B B x s 8.99.39.5=+=+=,取10m 。