Amygdalin 苦杏仁苷

合集下载

苦杏仁苷的提取实验报告

苦杏仁苷的提取实验报告

一、实验目的1. 掌握苦杏仁苷的提取方法。

2. 了解提取过程中的影响因素。

3. 掌握实验操作技能。

二、实验原理苦杏仁苷(Amygdalin)是一种存在于苦杏仁、桃仁等植物种子中的天然糖苷化合物。

本实验采用溶剂提取法,通过溶剂对苦杏仁苷的溶解作用,将苦杏仁苷从原料中提取出来。

三、实验材料与仪器1. 实验材料:苦杏仁(干燥成熟种子)、石油醚、乙醇、蒸馏水等。

2. 实验仪器:三颈瓶、搅拌器、布氏漏斗、滤纸、分析天平、电热恒温水浴锅、旋转蒸发仪、紫外可见分光光度计等。

四、实验步骤1. 准备工作(1)称取一定量的苦杏仁,置于三颈瓶中。

(2)根据实验要求,选择合适的溶剂(石油醚或乙醇)。

2. 提取(1)将三颈瓶置于70~80℃水浴锅中,加入适量溶剂。

(2)开启搅拌器,使苦杏仁与溶剂充分接触。

(3)提取一定时间后,关闭搅拌器,取出三颈瓶。

3. 过滤(1)将三颈瓶中的混合液通过布氏漏斗和滤纸进行过滤。

(2)收集滤液。

4. 蒸发(1)将滤液置于旋转蒸发仪中,在50℃左右进行蒸发。

(2)待滤液浓缩至一定程度时,停止加热。

5. 结晶(1)将浓缩液置于冰箱中冷却,使苦杏仁苷结晶。

(2)取出结晶,用滤纸过滤,收集苦杏仁苷。

6. 测定(1)采用紫外可见分光光度计测定苦杏仁苷的吸光度。

(2)根据标准曲线计算苦杏仁苷的含量。

五、实验结果与分析1. 提取时间对苦杏仁苷提取率的影响实验结果表明,随着提取时间的延长,苦杏仁苷的提取率逐渐增加。

当提取时间为2小时时,提取率达到最大值。

此后,继续延长提取时间,提取率变化不大。

2. 溶剂种类对苦杏仁苷提取率的影响实验结果表明,石油醚和乙醇均可作为提取溶剂。

其中,石油醚的提取效果略优于乙醇。

3. 溶剂浓度对苦杏仁苷提取率的影响实验结果表明,随着溶剂浓度的增加,苦杏仁苷的提取率逐渐增加。

当溶剂浓度为60%时,提取率达到最大值。

4. 料液比对苦杏仁苷提取率的影响实验结果表明,随着料液比的增加,苦杏仁苷的提取率逐渐增加。

苦杏仁苷水解

苦杏仁苷水解

苦杏仁苷水解介绍苦杏仁苷是一种天然存在于杏仁、樱桃、苹果等植物中的成分,它是导致苦味的主要成分。

苦杏仁苷本身是无毒的,但在水解的过程中会产生氰化物,具有一定的毒性。

本文将详细探讨苦杏仁苷的水解过程、氰化物的产生以及相关应用。

水解过程苦杏仁苷的结构苦杏仁苷的化学名为杏仁苷氰甙(Amygdalin),它是一种糖苷化合物。

苦杏仁苷由两部分组成:一个糖分子和一个苦杏仁酸分子。

糖分子可以是葡萄糖、果糖或岩糖等,而苦杏仁酸分子则是苦杏仁苷的特有部分。

水解机理苦杏仁苷水解是指在水的存在下,苦杏仁苷分解成糖和苦杏仁酸。

这个过程需要酶的参与,主要有β-葡萄糖苷酶(β-glucosidase)和苦杏仁酸酶(amygdalase)等。

首先,β-葡萄糖苷酶作用将糖与苦杏仁酸分离,生成游离苦杏仁酸。

然后,苦杏仁酸酶进一步将苦杏仁酸转化为苹果酸和氰化物。

氰化物的产生在苦杏仁苷水解的过程中,氰化物是一个关键产物。

苦杏仁酸经过水解生成苹果酸和氰化物,其中氰化物主要是氢氰酸(HCN),它是一种有毒气体。

氰化物的毒性取决于其浓度,高浓度的氰化物对人体健康具有危害。

应用药用价值虽然苦杏仁苷会生成氰化物,但合理使用时也有其药用价值。

苦杏仁可以用于治疗乳腺癌、肾癌、肝癌等多种癌症。

传统中医药认为苦杏仁能够消肿止痛,还具有抗菌、抗病毒的作用。

在现代医学中,苦杏仁苷被提取用于合成抗癌药物,通过改良结构减少了氰化物的产生。

食品加工苦杏仁苷也应用于食品加工中,用于增加苦味。

苦杏仁苷能够赋予食品独特的苦味,常用于制作苦味巧克力、苦味咖啡等产品。

在适量使用的情况下,苦杏仁苷不会产生过多的氰化物,对人体健康没有明显的危害。

家庭中的应用除了药用和食品加工,苦杏仁苷还可以应用于家庭中。

苦杏仁苷可以用来制作苦杏仁汁,喝一小杯可以缓解胃部不适。

此外,苦杏仁苷还可以用来制作苦杏仁油,用于清热解毒、润喉止咳等作用。

注意事项合理用量在使用苦杏仁苷时,需要合理控制用量。

苦杏仁的制作方法

苦杏仁的制作方法

苦杏仁的制作方法简介苦杏仁,又称苦杏仁仁,是指杏仁中所含的苦杏仁苷(Amygdalin),能为食物添加剂使用。

苦杏仁含有挥发油类成分,口感苦涩,具有独特的香味。

苦杏仁可广泛用于烘焙、糕点、甜品等食品的制作中,给食品带来特殊的风味。

本文将介绍苦杏仁的制作方法,以供参考。

材料准备苦杏仁的制作并不复杂,所需材料也相对简单。

1.杏仁:新鲜杏仁的品质直接影响苦杏仁的口感和质量,因此选择新鲜、没有变质的杏仁非常重要。

建议挑选大小适中、外观完好、无霉变的杏仁。

2.B17合成酶:B17合成酶是制作苦杏仁的关键原料,用于将杏仁中的苦杏仁苷转化为苦杏仁酸。

B17合成酶可以在相关食品原料供应商处购买。

制作步骤下面将介绍苦杏仁的制作步骤,让您了解从杏仁到苦杏仁的完整过程。

步骤一:准备杏仁1.将杏仁放入清洁的容器中。

2.冲洗杏仁,确保其表面干净卫生。

3.用纯净水浸泡杏仁,浸泡时间不宜过长,约为5-10分钟。

这样可以软化杏仁的外皮,方便后续的剥皮工作。

步骤二:剥皮1.取出浸泡过的杏仁。

2.将杏仁分批放入开水中焯水,焯水时间不宜过长,30秒左右即可。

3.取出焯好水的杏仁,将其放入冷水中冷却。

4.将冷却后的杏仁逐颗用手搓揉,外皮即可轻松剥离。

确保剥取后的杏仁完整无损,去除掉剩余的杏仁皮。

步骤三:制作苦杏仁1.将剥好皮的杏仁平铺在干燥的盘子或纸巾上晾干,时间尽量长一些,以确保完全干燥。

2.将晾干的杏仁放入榨汁机中。

3.在榨汁机中加入适量的B17合成酶。

根据杏仁的数量和个人口味,可自行调整合成酶的用量。

4.开启榨汁机,并将杏仁和合成酶充分混合,直至形成均匀的糊状物。

这样可以使杏仁中的苦杏仁苷转化为苦杏仁酸。

5.将混合好的杏仁糊倒入干净的容器中,封闭保存。

注意事项在制作苦杏仁的过程中,需要注意以下事项:1.选择新鲜、无霉变的杏仁,避免使用过期或变质的杏仁。

2.B17合成酶为关键原料,购买时要选择信誉度高的供应商。

3.制作苦杏仁时要保持操作环境卫生,避免杂质污染。

苦杏仁定量原理

苦杏仁定量原理

苦杏仁定量原理
苦杏仁定量原理是指在一定条件下,苦杏仁中含有的氢氧化物(HCN)的量是固定的。

这个原理是基于化学反应中的定比例法则,即不同物
质之间的反应是按照一定的比例进行的。

苦杏仁中含有一种叫做氰甙(amygdalin)的化合物,它可以在水和
酸的存在下分解成糖、氰化氢和苯甲醛。

而氰甙中含有两个葡萄糖分
子和一个苯丙醇分子,因此它可以通过测量其中一个组成部分来确定
其含量。

通常使用钾氢硫酸作为反应剂来测定苦杏仁中HCN的含量。

首先将苦杏仁粉末加入到稀硫酸溶液中并加热,这样可以将HCN从样品中释放出来。

然后将释放出来的HCN与碘化钾溶液反应生成碘化氢,并使用碘化钠溶液进行滴定,直到所有碘化氢都被消耗掉。

根据反应方程式可以得知每1mol HCN需要消耗1mol I2。

因此可以
通过滴定过程中所使用的碘化钠溶液的体积来确定HCN的含量。

假设使用V1 mL的碘化钠溶液滴定了样品,那么HCN的含量就可以表示为:
HCN (mg/g) = V1×0.005×24.44/样品质量
其中0.005是碘化钠溶液中每毫升含有的I2的摩尔数,24.44是HCN 分子量,样品质量是指用于测定的苦杏仁粉末的质量。

因此,苦杏仁定量原理是通过测定苦杏仁中HCN释放后与反应剂发生反应生成的产物来确定其含量。

这种方法简单、准确,并且可以用于大批量检测苦杏仁中HCN的含量。

苦杏仁苷结构式

苦杏仁苷结构式

苦杏仁苷结构式1. 引言苦杏仁苷(Amygdalin)是一种天然的化合物,广泛存在于苦杏仁等多种植物中。

它的化学结构式可以用来描述其分子组成和结构特征。

本文将详细介绍苦杏仁苷的结构式及相关信息。

2. 苦杏仁苷的化学结构苦杏仁苷的化学式为C20H27NO11,它由苦杏仁酸(mandelic acid)、D-葡萄糖(D-glucose)和氢氧化氰(hydrogen cyanide)三个单元组成。

苦杏仁苷的结构式可以表示为:CH3C6H4CH(OH)CO2CH2(C6H12O6)CN3. 分子组成和结构特征•苦杏仁苷分子由3个主要部分组成:苦杏仁酸、D-葡萄糖和氢氧化氰。

•苦杏仁酸是一个苯乙烯类化合物,含有一个苯环和一个对羟基苯乙酸基团。

•D-葡萄糖是一种单糖,由6个碳原子组成,具有一个醛基和五个羟基。

•氢氧化氰是一种无机化合物,由一个碳原子和一个氮原子组成。

苦杏仁苷的分子结构中,苦杏仁酸和D-葡萄糖通过酯键连接在一起,形成一个酯化合物。

氢氧化氰则与D-葡萄糖通过氰乙酸酯键连接。

这种复杂的分子结构使苦杏仁苷具有一些特殊的化学和药理特性。

4. 苦杏仁苷的性质和应用苦杏仁苷具有一些特殊的性质和应用:•苦味:正如其名称所示,苦杏仁苷具有强烈的苦味。

在食用植物中,苦杏仁苷起着警告作用,使动物和人类避免食用可能有害的植物部分。

•抗癌活性:苦杏仁苷在体内经过一系列的代谢反应后,可以产生氢氰酸和苯甲醛等物质。

氢氰酸具有抗癌活性,可直接作用于癌细胞,抑制其生长和分裂。

苯甲醛则可以通过抑制癌细胞的ATP产生,诱导细胞凋亡。

•药用价值:苦杏仁苷在传统药物中被广泛应用。

它被认为具有镇咳、镇痛、降血压等药理作用。

然而,由于其含有氢氧化氰等有毒物质,使用时需要谨慎剂量控制。

•食品添加剂:苦杏仁苷也被用作食品添加剂,赋予食品苦味。

它可以用于烘焙食品、糖果、酒类等的制作中,以提高食品的风味。

5. 安全性和注意事项•苦杏仁苷中含有氢氧化氰,它是一种有毒物质。

苦杏仁的功效与作用点

苦杏仁的功效与作用点

苦杏仁的功效与作用点苦杏仁是指杏仁中所含有的苦杏仁甙(amygdalin)含量较高的品种。

苦杏仁不同于甜杏仁,它所含的苦杏仁甙具有一定的毒性。

然而,苦杏仁也具备一些药用价值,被广泛用于中医药领域。

本文将探讨苦杏仁的功效与作用,以及其在中医药中的用途。

第一部分:苦杏仁的功效与作用1. 抗癌效果:苦杏仁中含有的苦杏仁甙是一种天然的抗癌物质。

它能够抑制肿瘤细胞的生长和扩散,促使肿瘤细胞凋亡。

此外,苦杏仁中的苦杏仁甙还可以增强免疫力,提高机体对癌细胞的抵抗力。

2. 镇痛作用:苦杏仁中的苦杏仁甙能被分解成氰化氢和苯甲醛等物质,这些物质对人体具有镇痛作用。

中医常用苦杏仁来缓解各种类型的疼痛,如头痛、牙痛、胃痛等。

3. 扩张血管:苦杏仁中的苦杏仁甙能促进血管的扩张,增加血液流量,降低血液黏稠度,有助于预防和改善心脑血管疾病,如高血压、冠心病、脑卒中等。

4. 清热解毒:苦杏仁具有清热解毒的作用。

它能够通过排除体内的有害物质,促进新陈代谢,增强抵抗力。

苦杏仁常被用于治疗中暑、发热、口腔溃疡等症状。

5. 润肠通便:苦杏仁中的苦杏仁甙具有润肠通便的作用。

它能够增加粪便的水分含量,减少便秘的发生。

苦杏仁可以作为一种天然的缓泻剂,有助于促进肠道蠕动。

第二部分:苦杏仁在中医药中的用途1. 健脑养心:苦杏仁可以舒缓心情,消除焦虑和紧张。

中医常用苦杏仁来调节心理状态,减轻精神压力,并有助于改善睡眠质量。

此外,苦杏仁还被用于治疗失眠、忧虑等症状。

2. 治咳化痰:苦杏仁具有温肺化痰的作用,适用于咳嗽痰多、气喘等症状。

中医常用苦杏仁来缓解呼吸道疾病,如支气管炎、慢性阻塞性肺疾病等。

3. 消食导滞:苦杏仁可以增加胃肠蠕动,促进消化液的分泌,有助于消化。

中医常用苦杏仁来治疗食欲不振、消化不良等症状。

4. 治疗湿疹:苦杏仁具有清热解毒、凉血止痒的作用。

中医常用苦杏仁来治疗湿疹、荨麻疹等皮肤病。

5. 护肝利胆:苦杏仁可以促进胆汁的分泌,提高胆囊排空功能,有助于保护肝脏和调节胆固醇代谢。

杏仁苷 苦杏仁氰甙 -回复

杏仁苷 苦杏仁氰甙 -回复

杏仁苷苦杏仁氰甙-回复杏仁苷(Amygdalin)和苦杏仁氰甙(Amygdalin B17)是两种具有争议的化学物质,一直以来都被广泛讨论其可能的医疗效果和毒性。

本文将从它们的来源、历史、作用机制、用途以及争议等方面一步一步回答读者的疑问。

首先,让我们来了解一下杏仁苷和苦杏仁氰甙的来源。

杏仁苷主要存在于苦杏仁(Bitter Almond)中,而苦杏仁氰甙是杏仁苷的衍生物,可以从苦杏仁中提取得到。

苦杏仁是一种传统中药材,其外观与我们所熟悉的甜杏仁相似,但其含有一定量的毒性成分。

值得注意的是,苦杏仁氰甙在体内被代谢为氰化物,一旦摄入过量可能会对人体造成中毒。

关于杏仁苷和苦杏仁氰甙的历史,它们在中医传统上被广泛使用。

据记载,中国古代医药典籍《本草纲目》中就提到了苦杏仁作为药材的应用。

然而,由于苦杏仁的毒性,其使用一直备受争议。

作用机制方面,杏仁苷和苦杏仁氰甙的活性成分被认为能够抑制肿瘤生长。

杏仁苷在人体内被代谢为氢氰酸、苯甲酸和糖类物质,其中氢氰酸具有抗肿瘤的潜力。

然而,这种活性与氰化物的毒性相互关联,引发了人们对其安全性的质疑。

对于杏仁苷和苦杏仁氰甙的用途,因其被认为具有抗肿瘤潜力,一些人倾向于将其用作替代疗法。

然而,目前临床研究尚未证实其抗肿瘤功效。

实际上,杏仁苷和苦杏仁氰甙的毒性被认为是潜在的危险。

氰化物中毒会导致中枢神经系统抑制、呼吸系统衰竭甚至死亡。

因此,在处理苦杏仁和其提取物时,必须小心谨慎,避免摄入过量。

关于杏仁苷和苦杏仁氰甙存在的争议,主要集中在其安全性和疗效上。

一些人声称它们具有抗癌和抗肿瘤的作用,但缺乏充分的科学证据来支持这一观点。

此外,食用苦杏仁或其提取物可能引发副作用,如头晕、恶心和呕吐等。

一些健康机构和专家也警告公众要慎重对待这些化学物质,特别是在没有医生指导下不要自行使用。

综上所述,杏仁苷和苦杏仁氰甙是两种备受争议的化学物质。

尽管它们在中医传统上被广泛使用,但目前的临床研究尚未证实其抗癌效果。

苦杏仁苷

苦杏仁苷

苦杏仁苷苦杏仁苷是传统中药苦杏仁中的有效成分 ,人们对它的研究已有近二百年的历史 ,早在1803 年 Schrader 在研究苦杏仁成分时就发现了此类物质 ,直到 1830 年 Robiquet 等从中分离出苦杏仁苷 ,迄今它已成为医药上常用的祛痰止咳剂、辅助性抗癌药物,苦杏仁苷广泛存在于杏、桃、李子、苹果、山楂等多种蔷薇科植物果实的种子中 ,尤其在苦杏仁中含量较多 ,大约在 2 %~3 %。

苦杏仁苷20世纪初从杏核中提出,1920年美国首次采用苦杏仁苷治疗肿瘤,Ernest Krebs博士是第一个将其使用于医药的人,并认为是维生素,命名为B17。

美国曾将其通过FDA认可,20世纪60年代又删除,至今不允许使用。

比利时、意大利、墨西哥、菲律宾等20个国家允许使用与制造苦杏仁苷。

对人体的功能存在争议。

苦杏仁苷分子由一单元苯甲醛、一单元氢氰酸和两单元葡萄糖组成。

其分子式为C20H27NO11 ,结构式:1.镇咳平喘作用苦杏仁苷内服后 ,可在体内分解为氢氰酸和苯甲醛 ,氢氰酸对呼中枢可产生一定的抑制作用 ,使呼吸运动趋于安静而达到镇咳平喘的作用。

苦杏仁苷对油酸型呼吸窘迫症动物可促进肺面活性物质的合成 ,并使病变得到改善。

2.抗肿瘤作用苦杏仁苷具有良好的抗肿瘤作用 ,被用作治疗癌症的辅助药物。

实验表明,苦杏仁苷的化学性质不活跃,对健康组织影响很少,仅侵犯和破坏癌细胞。

苦杏仁苷的活性成分是一种天然产生的氰化物,是人体代谢的产物,只能在癌细胞中发挥作用。

在健康的肝脏、肾脏、脾脏、和白细胞中,存在的β—葡萄苷酶作用于苦杏仁苷后产生氰化物和苯甲醛,二者协同毒性增强,机体存在硫氰酸酶是一种保护酶可将氰化物转变无毒的硫氰酸盐(降压、协助机体合成B12)。

肿瘤细胞无硫氰酸酶,苯甲醛可氧化为安息香酸——抗风湿、防腐、止痛,在发病部位充斥天然止痛剂。

氰化物和苯甲醛协同破坏癌细胞。

支持苦杏仁苷的学者通过调查与实验认为:古希腊与罗马人2000多年前就使用苦杏仁苷入药,中国人也用苦杏仁治疗癌症。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• COLORECTAL CANCER •Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cellsHae-Jeong Park, Seo-Hyun Yoon, Long-Shan Han, Long-Tai Zheng, Kyung-Hee Jung, Yoon-Kyung Uhm, Je-Hyun Lee,Ji-Seon Jeong, Woo-Sang Joo, Sung-Vin Yim, Joo-Ho Chung, Seon-Pyo HongELSEVIERPO Box 2345, Beijing 100023, China World J Gastroenterol 2005;11(33): World Journal of Gastroenterology ISSN 1007-9327wjg@ © 2005 The WJG Press and Elsevier Inc. All rights reserved.Hae-Jeong Park, Seo-Hyun Yoon, Long-Shan Han, Long-Tai Zheng, Kyung-Hee Jung, Yoon-Kyung Uhm, Sung-Vin Yim,Joo-Ho Chung, Department of Pharmacology, Kohwang Medical Research Institute, College of Medicine, Kyung Hee University,Seoul 130-701, South KoreaJe-Hyun Lee, Ji-Seon Jeong, Woo-Sang Joo, Seon-Pyo Hong,Department of Oriental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, South Korea Supported by a grant of the Oriental Medicine R&D Project,Ministry of Health and Welfare, Republic of Korea, No. 03-PJ9-PG3-21600-0014 and No. 0405-OM00-0815-0001 and Korea Institute of Oriental MedicineCorrespondence to: Seon-Pyo Hong, Department of Oriental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, South Korea. seonhong@khu.ac.kr Telephone: +822-961-9207 Fax: +822-966-3885Received: 2005-03-28 Accepted: 2005-04-09AbstractAIM: The genes were divided into seven categories according to biological function; apoptosis-related, immune response-related, signal transduction-related, cell cycle-related, cell growth-related, stress response-related and transcription-related genes.METHODS: We compared the gene expression profiles of SNU-C4 cells between amygdalin-treated (5 mg/mL,24 h) and non-treated groups using cDNA microarray analysis. We selected genes downregulated in cDNA microarray and investigated mRNA levels of the genes by RT-PCR.RESULTS: Microarray showed that amygdalin downregulated especially genes belonging to cell cycle category: exonuclease 1 (EXO1), ATP-binding cassette, sub-family F , member 2(ABCF2), MRE11 meiotic recombination 11 homolog A (MRE11A ), topoisomerase (DNA) I (TOP1), and FK506binding protein 12-rapamycin-associated protein 1(FRAP1). RT-PCR analysis revealed that mRNA levels of these genes were also decreased by amygdalin treatment in SNU-C4 human colon cancer cells.CONCLUSION: These results suggest that amygdalin have an anticancer effect via downregulation of cell cycle-related genes in SNU-C4 human colon cancer cells,and might be used for therapeutic anticancer drug.© 2005 The WJG Press and Elsevier Inc. All rights reserved.Key words: Amygdalin; SNU-C4; cDNA microarray; Cell cyclePark HJ, Yoon SH, Han LS, Zheng LT, Jung KH, Uhm YK,Lee JH, Jeong JS, Joo WS, Yim SV, Chung JH, Hong SP.Amygdalin inhibits genes related to cell cycle in SNU-C4human colon cancer cells. World J Gastroenterol 2005; 11(33): 5156-5161/1007-9327/11/5156.aspINTRODUCTIONThe incidence of colorectal cancer has been increasing rapidly since 1975[1] with about 300 000 new cases and 200 000 deaths in Europe and USA every year [2,3]. Death from colorectal cancer is the second commonest cause of any cancer in men in the European Union [4]. The stage of the disease is an important effect to long-term survival of colorectal cancer. If detected early, it may be curable by surgery. But once metastases develop the prognosis becomes poor. At least 40% of patients with colorectal cancer develop metastases during their illness [5]. Although various therapies as surgery, radiotherapy, and chemotherapy are used on advanced cancer, the most effective approach is yet to be discovered.Amygdalin is ingredient of Prunus persica Batsch (Persicae semen, Rosaceae), Prunus armeniaca L. var. ansu Max (Armenicae semen, Rosaceae) and Prunus amygdalus Batsch var. amara (Amygdali semen amara, Rosaceae), and these are abundant in the seeds of bitter almond and apricots [6].The evidence for effect of amygdalin has been reviewed as prevention and control of cancers. Due to cyanide toxicity,there has been controversy for amygdalin as cancer drug [7-9].However, Moertel et al ., demonstrated that, in human,intravenous infusion of amygdalin produced neither cyanidemia nor signs of toxicity but that oral administration resulted in significant blood cyanide levels and that, in one case, oral amygdalin plus almond extract produced transient symptoms of cyanide intoxication and further increase of blood cyanide [9]. Additionally, Fukuda et al .[10], reported anti-tumor effect of amygdalin and other components of Prunus persica seeds. Kwon et al .[13], reported that controversy on anticancer effect of amygdalin was due to its conversion to inactivate isoform, and Persicae semen extract induced apoptosis. Although taking a growing interest and reports for amygdalin as cancer drug, anti-cancer mechanism of amygdalin has not been reported.In this study, we determined whether amygdalin-treated SNU-C4 cells were susceptible to cell death, and compared the expression profiles of SNU-C4 cells between amygdalin-treated group and non-treated group using cDNAmicroarray analysis. We also performed RT-PCR for genes selected by cDNA microarray analysis.MA MATERIALS AND METHODS TERIALS AND METHODS Preparation of amygdalinBoth 500 g of Armeniacae semen hatched from the shell and 10 L of 4% citric acid solution were refluxed for 2 h.Filtered when it was still hot, the filtrate was passed through the column packed with HP-20. The substance absorbed within the column was concentrated after it had been eluted by ethanol. 4.2 g of amygdalin (with the yield rate of 0.84%) was obtained by recrystallizing the extract with ethanol. The amygdalin was used after it had been determined to be over 95.0% of purity, by means of high-pressure liquid chromatography (HPLC) to measure its purity (Figure 1).Figure 1 Reverse-phase HPLC separation of amygdalin by phosphate buffer.(A ) D-amygdalin standard. (B ) D-amygdalin obtained by our method; peaks: 1,neoamygdalin; 2, D-amygdalin.Cell cultureThe SNU-C4 cell line was obtained from the Korean Cell Line Bank (KCLB, Seoul, South Korea). Cells were cultured in RPMI-1640 medium (Gibco, NY, USA) supplemented with 10% heat-inactivated FBS (Gibco). Cultures were maintained in a humidified incubator at 37 in an atmosphere of 50 mL/L CO 2, 95% air, and the medium was changed every 2 d.MTT assayCell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells were seeded in triplicate at a concentration of 1×105 cells/well on a 96-well plate. SNU-C4 cells were treated with amygdalin at concentrations of 0.25, 0.5, 2.5, and 5 mg/mL for 24 h.After MTT (Sigma, MO, USA) was added to each group,the cells were incubated for 4 h. Then, they were further incubated for 1 h, including the solution in which MTT was dissolved. The viability was measured with a microtiter plate reader (Bio-Tek, VT, USA) at a test wavelength of 595 nm with a reference wavelength of 690 nm. The optical density (A ) was calculated as the difference between the reference wavelength and the test wavelength. Percent viability was calculated as (A of drug-treated sample/A of untreated sample)×100.cDNA synthesisTotal RNA was extracted using RNAzol TM B (TEL-TEST,TX, USA) as per the manufacturer’s protocol. cDNA synthesis was performed with 3DNA TM Array 50TM detection method (Genisphere, PA, USA) as per the manufacturer’s protocols. In the control and amygdalin treatment (5 mg/mL,24 h), cDNA was synthesized from total RNA as follows:3 µL of RT primer, total RNA and additional nuclease-free water were mixed to form a 29 µL RNA-RT primer mix,which was microfuged briefly, heated to 80 for 10 min,and immediately transferred to ice. One microliter of the RNase inhibitor Superase-In TM was added to the RNA-RT primer mix. Eight microliters of 5× SuperScript II First Strand Buffer (Gibco), 2 µL of dNTP mix (10 mmol/L each of dATP, dCTP, dGTP, dTTP), 4 µL of 0.1 mol/L dithiothreitol, 2 µL of Superscript II enzyme (400 units),and 3 µL of RNase-free water were mixed in each microtube,and the RNA-RT primer mix was then added. The tubes were then incubated at 42 for 2 h, and the reaction was heated by adding 7 µL of 0.5 mol/L NaOH/50 mmol/L EDTA. The microtubes were then incubated for denaturation at 65 for 10 min, and neutralization was carried out by adding 10 µL of 1 mol/L Tris-HCl at pH 7.5. The contents of two tubes were combined to yield a 130 µL cDNA solution in one single tube. The original tubes were rinsed with 16 µL of 10 mmol/L Tris at pH 8.0/1 mmol/L EDTA.Upon completion of the synthesis procedure, the cDNA solution was concentrated by ethanol precipitation. Three microliters of thoroughly vortexed 5 mg/mL linear acrylamide solution was added to the cDNA solution. Six microliters of NaCl and 540 µL of 95-100% ethanol was then added and moderately vortexed. The mixture was then incubated at -20 for 30 min, centrifuged at >10 000 g for 15 min, and the supernatant was aspirated. The cDNA pellet was washed with 300 µL of 70% ethanol. After centrifuging again at >10 000 g for 5 min, the supernatant was aspirated, and the cDNA pellet was completely dried at65 over a period of 10-30 min.Microarray hybridizationA cDNA chip of TwinChip TM Human 8K (Digital Genomics,Seoul, South Korea) was used. The concentrated cDNA and 3DNA TM were hybridized on two identical arrays in a slide for a duplicate experiment. Two times formamide-based hybridization buffer was thawed and responded by heating at 55 for 10 min with intermittent inversions, and then microfuged for 1 min. Ten microliters of nuclease-free water was added to the cDNA pellet, and the cDNA wascompletely resuspended by heating at 55 for 10 min with intermittent inversions, and then microfuged for 1 min.Ten microliters of nuclease-free water was added to the cDNA pellet, and the cDNA was completely resuspended by heating at 65 for 10-15 min and vortexing for 5 min.Thirty microliters of hybridization mixture was prepared from 10 µL of cDNA, 15 µL of 2× hybridization buffer,2 µL of Array50 dT Blocker, and 3 µL of nuclease-freewater. The hybridization mixture was incubated at 80 for 10 min and then at 50 for 30-60 min. The hybridization mix was then added to the pre-warmed chip. After a disposable coverslip was applied, the chip was incubatedA b s o r b a n c e0 4 8 12 Retention time/min 21A b s o r b a n c e0 4 8 12 Retention time/min21ABPark HJ et al . The blockage effect of amygdalin on cell cycle genes 5157overnight in a dark humidified chamber at 50 . After serial washing, the array was incubated for 2 min at room temperature with 95% ethanol. The slide was immediately transferred to a dry 50-mL centrifuge tube and dried by centrifugation for 2 min at 800-1 000 r/min. Array50capture reagent was then thawed in the dark at room temperature over a period of 20 min and vortexed for 3 s.Thirty microliters of hybridization mixture was prepared from 15 µL of 2× hybridization buffer, 2.5 µL of 3DNA TM capture reagent #1 (Cy3), 2.5 µL of 3DNA TM capture reagent #2 (Cy5), and 10 µL of nuclease-free water. Following gentle vortexing and brief microfuging, the hybridizationmixture was incubated at 80 for 10 min and then at 50 for 20 min. The hybridization mixture was applied to the pre-warmed chip after it was removed from the incubator. After a disposable coverslip was applied, the microarray was incubated in a dark humidified chamber at50 for 2-3 h. After serial washing, the slide was immediately transferred to a dry 50-mL centrifuge tube and dried by centrifugation for 2 min at 800-1 000 r/min,and then transferred to a dark slide box.Scanning and data analysisThe hybridized microarray was scanned with a confocal laser scanning microscope (ScanArray 5000; Packard Inc.,CT, USA) at 532 nm for Cy3 and 635 nm for Cy5. Image analysis using GenePix (Axon Inc., CA, USA) produced quantitative values for each microarray spot. Pixel intensity of the background was subtracted from those of microarray spots. Spot intensities were normalized using the intensities generated by intensity/location dependent method [11].Normalized spot intensities were calculated into gene expression ratios between the control and treatment groups.Mean data acquired from two identical arrays in a single slide of TwinChip TM were analyzed.RT-PCRTwo micrograms of sample of RNA isolated from SNU-C4cells using RNAzol TM B (TEL-TEST) and 2 µL of randomhexamers (Promega, WI, USA) were added together, and the mixture was heated at 65 for 10 min. AMV reverse transcriptase (Promega) of 1 µL, 5 µL of 10 mmol/L dNTP (Promega), 1 µL of RNasin (Promega) and 5 µL of 10×AMV RT buffer (Promega) were then added to the mixture,and the final volume was brought up to 50 µL with diethyl pyrocarbonate-treated water. Subsequent PCR amplification was performed in a reaction volume of 40 µL containing 1 µL of the appropriate cDNA, 1 µL of each set of primers at a concentration of 10 pmol/L, 4 µL of 10× reaction buffer, 1 µL of 2.5 mmol/L dNTP and 2 U of Taq DNA polymerase (TaKaRa Bio Inc., Shiga, Japan). We selected five genes, exonuclease 1 (EXO1), ATP-binding cassette (ABC), sub-family F, member 2 (ABCF2), MRE11 meiotic recombination 11 homolog A (MRE11A ), topoisomerase (DNA) I (TOP1), and FK506 binding protein 12-rapamycin associated protein 1 (FRAP1) downregulated in microarray analysis by treatment of amygdalin and performed PCR.Primer sequences, annealing temperatures and products size of genes are summarized in Table 1. The RT-PCR products were electrophoresed on a 1.5% agarose gel and visualized by staining with ethidium bromide.Statistical analysisResults were expressed as mean±SE. The data were analyzed by one-way ANOVA following the Dunnett’s post hoc analysis, using SPSS. Differences were considered significant at P <0.05.RESUL RESULTSTS Cytotoxicity of amygdalin in SNU-C4 cellsWhen treated with amygdalin of 0.25, 0.5, 2.5, and 5 mg/mL concentrations for 24 h, viabilities of SNU-C4 cells were 96.1±7.4%, 87.8±2.4%, 82.9±5.5%, and 63.7±8.3%,respectively, compared with those of non-treated cells (Figure 2), and MTT assay showed dose-dependent cytotoxicity of amygdalin on SNU-C4 cells. Therefore, to compare the precise effect of amygdalin, further experiments were carried out, using 5 mg/mL amygdalin.Table 1 Sequences of the primers used in RT-PCR analysisPrimer name Primer sequence (sense/anti-sense) Fragment length (bp)Annealing temperature ()EXO15’-CTCTTTTGAGAGCAGCAAAT-3’ 400585’-GGTCTGGTCACTTTGACTGTC-3’ABCF25’-TGCACAACAAGAAACTGAAG-3’ 523585’-TGCTCTTGTAAATGCTGATGGT-3’MRE11A5’-GAAGGTACGTCGTTTCAGAGAA-3’ 456585’-CGATCTTGACTCTGGGACATGATT-3’TOP15’-CTGTGAAGAGGAACAGTGTGGT-3’ 561585’-GAACAGGTGTCTGAACCAAAAC-3’FRAP15’-GCTCGTAGTTGGGATAACAG-3’ 426585’-GTTGCCAGGACATTATTGAT-3’EGFR5’-ATGAAGAAGACATGGACGAC-3’ 522565’-AGAAGTCCTGCTGGTAGTCA-3’CYCLOPHILIN5’-ACCCCACCGTGTTCTTCGAC-3’ 300565’-CATTTGCCATGGACAAGATG-3’5158 ISSN 1007-9327 CN 14-1219/ R World J Gastroenterol September 7, 2005 Volume 11 Number 33Analysis of microarray expression dataIn order to assess the expression profiles in SNU-C4 cells treated with amygdalin (5 mg/mL, 24 h), cDNA microarray that contained duplicate cDNA probes from 8k human clones was performed to be screened at a time. Figure 3showed the image of 8k human cDNA microarray. The green spots represented genes of control group that was labeled by Cy3-captured reagent and overexpressed than amygdalin group. In contrast, the red spots represented genes of amygdalin group that was labeled by Cy5-captured reagent and were overexpressed than control. The yellow spots represented genes that showed no difference in expression level between control and amygdalin group.Figure 3 Expression pattern in a 8k human cDNA microarray.To normalize intensity ratio of each gene expression pattern, global M method was used in this study. First, the primary data were normalized by the total spots of intensity between two groups, and then normalized by the intensity ratio of reference genes, such as housekeeping genes in both groups. Finally, the expression ratio of control and amygdalin group was converted to log 2 ratio of each gene,and was represented by a scattered plot in Figure 4.After normalizing the data, a difference in the normalized intensity ratio was selected. The genes of expression ratio were observed to be lower than -1 for which the observed expression was downregulated by amygdalin (Table 2). Thegenes downregulated by amygdalin were divided into seven categories by biological function; apoptosis-related gene,response to immune-related gene, signal transduction-related gene, cell cycle-related gene, cell growth-related gene,response to stress-related gene and transcription-related gene.We paid attention to genes belonging to cell cycle category.EXO1, ABCF2, MRE11A , TOP1 and FRAP1 cannot belong to category of cell cycle but category of cell growth,stress response, and transcription.Figure 4 Scattered plot of the normalization results by global M method.Confirmation of cDNA microarray findings by RT-PCRWe selected EXO1, ABCF2, MRE11A , TOP1, and FRAP1among the downregulated genes by amygdalin treatment,and observed mRNA expressions of EXO1, ABCF2,MRE11A , TOP1, and FRAP1 using RT-PCR that reproduced the results of cDNA microarray. The efficiency of the reaction was adjusted by CYCLOPHILIN amplification. As shown in Figure 5, the expressions of EXO1, ABCF2, MRE11A , TOP1, and FRAP1 were decreased by amygdalin treatment (5 mg/mL, 24 h).Figure 5 Confirmation of cDNA microarray results of downregulated genes by RT-PCR. Five genes, exonuclease 1 (EXO1), ABC, sub-family F (GCN20),member 2 (ABCF2), MRE11 meiotic recombination 11 homolog A (MRE11A ),topoisomerase (DNA) I (TOP1), and FK506 binding protein 12-rapamycin associated protein 1 (FRAP1), were analyzed by RT-PCR with total RNA from control and amygdalin (5 mg/mL, 24 h)-treated human colon cancer cells. As an internal control, CYCLOPHILN was amplified.DISCUSSIONAmygdalin belongs to a family of compounds called cyanogenic glycosides. Cyanide is believed to be the active cancer-killing ingredient in amygdalin. Amygdalin would be broken down by an enzyme in cancerous tissue, and toxicFigure 2 Cytotoxicity of amygdalin. SNU-C4 human colon cancer cells were treated with various concentrations (0.25, 0.5, 2.5, and 5 mg/mL) of amygdalin for 24 h prior to the determination of cellular viability through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Independent experiment was repeated thrice. Results are presented as mean±SE (b P <0.01 vs controlgroup).C e l l v i a b i l i t y (% o f c o n t r o l )120100806040200Control 0.25 0.5 2.5 5.0 (mg/mL)M6420-2-4-68 10 12 14 16 A1 2EXO1ABCF2MRE11A TOP1FRAP1CYCLOPHILINPark HJ et al . The blockage effect of amygdalin on cell cycle genes5159cyanide to release from broken amygdalin would kill the cancer. It is further hypothesized that another enzyme, rhodanese, which has the ability to detoxify cyanide, is present in normal tissues but deficient in cancer cells. These two factors supposedly combine to effect a selective poisoning of cancer cells by the cyanide, while normal cells remain undamaged[6,12]. However, amygdalin is not approved by the Food and Drug Administration (FDA) for use in USA,and the anticancer effect of amygdalin has admitted controversy. Kwon et al., demonstrated that the controversy on amygdalin was due to its conversion to inactivate isoform, and Persicae Semen extract induced apoptosis in human promyelocytic leukemia (HL-60) cells with IC50 of 6.4 mg/mL in the presence of 250 nmol/L of β-galactosidase[13].One of the advantages of cDNA microarray is the possibility to observe the expression pattern of the wholeTable 2 List of genes downregulated by amygdalin treatmentGene Chromosome Title Global MCell cycleFRAP1 1p36.2 FK506 binding protein 12-rapamycin associated protein 1 –1.029 TOP1 20q12–q13.1 Topoisomerase (DNA) I –1.118 MRE11A 11q21 MRE11 meiotic recombination 11 homolog A (S.cerevisiae) –1.235 EXO1 1q42–q43 Exonuclease 1 –1.740 ABCF2 7q36 ABC, sub-family F (GCN20), member 2 –1.993 Cell growthFRAP1 1p36.2 FK506 binding protein 12-rapamycin associated protein 1 –1.029 TIEG2 2p25 TGFB inducible early growth response 2 –1.082 NR3C2 4q31.1 Nuclear receptor subfamily 3, group C, member 2 –1.099 IGF2R 6q26 Insulin-like growth factor 2 receptor –1.011 TOP1 20q12–q13.1 Topoisomerase (DNA) I –1.118 MS4A2 11q13 Membrane-spanning 4-domains, subfamily A, member 2 –1.175(Fc fragment of IgE, high affinity I, receptor for; beta polypeptide)MRE11A 11q21 MRE11 meiotic recombination 11 homolog A (S.cerevisiae) –1.235 COPA 1q23–q25 Coatomer protein complex, subunit alpha –1.304 SORL1 11q23.2–q24.2 Sortilin-related receptor, L (DLR class) A repeats-containing –1.360 NPC1 18q11–q12 Niemann-Pick disease, type C1 –1.405 FGD1 Xp11.21 FYVE, RhoGEF and PH domain containing 1 (faciogenital dysplasia) –1.518 ABCF2 7q36 ABC, sub-family F (GCN20), member 2 –1.993 EXO1 1q42–q43 Exonuclease 1 –1.740 PLA2G1B 12q23–q24.1 Phospholipase A2, group IB (pancreas) –2.293 Stress responseIGF2R 6q26 Insulin-like growth factor 2 receptor –1.011 FRAP1 1p36.2 FK506 binding protein 12-rapamycin associated protein 1 –1.029 TIEG2 2p25 TGFB inducible early growth response 2 –1.082 NR3C2 4q31.1 Nuclear receptor subfamily 3, group C, member 2 –1.099 TOP1 20q12–q13.1 Topoisomerase (DNA) I –1.118 MS4A2 11q13 Membrane-spanning 4-domains, subfamily A, member 2 –1.175(Fc fragment of IgE, high affinity I, receptor for; beta polypeptide)MRE11A 11q21 MRE11 meiotic recombination 11 homolog A (S. cerevisiae) –1.235 COPA 1q23-q25 Coatomer protein complex, subunit alpha –1.304 SORL1 11q23.2–q24.2 Sortilin-related receptor, L(DLR class) A repeats-containing –1.360 NPC1 18q11–q12 Niemann-Pick disease, type C1 –1.405 FGD1 Xp11.21 FYVE, RhoGEF and PH domain containing 1 (faciogenital dysplasia) –1.518 EXO1 1q42–q43 Exonuclease 1 –1.740 ABCF2 7q36 ABC, sub-family F (GCN20), member 2 –1.993 PLA2G1B 12q23–q24.1 Phospholipase A2, group IB (pancreas) –2.293 TranscriptionIGF2R 6q26 Insulin-like growth factor 2 receptor –1.011 FRAP1 1p36.2 FK506 binding protein 12-rapamycin associated protein 1 –1.029 TIEG2 2p25 TGFB inducible early growth response 2 –1.082 NR3C2 4q31.1 Nuclear receptor subfamily 3, group C, member 2 –1.099 MS4A2 11q13 Membrane-spanning 4-domains, subfamily A, member 2 –1.175(Fc fragment of IgE, high affinity I, receptor for; beta polypeptide)TOP1 20q12–q13.1 Topoisomerase (DNA) I –1.118 MRE11A 11q21 MRE11 meiotic recombination 11 homolog A (S.cerevisiae) –1.235 COPA 1q23–q25 Coatomer protein complex, subunit alpha –1.304 SORL1 11q23.2–q24.2 Sortilin-related receptor, L (DLR class) A repeats-containing –1.360 NPC1 18q11–q12 Niemann-Pick disease, type C1 –1.405 FGD1 Xp11.21 FYVE, RhoGEF, and PH domain containing 1 (faciogenital dysplasia) –1.518 ABCF2 7q36 ABC, sub-family F (GCN20), member 2 –1.993 EXO1 1q42–q43 Exonuclease 1 –1.740 PLA2G1B 12q23–q24.1 Phospholipase A2, group IB (pancreas) –2.293 5160 ISSN 1007-9327 CN 14-1219/ R World J Gastroenterol September 7, 2005 Volume 11 Number 33genes and compare with different conditions. This study is the first work of comparison of the gene expression profiles of SNU-C4 human colon cancer cells after amygdalin treatment. cDNA microarray analysis showed that amygdalin treatment downregulated genes belong to categories of cell cycle-related gene, and related to cell growth, response to stress and transcription.Anticancer agents targeting DNA and DNA-associated processes are widely used in the treatment of human cancers and produce significant increases in the survival of patients[14]. In general, four complex systems have evolved to respond to DNA damage: DNA repair, cell cycle checkpoint control, apoptosis, and damage tolerance[15]. EXO1 is involved in mismatch repair and recombination, and has been considered as a candidate gene for colorectal susceptibility[16,17]. ABCF2 is a member of the superfamily of ABC transporters. ABC proteins transport various molecules across extra- and intracellular membranes[18]. MRE11A encodes a nuclear protein involved in homologous recombination, telomere length maintenance, and DNA double-strand break repair[19,20]. TOP1 acts as a swivel during replication, transcription, and recombination to relieve overwinding if duplex DNA[15,21]. DNA topoisomerase inhibitors represent a major class of anticancer agents (e.g. camptothecin; CPT) with documented activities against a broad spectrum of human malignancies[22]. FRAP1 has been identified as the downstream target of the FKBP12-rapamycin complex, which inhibits progression through G1 of the cell cycle[23], and mediates cellular responses to stresses such as DNA damage and nutrient deprivation[24,25]. EXO1, ABCF2, MRE11A, TOP1, and FRAP1 particularly belong to categories of cell cycle-related gene and associated to DNA replication, repair or recombination. Thus, downregulation of these genes by amygdalin would induce DNA damage in SNU-C4 cells. In confirmation through RT-PCR, mRNA expressions of these five genes were also decreased by amygdalin treatment. Our results indicate that amygdalin induced DNA damage, involved in cell cycle on SNU-C4 human colon cancer cells and amygdalin might be used for therapeutic anticancer drug.REFERENCES1Singh P, Dai B, Dhruva B, Widen SG. Episomal expression of sense and antisense insulin-like growth factor (IGF)-binding protein-4 complementary DNA alters the mitogenic response of a human colon cancer cell line (HT-29) by mechanisms that are independent of and dependent upon IGF-I. Cancer Res 1994; 54: 6563-65702Midgley R, Kerr D. Colorectal cancer. Lancet 1999; 353: 391–399 3Kim EJ, Schaffer BS, Kang YH, MacDonald RG, Park JH.Decreased production of insulin-like growth factor-binding protein (IGFBP)-6 by transfection of colon cancer cells with an antisense IGFBP-6 cDNA construct leads to stimulation of cell proliferation. J Gastroenterol Hepatol 2002; 17: 563–570 4Boyle P, Langman JS. ABC of colorectal cancer: epidemiology.BMJ 2000; 321: 805-8085Szepeshazi K, Schally AV, Groot K, Armatis P, Halmos G, Herbert F, Szende B, Varga JL, Zarandi M. Antagonists of growth hormone-releasing hormone (GH-RH) inhibit IGF-IIproduction and growth of HT-29 human colon cancers. Br J Cancer 2000; 82: 1724-17316Cho CJ, Yang HS, Kim TH, Chong SY, Lee IR, Kim JH, Leem JP, Chong MH, Lee MW, Lee KY, Pae KH, Kim JW, Han DR. Hyundae-Saengyak-Hak, 8th ed. Hak Chang Press 1998: 321-3237Flora KP, Cradock JC, Ames MM. A simple method for the estimation of amygdalin in the urine. Res Commun Chem Pathol Pharmacol 1978; 20: 367-3788Khandekar JD, Edelman H. Studies of amygdalin (laetrile) toxicity in rodents. JAMA 1979; 242: 169-1719Moertel CG, Ames MM, Kovach JS, Moyer TP, Rubin JR, Tinker JH. A pharmacologic and toxicological study of amygdalin. JAMA 1981; 245: 591-59410Fukuda T, Ito H, Mukainaka T, Tokuda H, Nishino H, Yoshida T. Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biol Pharm Bull 2003; 26: 271-27311Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data: a robust com-posite method addressing single and multiple slide system-atic variation. Nucleic Acids Res 2002; 30: e1512Newmark J, Brady RO, Grimley PM, Gal AE, Waller SG, Thistlethwaite JR. Amygdalin (Laetrile) and prunasin beta-glucosidases: distribution in germ-free rat and in human tu-mor tissue. Proc Natl Acad Sci USA 1981; 78: 6513-651613Kwon HY, Hong SP, Hahn DH, Kim JH. Apoptosis induction of Persicae Semen extract in human promyelocytic leukemia (HL-60) cells. Arch Pharm Res 2003; 26: 157-16114Capranico G, Zagotto G, Palumbo M. Development of DNA topoisomerase-related therapeutics: a short perspective of new challenges. Curr Med Chem Anti Canc Agents 2004; 4: 335-34515Wang Z. DNA damage-induced mutagenesis: a novel target for cancer prevention. Mol Interv 2001; 1: 269-28116Tishkoff DX, Amin NS, Viars CS, Arden KC, Kolodner RD.Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 1998; 58: 5027-503117Wilson DM 3rd, Carney JP, Coleman MA, Adamson AW, Christensen M, Lamerdin JE. Hex1: a new human Rad2 nu-clease family member with homology to yeast exonuclease 1.Nucleic Acids Res 1998; 26: 3762-376818Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 2001; 42: 1007-101719Paull TT, Gellert M. The 3’ to 5’ exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol Cell1998; 1: 969-97920Trujillo KM, Yuan SS, Lee EY, Sung P. Nuclease activities ina complex of human recombination and DNA repair factorsRad50, Mre11, and p95. J Biol Chem 1998; 273: 21447-21450 21Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 2001; 70: 369-41322Liu LF. DNA topoisomerase poison as antitumor drugs. Annu Rev Biochem 1989; 58: 351-37523Astier AL, Xu R, Svoboda M, Hinds E, Munoz O, de Beau-mont R, Crean CD, Gabig T, Freedman AS. Temporal gene expression profile of human precursor B leukemia cells in-duced by adhesion receptor: identification of pathways regulating B-cell survival. Blood 2003; 101: 1118-112724Brown EJ, Albers MW, Bum Shin T, Ichikawa K, Keith CT, Lane WS, Schreiber SL. Amammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369: 756-75825Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homology of yeast Tor, interacts with the FKBP12/rapamycincomplex.Proc Natl Acad Sci USA 1994; 91: 12547-12578Science Editor Guo SY Language Editor Elsevier HKPark HJ et al. The blockage effect of amygdalin on cell cycle genes 5161。

相关文档
最新文档