食品中高新技术
《食品工程高新技术》课件

目录
• 食品工程高新技术概述 • 食品冷冻与冷藏技术 • 食品干燥技术 • 食品杀菌技术 • 食品工程高新技术展望
01
食品工程高新技术概述
高新技术在食品工程中的应用
真空冷冻干燥技术
用于食品脱水,保持食品原有 形状、色泽和营养成分。
微胶囊技术
将食品成分或添加剂微胶囊化 ,改善食品品质、延长保质期 。
THANKS
感谢观看
05
食品工程高新技术展望
未来食品工程高新技术的发展方向
生物技术
纳米技术
利用基因编辑技术、合成生物学等手段, 研发新型食品原料和加工技术,提高食品 质量和安全性。
将纳米材料和纳米技术应用于食品包装、 保鲜和加工过程中,提高食品的保质期和 口感。
信息技术
环保技术
利用大数据、物联网、人工智能等技术, 实现食品生产、加工和销售的智能化和信 息化,提高生产效率和产品质量。
03
食品干燥技术
食品干燥技术原理
去除水分
01
食品干燥技术主要是通过去除食品中的水分,以延长食品的保
质期和保存食品的原有品质。
热能利用
02
食品干燥技术通常利用热能将食品中的水分蒸发,并通过气流
将水蒸气排出,从而达到干燥食品的目的。
品质保持
03
在食品干燥过程中,应尽量保持食品的原有品质,如颜色、口
感、营养成分等。
产业链的完善。
促进产业升级和转型
高新技术在食品工程中的应用,可以 推动产业升级和转型,提高产业整体 竞争力。
增强国际竞争力
通过高新技术应用,提高我国食品在 国际市场的竞争力,促进出口增长。
02
食品冷冻与冷藏技术
食品工程高新技术整理

第一章膜分离1、膜分离 ----“利用膜进行物质的分离”。
2、分类(按推动力分):压力驱动----反渗透,纳滤,超滤,微滤;电场作用----电渗析;浓度差----透析/渗透,液膜分离3、特点:1. 分离过程不发生相变化,能耗低。
2. 分离过程在常温下进行,适用于热敏物质。
3. 适用范围广,(例如溶液中大分子与无机盐的分离、一些共沸物或近沸点物系的分离等)。
4. 分离装置简单,操作容易,易自控、维修。
4、反渗透利用膜只透过溶剂(通常是水)的性质,对溶液施加压力来克服溶剂的渗透压,使溶剂通过膜而从溶液中分离出。
(例如:海水和苦咸水的脱盐,纯水制造,液体的浓缩,等)5、纳滤:用孔径1nm左右的膜,在压力差的推动下,将溶液中的百级的分子等分离出来的过程。
(例如,工业水处理,天然药物分离,发酵液浓缩等)6、超滤:应用孔径1-20nm(或更大)的超滤膜,在压力差的推动下,将溶液中的大分子或微细粒子分离出来的过程。
(例如:母乳化牛奶的生产中,乳清蛋白的分离。
)7、微滤:用孔径0.02-10m的多孔膜在压力差作用下分离含有微粒的溶液/气体的过程。
(例如,空气净化,清汁饮料的生产,常作为超滤等过程的前处理。
)8、电渗析:在外加电场的作用下,利用离子交换膜对离子的选择透过性而使溶液中的带电离子与溶剂有选择性地分离的过程。
(例如:乳清的脱盐,氨基酸的分离,去离子水的生产,等。
)9、透析:是利用膜两侧的浓度差从溶液中分离出小分子物质的过程。
(例如:慢性肾脏病患者的治疗。
)10、液膜分离:是使用液膜进行分离操作的,施加于液膜的推动力是浓度差,液膜分离的本质是依赖于膜内溶解度的不同并伴有化学反应的参与而使物质分离的过程。
(例如:废水处理)11、膜的使用寿命影响因素(1)水解作用(2)膜的压实(3)膜的污染控制(1)选择合适的膜(2)控制操作条件(3)定期清洗与消毒柠檬酸溶液----对Fe(OH)2的污染;柠檬酸铵溶液----对有机污垢或无机污垢;加酶洗涤剂----对蛋白质、多糖、油脂类污染物;水溶性乳化液----对被油或氧化铁污染的膜;双氧水溶液----对被排放水污染的膜,等等。
食品高新技术讲义

纳米包装材料
利用纳米包装材料,如纳米涂层、纳 米复合材料等,能够提高包装材料的 阻隔性能和机械性能。
THANKS FOR WATCHING
感谢您的观看
加强科普宣传和教育,提高消 费者对食品高新技术的认知度 和科学素养,同时建立健全的 产品信息披露机制,保障消费 者的知情权和选择权。
一些消费者可能对某些食品高 新技术存在误解和偏见,影响 其接受度。
通过媒体、社交平台等渠道加 强与消费者的沟通和互动,及 时回应消费者的关切和疑虑, 同时加强与消费者的对话和交 流,增进其对食品高新技术的 了解和认同。
食品检测技术
01
02
03
生物检测技术
利用生物传感器和免疫分 析等方法,快速检测食品 中的有害物质和营养成分。
近红外光谱技术
通过分析食品的近红外光 谱,快速检测食品的品质 和安全性。
原子光谱技术
利用原子吸收和发射光谱 的方法,检测食品中的重 金属和农药残留等有害物 质。
食品包装技术
可重复使用包装
01
电子束辐照技术
利用高能电子束对食品进行辐照处理,杀灭微生物和钝化酶活性,延 长保质期,常用于肉类、果蔬等食品的保鲜。
高新技术在食品检测中的应用案例
近红外光谱技术
拉曼光谱技术
利用近红外光谱仪检测食品 中的水分、脂肪、蛋白质等 成分含量,具有快速、无损、 准确等优点。
利用拉曼光谱仪检测食品中 的化学物质和污染物,如农 药残留、重金属等,具有高 灵敏度和高分辨率。
引导。
一些传统食品加工企业和保 守派人士可能对新的行业标 准和法规持反对态度,影响
其推广和应用。
通过宣传教育、培训和对话 等方式,增进各方对行业标 准和法规的理解和认同,促
食品科学中的新技术和新品种

食品科学中的新技术和新品种食品科学是集生物学、化学、物理等多个学科于一体的综合性学科,它的主要目的是研究食品的生产、加工、质量、安全及营养价值等方面的问题。
在现代社会中,随着科学技术的不断进步和食品安全问题的日益严峻,对食品科学的研究也越来越受到人们的关注。
本文将对近年来食品科学中的新技术和新品种进行介绍和分析。
一、新技术1.高压处理技术高压处理技术是利用高压力使食品受到压缩和扩张,从而改变食品中的物理和化学性质的一种技术。
在高压力下,食品中的微生物、酶和其他活性物质会失活或被抑制,从而延长食品的保质期和改善食品的品质。
现在,高压处理技术已经广泛应用于肉类、海产品、蔬菜、果汁、奶制品等食品的保鲜和杀菌处理中。
2.纳米技术纳米技术是指将物质从宏观到微观尺度转化的一种技术。
在食品科学中,纳米技术可以被用于改善食品的口感、质地、营养素释放和稳定性等方面。
例如,将纳米颗粒加入到食品中,可以有效减少食品中的脂肪和糖分,从而控制食品的卡路里和甜度。
此外,还可以利用纳米技术制备纳米胶囊,将营养素包裹在内,防止其受到氧化和光照的危害,从而延长食品的保质期和提高营养价值。
3.膜技术膜技术是一种将物质通过膜分离、浓缩和提纯的技术。
在食品科学中,膜技术可以被用于分离和过滤食品中的固体、液体和气体等成分,从而改善食品品质和降低成本。
例如,可以利用超滤膜将乳清分离出乳蛋白,从而降低乳制品的成本并增加蛋白质含量。
此外,膜技术还可以用于浓缩食品中的营养素和香料,提高其品质和口感。
二、新品种1.基因改良食品基因改良食品是通过将某些特定基因从一种物种或生物体中移入另一种物种或生物体中,从而改变其遗传性状的一种食品。
在食品科学中,基因改良技术可以被用于改良食品的产量、营养和抗病性等方面。
例如,通过在玉米中加入一种杀虫基因,可以减少玉米对虫害的侵袭,提高产量和质量。
但是,基因改良技术也存在一定的争议和危险性,因此其应用需要更加谨慎和规范。
《食品加工高新技术》课件

了解生产自动化技术的分类和具体案例,可以帮助我们更好地理解其在食品 加工中的应用。
生物技术在食品加工中的应用
生物技术在食品加工中具有广泛的应用,包括基因工程技术、发酵技术和酶技术。 了解生物技术在食品加工中的意义,可以帮助我们更好地理解其在创新食品产品和提高食品质量方面的 作用。
《食品加工高新技术》 PPT课件
食品加工高新技术的课件将带您深入了解食品行业中的创新技术和发展趋势, 为您展示现代食品加工的各个方面。
概述
食品加工高新技术是指在食品生产和加工过程中利用最先进的科技和技术手 段,进行创新和改进的方法和工具。 了解食品加工高新技术的概念及意义,对食品行业的创新和发展至关重要。
新型食品加工技术
新型食品加工技术如超临界流体技术、膜分离技术和冷冻干燥技术,为食品 行业带来了更高的效率和更好的产品。
了解这些新型技术的原理和应用,可以帮助我们更好地理解现代食品加工的 创新和改进。
智能化检测技术
智能化检测技术在食品加工中起着重要作用,提高了产品质量和安全性。 了解智能化检测技术的意义和具体检测技术,可以帮助我们更好地理解现代 食品加工中的质量控制和检测手段。
结论
食品加工高新技术具有很多优势,但也存在一些局限性。了解这些优势和局限性有助于我们更好地评估 和应用这些技术。 针对未来发展方向,了解食品加工高新技术的前沿趋势和创新方向,可以帮助我们把握行业发展机遇。
参考文献
以下是一些与食品加工高新技术相关的参考文献,供进一步学习和研究使用。
食品工业中的高新加工技术

食品工业中的高新加工技术1、真空冷冻干燥冷冻干燥过程是水的物态变化和移动的过程,这种过程发生在低温低压的条件下,真空冷冻干燥的基本原理就是在低温低压下传热与传质。
物料中所含水分有2种存在方式。
一种是游离水,即机械结合水和物化结合水。
另一种是结合水,以化学结合形式存在于物品的组织中。
通常需要将物料快速冻结,快速冻结的目的是使水成为细小冰晶粒。
接着抽真空,使冰晶在真空环境中加热升华。
真空冷冻干燥是生产和保存微生物最理想的方法之一,它能使细胞内的游离水在冻结状态下脱去,细胞的生理活动停止并处于休眠状态而被长期保存。
该技术的产品具有能保留新鲜食品的色、香、味及营养成分,有良好的速溶性和复水性,及易于运输、贮藏成本低等优点。
2、微胶囊技术微胶囊技术,也称微胶囊造粒技术,是指利用成膜材料将固体、液体或气体囊于其中,形成直径几十微米至上千微米的微小容器的技术。
微胶囊技术应用于食品工业始于20世纪80年代中期,这一新技术正为食品工业开发新产品、更新传统工艺和改善产品质量等发挥着越来越大的作用。
微胶囊具有保护物质免受环境的影响,降低毒性,掩蔽不良味道,控制核心释放,延长存储期,改变物态便于携带和运输,改变物性使不能相容的成分均匀混合,易于降解等功能。
目前主要应用于食品配料,例如香精香料、脂肪、甜味剂、酸味剂、维生素、矿物质、具生理功能物质等。
其中以香料和脂肪的微胶囊化研究最为广泛,对于生理活性物质的微胶囊化研究在将来也会成为一个重要的课题。
一些营养强化剂、色素、矿物质、多肽、膨松剂、抗氧化剂、风味剂等不稳定的成分都可以采用微胶囊技术增加其稳定性,拓展其应用范围。
3、超临界萃取技术超临界流体萃取是利用流体在临界点附近某一区域内所具有的高渗透能力和高溶解能力萃取分离混合物的过程。
具有萃取产率高、产品质量好、萃取剂分离回收容易、选择性好等优点,但加工成本较高。
在食品工业中的应用:从茶、咖啡豆中脱离咖啡因,萃取啤酒花,从植物中萃取香精油等风味物质,从奶油、鸡蛋中去除胆固醇等。
食品科学中的新技术

食品科学中的新技术在当今的食品科学领域,新技术的不断涌现和应用正引领着这个行业向着更加安全、健康、美味、可持续的方向不断发展。
在这些新技术中,有些是我们耳熟能详的,比如基因编辑技术,有些则是比较新颖、前沿的,比如基于大数据和人工智能的食品研究技术。
接下来,我们将会从多个方面来分析和探讨这些新技术对食品科学发展的影响。
一、基因编辑技术基因编辑技术,顾名思义就是一种通过编辑和修改生物体的基因来达到特定目的的技术。
在食品科学中,这项技术可以用来改良食品原材料的基因,比如让作物更加适应某种恶劣的生长环境,提高作物的产量或者改变食品的口感等等。
虽然这项技术具有非常广泛的应用前景,但也存在一些争议性问题,比如基因编辑后的食品是否安全等等。
二、利用大数据和人工智能来开发食品大数据和人工智能技术在不同的领域里都有着非常广泛的应用,食品科学当然也不例外。
比如说,我们可以通过大数据的分析来了解不同人群对于某些食品的喜好和需求,从而有针对性地开发新食品。
而对于食品的营养价值、口感和安全性等方面,人工智能则可以帮助食品科学家进行更加精准、深入的研究和分析,从而优化和改善食品的品质。
三、3D打印技术3D打印技术在食品科学领域里的应用也越来越广泛。
这项技术可以通过将食材逐层打印出来来创造出各种几何形状的食品,比如用芝士做成的龙和面包做成的万花筒等等。
同时,3D打印技术还可以用来定制化的制作食品,比如为某些特殊病患者或老年人定制具有特定营养成分的食品。
四、无人机技术无人机技术在食品科学领域里的应用主要集中在农业生产方面。
例如,无人机可以像一只神奇的“眼”一样,对农田进行全方位地拍照和测量,实现精准化农业。
除此之外,无人机还可以搭载各种感知设备,对农田里发生的各种问题进行实时监测和反馈,从而提高农业生产的效率和质量。
五、生物传感技术生物传感技术是指利用生物体的感知机制来检测和分析食品中的成分和污染物的技术。
这项技术可以用来检测食品中的农残、有害化学品等物质,从而保护人们的健康和安全。
《食品工程高新技术》课件

利用现代化的技术手段,对粗粮、植物蛋白、果汁 等农副产品进行高标准加工,增加附加值,促进农 业产业升级。
优势
1
提高产量和品质
自动化和标准化生产,减少人工失误,降低
拓展市场前景
2
浪费,保证食品品质和卫生。同时增加产量, 促进食品企业可持续发展。
开发具有原创的、独特的新产品,有效拓展
市场空间,增加竞争力。
使用机器视觉、传感技术和自动化 控制算法,提高生产效率和质量。
应用领域
方便食品
速冻、罐头、保鲜食品等快速烹饪的食品,广泛应 用于出差、旅游、办公等场所。
功能性食品
研发绿色、有机、低敏、低脂等特种食品,满足消 费者对健康、美味、多样的追求。
营养保健食品
开发基于特定需求的营养成分,如增强免疫力、调 节肠道菌群、改善睡眠等。
程可追溯和高标准质量监控。
3
人才和队伍建设
培养具备复合型的创新人才和高素质的团队, 促进基础性理论研究和应用性工程化研究的 融合。
前景和应用价值
减少食物浪费
应用技术手段,优化食物生产和供 应链,减少浪费,提高效益。
改善全球健康
开发出更加健康、美味、个性化的 食品,为人类的健康和发展做出贡 献。
实现食品安全和普惠化
3
提高技术含量和附加值
应用高端的技术手段,开发具有品牌特色的 食品,满足消费者不同的需求,增加企业附 加值。
典型的食品工程高新技术
人造肉
通过细胞培养和基因编辑等技术, 研发具有肉类纹理和口感,但不含 胆固醇或激素的人造肉。
垂直农场
智能包装
利用垂直空间进行种养殖等农业生 产,大量节约用地、水资源和能源, 同时降低碳排放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷冻浓缩技术的应用摘要:阐述了冷冻浓缩原理,介绍了国内外冷冻浓缩技术的应用现状,并展望了未来的发展趋势。
关键词:冷冻浓缩 应用现状 因素近几年来,随着人类对自身健康的关注及生活水平的提高,高品质、高附加值产品日益增加,高档饮料、果汁、生物制药等也逐渐成为人们日常消费的主体。
与此同时,食品的加工技术与方法也需要进行相应的改变与调整,以使加工过程中食品原料中含有的营养成分与风味物质等得到最大限度的保护。
冷冻浓缩由于在低温下操作,具有可阻止不良化学变化和生物化学变化及风味、香气和营养损失小等优点,特别适用于浓缩热敏性液态食品、生物制药、要求保留天然色香味的高档饮品及中药汤剂等。
随着社会对高档产品需求量的增加,冷冻浓缩技术将进一步显示出其优越性及必要性。
因此,开展冷冻浓缩技术的研究及应用,对推动传统工艺技术的进步和提高浓缩汁产品品质均具有重要意义。
在此就国内外学者的近期研究成果进行介绍。
1 冷冻浓缩的理论基础稀溶液的相图如图1所示,横坐标表示溶液的浓度X ,纵坐标表示溶液的温度T 。
曲线DABCE 是溶液的冰点线,D 点是纯水的冰点,E 是低共溶点。
当溶液的浓度增加时,其冰点是下降的(在一定的浓度范围内)。
某一稀溶液起始浓度为X 1 , 温度在A 1 点。
对该溶液进行冷却降温, 当温度降到T D F C EB X X 2 X 1 A A 1 图1 冷冻浓缩的相平衡图冰点线A 点时, 如果溶液中无“冰种”,则溶液并不会结冰,其温度将继续下降至C 点,变成过冷液体。
过冷液体是不稳定液体,受到外界干扰(如振动) ,溶液中会产生大量的冰晶,并成长变大。
此时,溶液的浓度增大为X 2 ,冰晶的浓度为0 (即纯水) 。
如果把溶液中的冰粒过滤出来, 即可达到浓缩目的。
这个操作即为冷冻浓缩。
设原溶液总量为M ,冰晶量为G ,浓缩液为P ,根据溶质的物料平衡,有:( G + P) X 1 = PX 2或上式表明,冰晶量与浓缩液量之比等于线段BC 与线段FC 长度之比,这个关系符合化学工程精馏分离的“杠杆法则”。
根据上述关系式可计算冷冻浓缩的结冰量。
当溶液的浓度大于低共溶点浓度X E 时,如果冷却溶液,析出的是溶质,使溶液变稀,这即是传统的结晶操作,所以冷冻浓缩工艺与结晶工艺是相反的。
要应用冷冻浓缩, 溶液必须较稀, 其浓度须小于低共溶点浓度X E 。
2 冷冻浓缩技术的国内外发展现状2.1 国外发展概况自上世纪50 年代末学者们开始关注冷冻浓缩这一工艺以来, 人类对冷冻浓缩技术的研究已有较长的历史。
荷兰Eindhoven 大学Thijssen [1]等在70 年代成功地利用奥斯特瓦尔德成熟效应设置了再结晶过程造大冰晶,并建立了冰晶生长与种晶大小及添加量的数学模型, 从此冷冻浓缩技术被应用于工业化生产。
依此制造的Grenco 冷冻浓缩设备在食品工业中用于果汁、葡萄酒、咖啡提取物、牛奶等的浓缩, 得到了高质量的产品。
随着众多学者的深入研究及实验设备的不断改进, 近年来有关冷冻浓缩技术的研究成果时常见诸报道。
Shirai 等为降低成本在采用悬浮结晶冷冻法时将小冰晶凝聚成为大冰晶来减小单位体积冰晶的表面积。
研究者以10%(质量分数)的葡萄糖溶液做试料, 在0.212K 的过冷却度下, 添加占溶液总量6%(质量分数)的种晶,经7h 凝聚成直径为0.77mm ~2.85mm 的大冰晶。
他们还将此方法用于海水淡化及烧酒废液处理等方面。
Marino Rodriguez 等[2]对比研究了反渗透法和冷冻浓缩法在从废水中去除戊酸中的应用, 两种操作方法的经济运算结果表明冷冻浓缩法的能耗虽是反渗透的五倍, 但却正好折中了反渗透中所用膜的代价。
F.A. Ramos 等[3]将冷冻浓缩技术应用于一种生长于安第斯山脉的浆果, 发现此技术并未改变其果肉的色泽及pH 值, 并明显降低了挥发性物质的损失量, 且很好FCBC X X X G P =-=112地保留了浆果独特的香味。
Osato Miyawaki等[4]将管式结冰渐进式冷冻浓缩系统应用于咖啡萃取物可其溶液浓缩至30%, 含果肉的番茄汁可浓缩至12.5%, 而将夹带有5%果肉的冰相溶解再次经过管状结冰器浓缩后所得冰相的浓度低至0.25%, 如果事先将果肉去除, 则番茄汁可浓缩至40%, 蔗糖水溶液可由41.8%浓缩至54.8%,且浓缩效果非常好。
Durward Smith等[5]采用小型简单装置对苹果汁进行了冷冻浓缩工艺的研究, 试验表明冷冻浓缩技术很好地保留了果汁中挥发性物质的香气成分, 浓缩效果比冷冻干燥包括在内的任何其他浓缩技术都要好。
Milind V. Rane对甘蔗汁进行冷冻浓缩时, 在原有设备基础上安装了热泵, 建立了相应的数学模型, 研究表明热泵性能系数相对较高。
该技术将甘蔗汁由20°Bx浓缩至40°Bx,因减少了焦糖化现象改善了蔗糖的色值, 保证了产品的质量,而且每天可节约蔗渣1338千克。
2.2 国内研究及应用现状由于冷冻浓缩的基本原理很简单, 我国传统的老陈醋生产工艺中就曾应用过冷冻浓缩技术。
近年来, 该技术在国内已被广泛应用于各行业中, 并在相关理论和设备开发上取得了许多新进展。
2.2.1 酿酒业冷冻浓缩的优势尤其可用于酿酒产业。
詹晓北[6]最早介绍了冷冻浓缩技术在啤酒工业中的应用, 表明该技术可在除去冰晶的同时除去形成混浊的多酚、丹宁酸等物质, 从而减少啤酒的贮存容积, 特别是对冷冻浓缩后的啤酒采用混合水技术可以完全恢复到原来的啤酒。
张春娅等[7]通过对葡萄酒进行冷冻分离实验,发现酒精和还原糖比较易于利用冷冻法在液相中进行浓缩分离, 通过冷冻浓缩技术改善了干白葡萄酒的品质。
孙卉卉等[8]采用根据刘凌等方法改装的冷冻浓缩装置研究了冷冻浓缩对低糖葡萄汁及葡萄酒品质的影响, 证明冷冻浓缩是一种可以较好地保持葡萄汁的品质、香气和营养成分的浓缩方法。
经过冷冻浓缩折光度提高5°Bx的玫瑰蜜葡萄汁含糖量提高了53.8g/L, 可滴定酸含量增加接近1 倍, 但果汁的pH值变化不明显。
2.2.2 果汁工业我国是生产甘蔗的大国, 将糖蔗改种果蔗并加工成甘蔗汁既解决了甘蔗的销路,又满足了人们对果汁日益增长的需要。
甘蔗汁的热敏性很强, 对其进行普通的蒸发浓缩极容易使甘蔗汁焦糖化,丧失其特有的风味。
袁林峰[9]研究了冷冻浓缩工艺对甘蔗汁的影响, 对浓缩前后的甘蔗汁进行了感官上的比较, 发现浓缩后的甘蔗汁品质稳定, 除了在颜色、气味、甜味方面感觉更加浓重外,其它基本保持了冷冻浓缩前甘蔗汁的原有风味。
肖旭霖等[10]应用渐进冷冻浓缩原理对苹果汁冷冻浓缩特性进行研究, 证明了渐进浓缩法对苹果汁浓缩效果良好, 苹果汁中酸度和维生素C 含量无影响, 浓缩产品感官质量均匀一致,保持了果汁的原有风味。
3 选择冷冻浓缩工艺时要考虑的因素食品冷冻浓缩技术与传统浓缩方法相比, 其浓缩产品的质量是最好的, 但仍存在某些问题。
当物料粘度高时难以生成大冰晶, 且由于迅速冷却而形成的微小冰晶不能彻底从母液中分离出来, 难以回收附在冰晶上的可溶性固形物和一些有效成分, 从而限制了它的推广与使用。
3.1 冷冻浓缩工艺适用的物料任何一种加工工艺都有一定的适用范围,经过分析, 认为冷冻浓缩工艺比较适合粘度较小饮料的浓缩, 如植物水提取液、苹果汁等, 原因是这种物料流动性好, 有利于溶液内部溶质分子的迁移。
相反, 粘度较大的饮料, 如橙汁等, 在实践上不适合使用冷冻浓缩工艺(尽管理论上可以) , 原因是橙汁含果胶多, 低温时果胶更粘, 溶液内部溶质分子的迁移阻力很大。
3.2 冷冻浓缩所能达到的极限速度饮料一般含有多种成分, 在选用冷冻浓缩前,应首先确定要保留稀饮料中哪些有效成分。
这些有效成分在稀饮料中的浓度须小于低共溶点浓度X E ,在形成的冰晶中才不含有它们。
同时, 冷冻浓缩所能达到的极限浓度是这些有效成分的低共溶点浓度。
3.3 冷冻浓缩方式的选择依据国外学者对浓缩方式的分类, 冷冻浓缩可分为悬浮结冰晶式和渐进结冰式[11]。
悬浮结冰晶式是让物料溶液在刮板换热器内过冷,然后形成冰晶长大成冰粒。
渐进结冰式是让物料溶液在冷的壁面结成厚冰层, 然后再把冰层取出来。
从理论上或实验上说, 上述两种方式是可行的, 但从应用的角度来说, 悬浮结冰晶式更好。
原因是: A1渐进结冰式是在冷的壁面结成厚冰层, 因为冰的导热系数很小,所以结冰很慢, 在生产上很难提高生产率;B1笔者曾把一桶稀中药水提取液放在低温冷冻液(27 ℃)中冷却结冰, 结果发现在桶壁形成致密的纤维状冰层(如牛肉纤维状) , 包含在其内的浓药液很难用高速离心机分离出来。
4 前景展望冷冻浓缩技术现已证明优质可靠, 极具市场活力。
随着社会的进步, 经济的发展, 人们生活水平的提高, 冷冻浓缩这一低能耗、可生产高质量产品的加工技术具有很大的发展潜力。
此方法除了用于浓缩, 也可考虑用于有机废水的处理, 活性物质的回收再利用等方面。
同时, 整体的冰结晶又是很好的蓄冷、降温用冷源。
这些方面对于保护环境、促进资源的再利用都是很有意义的。
对食品冷冻浓缩技术来说, 应在提高冰晶纯度、减少固形物损失及降低生产成本方面加以深入研究, 这样才能充分发挥其自身的优势。
冰核微生物用于食品冷冻浓缩中, 属于生物技术与食品加工相结合的一项高新技术, 极富应用潜力。
参考文献:[1] Huige N.J.J.and Thijssen H.A.C. Production of large crystals by continuous ripening in a stirred tank[J]. Crystal growth,1972(13/ 14):483- 487.[2] Marino R odriguez, Susana Luque, JoseR. Alvarez, Jose Co ca. A comparative study of reverse osmosis and freeze concentration for the removal of valeric acid from wastewaters [J].Desalination, 127(2000):1- 11.[3] F.A. R amos, J.L. Delgado , E. Bautista , A.L. Morales, C. Duque.Changes in volatiles with the application of progressive freeze- concentrationto Andes berry (R ubus glaucus Benth)[J].Journal of FoodEngineering, 69 (2005): 291- 297.[4] Osato Miyawaki,Ling Liu,Yoshito Shirai,Shigeru Sakashita,Kazuo Kagitani.Tubular ice system for scale- up of progressive freeze- concentration [J].Journal of Food Engineering ,69 (2005):107- 113.[5] Durward Smith, Carol R ingenberg,Erik Olson. Freeze concentration of Fruit juice[R]. Food﹠Nutrition Safety,2006.[6]詹晓北.冷冻浓缩技术在啤酒工业中的应用[J].冷饮与速冻食品工业,1996,( 1) :14- 16.[7] 张春娅, 张军, 王树生, 张美玲, 高年发. 葡萄酒冷冻浓缩技术的研究及应用[J]. 酿酒科技, 2007,(2):55- 57.[8] 孙卉卉,马会勤,陈尚武. 冰冻浓缩对低糖葡萄汁及葡萄酒品质的影响[J].食品科学,2007,28( 5) :86- 89.[9]袁林峰,闵华,黄霞萍.甘蔗汁冷冻浓缩特性研究初报[J].江西农业学报.2002,14(1):61- 64.[10] 肖旭霖, 李慧. 苹果汁冷冻浓缩工艺的研究[J]. 农业工程学报,2006,22( 1) :192- 194.[11] 刘凌等.液体食品的渐进冷冻浓缩[J].食品与发酵工业,1999 , 25 (4) : 31~34。