三里岛事故与核能政策
三里岛事故

附录1 三哩岛事故A1.1 核电厂概况美国Pennsylvania 州,Three Mile Iland上的二号堆,TMI-2,为B&W 公司设计和建造,1978 年12 月投入使用。
两环路,每个环路有两台冷却剂泵。
蒸汽发生器是直流式的,这意味着二次侧装量较少。
一回路工作压力为152bar 。
HPIS 可在正常运行压力或更高压力下向一次系统注入含硼水(它的截止压力为197bar),当一次侧系统压力降至110bar 以下时,自动起动。
安注箱压力为41 barLPIS 的起动压力是28bar核电厂的额定功率:2772MW, 961MW(e)事故前核电厂的状态及始发事件:1979 年3 月28 日凌晨,TMI-2 在97%额定功率下,以自动控制方式运行。
稳压器的释放阀及安全阀均有持久的微小泄漏(大约0.3kg/s)二回路中,有一些堵塞的离子交换树脂(A resin block had developed in a condensate polisher unit's transfer line),准备用压缩空气及去离子水输送至回收箱,这一操作,使水进入了压缩空气系统,然后进到空气管路上的仪表中,引起了紊乱,关闭了冷凝水增压泵的进水阀门,于是冷凝水增压泵及主给水泵停止运行。
A1.2 事故过程A1.2.1 第一阶段汽轮机停车(0—6min)0 s汽轮机停车,蒸汽旁路阀打开,辅助给水泵启动,失去主给水,使蒸汽发生器从一回路系统导出热量减少,汽轮机停车后,主泵继续运行,反应堆继续运行。
反应堆冷却剂系统压力上升3—6 sRCS 压力达到PORV 整定值155bar,阀开启卸压,这不足以降压,RCS 压力继续上升8 sRCS 压力达到停堆整定值162 bar,控制棒插入堆芯,停堆,至此一切保护系统工作正常,接下来需要的是带走衰变热。
13 sRCS 压力降至PORV 自动关闭压力152bar,但关闭失效,卡开,造成了一个小破口失水事故(汽腔小破口),RCS 冷却剂不断从PORV 流失,在二回路系统中,全部三个辅助给水泵在运转,但是在SG 中水位在下降。
三哩岛核事故

三哩岛核泄漏事故三哩岛核泄漏事故,通常简称「三哩岛事件」,是1979年3月28日发生在美国宾夕法尼亚州萨斯奎哈河三哩岛核电站的一次严重放射性物质泄漏事故。
事故经过当天凌晨4时半,三哩岛核电站95万千瓦水堆电站二号反应堆主水泵停转,辅助水泵按照预设的程序启动,但是由于辅助回路中一道阀门在此前的例行检修中没有按规定打开,导致辅助回路没有正常启动,二回路冷却水没有按照程序进入蒸汽发生器,热量在堆心聚集,堆心压力上升。
堆心压力的上升导致减压阀开启,冷却水流出,由于发生机械故障,在堆心压力回复正常值后堆心冷却水继续注入减压水槽,造成减压水槽水满外溢。
一回路冷却水大量排出造成堆心温度上升,待运行人员发现问题所在的时候,堆心燃料的47%已经融毁并发生泄漏,系统发出了放射性物质泄漏的警报,但由于当时警报蜂起,核泄漏的警报并未引起运行人员的注意,甚至现时无人能够回忆起这个警报。
直到当天晚上8点,二号堆一二回路均恢复正常运转,但运行人员始终没有察觉堆心的损坏和放射性物质的泄漏。
此后,宾州州长出于安全考虑于3月30日疏散了核电站5英里范围内的学龄前儿童和孕妇,并下令对事故堆心进行检查。
检查中才发现堆心严重损坏约20吨二氧化铀堆积在压力槽底部,大量放射性物质堆积在围阻体,少部分放射性物质泄漏到周围环境中。
事故后果事故后,有关机构对周围居民进行了连续跟踪研究,研究结果显示在以三哩岛核电站为圆心的50英里范围内的220万居民中无人发生急性辐射反应周围居民所受到的辐射相当于进行了一次胸部透视的辐射剂量三哩岛核泄漏事故对于周围居民的癌症发生率没有显著性影响三哩岛附近未发现动植物异常现象当地农作物产量未发生异常变化但是,泄漏事故造成核电站二号堆严重损毁,直接经济损失达10亿美元之巨事故影响三哩岛核泄漏事故是核能史上第一起堆心熔化事故,自发生至今一直是反核人士反对核能应用的有力证据;三哩岛核泄漏事故虽然严重,但未造成严重后果,究其原因在于围阻体发挥了重要作用,凸现了其作为核电站最后一道安全防线的重要作用;在整个事件中,运行人员的错误操作和机械故障是重要的原因,提示人们,核电站运行人员的培训、面对紧急事件的处理能力、控制系统的友好性等细节对核电站的安全运行有着重要影响公众的安全感更重要的是,事故不只是影响到了核设施所在地区所在国家的利益,它越过了国界,波及到毗邻国家,引起了别国的慌乱,使那里的人民失去了安全感。
F.美国三哩岛核电厂事件回顾案例讨论_简R1

背景與事件過程
1979 3 28 星期三4:00:37 AM
由於化學除污系統的樹脂發生阻 塞現象,使得凝結水幫浦跳脫, 進而也使飼水幫浦和汽機跳脫, 停止運轉。於是輔助幫浦自動啟 動,但由於輔助飼水管路上的一 閥門,在維修後沒有依照規定打 開,故無法將水注入蒸汽產生器 二次側,反應器內產生的熱無法 移除,造成反應器壓力快速上升 ,調壓槽灑水系統自動啟動灑水 降壓,釋壓閥亦開啟洩壓,但系 統壓力仍繼續上升,觸及反應器 急停設定值。控制棒插入爐心, 核分裂反應停止。
设施?技术支持中心tsc?在厂的作业支持中心osc?邻近厂区之紧急应变中枢eof?控制室的紧急反应功能数据系统?安全数据显示系统spds?核能数据链路ndlnureg0696要求核電廠?技術支援中心tsc?在廠的作業支援中心osceof?控制室的緊急反應功能?安全數據顯示系統spds?核能資料連結ndl运转员之要求
背景與事件過程
1979 3 28星期三6:18 AM 運轉人員此時終於注意到釋壓閥沒有 關閉,於是手動關閉了釋壓閥,反應器 溫度及壓力隨即上升。 1979 3 28星期三6:55 AM 由於燃料已有破損,冷卻系統之高放 射性警報響起。可惜沒有任何一位運轉 員聽到警笛聲。可能是由於數以百計的 警報聲響起,運轉員無法及時分辨處理 ,故隨手把警報關掉。也可能主要警報 聲響失效或是運轉員漏聽。此時,運轉 員依然不知道圍阻體建築內,含有放射 性的水和蒸汽量正持續的升高中。 1979 3 28星期三7:30 AM 圍阻體、反應器廠房和輔助廠房輻射 強度繼續上升。
背景与事件过程
1979 3 28星期三4:00:50 AM
反应器急停后,功率降低,反应 器压力亦随之降低。当反应器压力 降至释压阀门自动关闭点时,阀门 却没有关闭,于是冷却水由阀门持 续流出。由于辅助饲水无法进入蒸 汽产生器,故蒸汽产生器内二次侧 的水已逐渐被烧干。另一方面,释 压阀的开启造成反应器压力持续下 降,导致紧急炉心冷却系统自动启 动,将高压硼水注入炉心。运转员 开始担心调压槽的水位过高会使调 压槽丧失调压功能。然运转员此时 不知道蒸汽产生器已经没有饲水, 且调压槽释压阀发生故障,没有关 闭。
《三里岛核事故》课件

三里岛核事故释放了大量的放射性物质, 严重污染了周边的水源、土壤和空气,对 当地生态环境造成了长期影响。
居民长期暴露在放射性物质下,增加了患 癌症等疾病的风险,许多人因此出现了健 康问题。
经济损失
心理创伤
核事故导致周边地区居民被迫迁移,商业 活动受影响,给当地经济带来了巨大损失 。
事故给当地居民带来了严重的心理创伤, 许多人长时间处于恐慌和焦虑状态。
准,监督核设施的运行和管理。
加强许可证制度和安全审查
02
实行严格的许可证制度和安全审查,确保核设施在设计、建造
、运行等各个环节符合安全标准。
提高应急响应能力
03
建立完善的应急响应体系,加强应急演练和培训,提高应对核
事故的能力和水平。
核能技术的未来发展和改进
1 2 3
推动核能技术创新
鼓励和支持核能技术创新,研发更加安全、高效 、经济的核能技术,降低核能产业的风险和成本 。
事故处理
三里岛核事故发生后,相关部门迅速启动应急响应机制,采取了多种措施来控制和缓解事故后果。包括启动应急 冷却系统、释放轻水堆芯中的氢气、疏散周边居民等。这些措施有效地降低了事故对环境和公众的影响。
修复工作
事故发生后,运营方和相关部门对核电站进行了全面的修复工作。修复过程中采用了先进的技术和设备,确保了 修复工作的安全和质量。经过多年的努力,三里岛核电站重新投入运营,并成为核能领域中的一个重要案例。
事故的原因和后果
总结词
分析事故的原因和后果,总结事故的经验教训。
详细描述
三里岛核事故的原因主要包括设备故障、操作失误和管理不善等。事故后果包括 核电站周围环境的污染、居民撤离、经济赔偿等。此外,事故对全球核能产业产 生了深远的影响,推动了核能安全标准的提高和监管的加强。
美国最严重的三里岛核泄漏事故从此美国放弃建设核电站

美国最严重的三里岛核泄漏事故从此美国放弃建设核电站1979年3月,位于美国宾夕法尼亚州多芬县的三里岛核电站,发生了美国历史上最严重的核泄漏事故。
该事故在国际核事故分级中的严重程度达到5级,最高为7级。
1979年3月28日凌晨,三里岛核电站二级循环系统的树脂过滤器发生了堵塞,操作人员在疏通过滤器时,意外造成给水泵、冷凝水泵和冷凝增压泵关闭。
随后,反应堆冷却系统的温度和压力开始升高,引起反应堆自动紧急关闭。
尽管控制棒已经插入了反应堆,但仍有衰变余热产生。
此时人工减压阀自动打开后,因机械故障无法关闭。
于是,冷却液开始泄漏。
三里岛核电站由于冷却系统已经无法正常工作,反应堆的温度逐渐升高,剩余的冷却液开始蒸发。
2个小时后,反应堆顶部暴露出来,燃料棒覆层和芯块开始熔毁,产生的放射性同位素又释放到正在泄漏的冷却液中。
当核电站主循环系统的温度、压力和冷却液都有异常时,控制面板上的指示灯仍然显示人工减压阀为正常的关闭状态,导致夜班操作人员在数小时内无法找到系统异常的真正原因。
三里岛核电站直到早上6点,轮班人员到达控制室,才发现人工减压阀尾管和贮槽温度过高,立刻关闭了备用阀门,冷却液才停止泄漏。
此时已经有32000加仑的冷却液泄漏,冷却液的辐射量超标300倍。
事故发生后,当地学校立刻关闭,居民们被要求待在室内,减少户外活动。
当局先是要求核电站周围5英里范围内的孕妇和儿童撤离,后来撤离范围又扩大到核电站周围20英里。
几天内,就有14万人撤离。
环境清理工作从1979年8月开始,1993年11月才结束,总共耗资10亿美元。
事后三里岛核电站和保险公司拿出了8200万美元来赔偿当地居民。
后继的调查表明,对宾夕法尼亚州政府处理此事不满意的民众超过了50%。
三里岛核泄漏后的清理工作三里岛核电站事故是全球核电站发展的一个转折点。
反应堆的部分熔毁造成250万居里的放射性气体和16居里的放射性碘被排放到大气中,引起了人们广泛的担心。
尽管没有人员伤亡,也没有对环境造成严重污染,但还是引发了公众对核电站安全的关注,对美国核电站的发展造成致命影响。
三里岛核事故

2012年美国时间2月9日,美国核管理委员会 (NRC)宣布批准美国南方电力公司的Vogtle 3号 和4号,两台AP1000核电机组的建造和运行联 合许可证(COL). 美国被批准的这两台机组的建造费用约为140亿 美元,计划分别于2016年和2017年投入运行。 为了鼓励该项目,美国能源部(DOE)为该项目建 设提供了83亿美元的贷款担保。
从某种意义上说,三里岛核电站成了反核运动的 “集结号”。正是从1979年起,美国方兴未艾的 核能产业一下子变得“功能失调”起来,尽管后 来不断有人宣传“核能复苏”,但30年来,美国 都没建起一座核电站。
因为事故造成的后遗症,巴布科克和威尔科克斯公 司最终倒闭。 ▷美国不再有有关核电站的工程,该 领域的佼佼者——西屋公司随后将主导权转让给日 本东芝株式会社,通过在国外建设核电站,勉强维 持了命脉。在这一期间,韩国、日本及法国持续建 设核电站,维持了国产化。进入21世纪,美国付出 了停止建设核电站的代价。2000年,加利福尼亚州 供电能力出现巨大缺口,纽约则因缺电在2003年经 历了一片漆黑。 ▷随后,美国政府才改变计划,修 理核电站暂时缓解了缺电情况。近日,政府通过总 统巴拉克· 奥巴马,发表了重新建设核电站的计划。
赵启正:我国核电要在极端安全前提下发展
3月2日15时,全国政协十一届五次会议新闻发布会在北京人民大会堂三楼金色大厅 举行,大会发言人赵启正向中外媒体介绍本次大会有关情况并回答记者提问。 日本朝日电视台记者:请问关于中国的能源政策。请介绍一下中国核能发电的相关政 策,以及从日本福岛核电站发生核泄漏事故到现在马上要一年了,中国从这次事故吸 取怎样的教训?谢谢。 赵启正:日本的福岛核事故,日本为此付出了巨大代价,但是也为全世界贡献了宝 贵经验。3月11日,就是福岛事故一周年了,在此也请你转达我们对福岛核电站周围 人民的问候。 福岛核电站事故继三里岛核电站事故和切尔诺贝利核电站事故之后,再次给人类敲 响了警钟,核电安全成为全球关注的问题。
三里岛核事故:一场意外的串联ppt

1
核反应堆:现代版"高压锅"
核电站利用核反应堆的热能产生蒸汽发电,过程精密复杂需多重安全保障。
2
多重安全系统
核电站设有自动供水、应急冷却等备用系统,理论可防范严重事故。
三里岛事故的三重偶然
自动供水系统失效
自动供水系统出现故障,两个备用系统也未开启,导致 失去主要冷却来源,暴露了管理漏洞。
三里岛核事故:一场 意外的串联
1979年,美国宾夕法尼亚州的三里岛核电站发生了一起震惊世界的 核事故。这次事故虽然没有造成直接的人员伤亡,但其影响深远, 不仅导致了20万人的紧急疏散,还产生了超过10亿美元的清理费用 。这一事件成为了核能安全史上的重要里程碑,引发了人们对核电 站安全性的深度思考。
三里岛事故的发生,源于一系列看似不可能同时发生的偶然事件。 这场事故揭示了核电站设计和管理中的潜在漏洞,同时也凸显了人 为因素在核安全中的关键作用。让我们深入探讨这次事故的细节, 了解核电站的运作原理,以及如何从这次事故中吸取教训。
泄压阀故障
泄压阀未能关闭,导致冷却剂持续流失,凸显设备可靠 性和定期维护的重要性。
错误的信息显示
控制面板上的误导性信息,延误了采取正确措施的时机 ,突出了准确信息反馈的关键作用。
三里岛核事故分析

03:13 :因担心水位继续上升会造成稳压器水实体运行,操纵员关闭一台HPI泵,安注流量从2.7m3/min下降至0.1m3/min。
三里岛事故演变
01
13:00 :四台主泵持续振动,且主泵电流低;由于回路B的两台主泵振动最大,操纵员停止了这两台泵的运行;
三里岛核事故
汇报日期
汇报人姓名
单/击/此/处/添/加/副/标/题/内/容
三里岛事故后果及反思
三里岛事故演变
三里岛事故概述
三里岛电厂系统简介
3
2
1
4
目录
1979年,在美国宾夕法尼亚州-哈里斯堡三里岛核电站,发生了美国核电史上最严重的核事故
包壳:Zr-4
05
专设安全设施:反应堆控制棒,高压注入应急堆芯冷却系统,含硼水箱,安全壳ECCS再循环水坑
给水系统:
三里岛电厂系统简介
三里岛事故概述
主给水系统失去运行,汽轮机停机 辅助给水系统未能投入运行; 稳压器泄压阀自动开启,反应堆停堆; 稳压器泄压阀未能关闭,失水事故; 高压安注系统自动动作,但注射流量被认为限制; 稳压器失去控制功能,堆腔上部形成蒸汽; 由于所有主泵停止运行,泄压阀不能关闭,堆芯失去了所有有效的冷却手段,堆芯过热,锆水反应,堆芯熔化。
2号机组以97%FP功率运行;
三位工作人员在维修精华给水系统的离子交换系统,忙于把7号凝结水净化箱内的树脂输送到树脂再生箱去;
在冲洗树脂时,水通过一个因故障卡开的逆止阀进入仪用压空系统,导致所有正在运行的的混床同时隔离;
凝结水流量丧失立即引起凝泵、凝升泵、主给水泵跳泵;导致给水总量丧失,汽机跳闸停机,ICS系统降反应堆功率;