七年级数学《生活中的立体图形》测试题
七年级数学上册“生活中的立体图形”能力训练题

华师七年级上册 4.1生活中的立体图形【知识技能天地】一、判断题1.柱体的上、下两个面一样大.………………………………………………..()2.圆柱的侧面展开图是长方形.………………………………………………()3.球体不是多面体.……………………………………………………………()4.圆锥是多面体.………………………………………………………………..()5.长方体是多面体.……………………………………………………………..()6.柱体都是多面体.……………………………………………………………..()二、选择题:1、如图,下列图形()柱体.2、下面给出的图形中,绕虚线旋转一周能形成圆锥的是()3、如下图,下列图形中有十四棱的是()二、填空题。
1、一个多面体有12条棱,6个顶点,则这个多面体是体。
2、把下列图形的名称填在括号内:3、长方体有个顶点,经过每个顶点有条棱,共有条棱。
4、一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.5、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形。
三、连线题:把图形与对应的图形名称用线连接起来。
四、解答题:1、将图4-8中的几何体进行分类,并说明理由。
2、图中的的几何体由几个面围成,面与面相交成几条线?它们是直的还是曲的?【探究创新乐园】3、三棱柱有9条棱,6个顶点,5个面;三棱锥有6条棱,4个顶点,4个面;四棱柱有12个棱,8个顶点,6个面;四棱锥有8条棱,5个顶点,5个面,等等,问能否组成一个有24条棱,10个面,15个顶点的多面体?请简要说明理由?4、若一个简单的多面体的每个面都是三角形,其顶点数为V,棱数为E,面数为F,则F=2V-4成立吗,若成立,说明理由;若不成立,请举出反例。
【数学生活实践】将一个圆柱体的面包切3刀,能将面包切成6块吗?能将面包切成7块吗?能将面包切成8块吗?如果能,请画图说明如何切法。
七年级数学《生活中的立体图形》测试题

《生活中的立体图形》测试题
一、 判断题:
1.柱体的上、下两个面一样大.…………( ) 2.圆柱的侧面展开图是长方形.……… ( ) 3.球体不是多面体.……………………… ( ) 4.圆锥是多面体.…………………………..( ) 5.长方体是多面体.………………………( ) 6.柱体都是多面体.………………………( ) 二、 选择题:
1、如图,下列图形( )是柱体.
2、下面
给出的图形中,绕虚线旋转一周能形成圆锥的是( )
3、如下图,下列图形中有十四条棱的是( )
4.按组成面的平或曲划分,与圆锥为同一类几何体()
(A)正方体(B)长方体(C)球(D)棱柱
三、填空题:
1、一个多面体有12条棱,6个顶点,则这个多面体是体。
2、把下列图形的名称填在括号内:
3、长方体有个顶点,经过每个顶点有条棱,共有条棱。
4、一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.
5、(1)长方形绕其一边所在直线旋转一周得到__________;
(2)直角三角形绕其一条直角边所在直线旋转一周得到___________;
(3)半圆绕其直径所在直线旋转一周得到______________.
6、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
四.解答题:
1、将图4-8中的几何体进行分类,并说明理由。
五、现有一个长方形,长为2 cm,宽为1 cm,以它的一边所在的直线为轴旋转一周,得到的几何体的体积是多少?。
数学七年级上册1.1生活中的立体图形同步练习含答案

第一章丰富的图形世界1.1生活中的立体图形A基础知识训练1.(2016•丽水中考)下列图形中,属于立体图形的是()2.(2016•滨湖中学月考)下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③3. (2016•阴平中学月考)如图所示为8个立体图形.其中,是柱体的序号为;是锥体的序号为;是球的序号为.4.如图,在长方体ABCD-EFGH中,与平面ADHE垂直的棱共有条.5.(2016•枣庄实验期中)汽车的雨刷把玻璃上的雨水刷干净,是运用了的原理.6.如图,把下列物体和与其相似的图形连接起来.B基本技能训练1(2016•台儿庄39中模拟)下面图形中为圆柱的是()2.(2016•龙口期中)若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱3.(2015•本溪二模)将如图所示的几何图形,绕直线l旋转一周得到的立体图形()4.硬币在桌面上快速地转动时,看上去象球,这说明了.5.(2016•枣庄十五中月考)如图:将一个长方形形沿它的长或宽所在的直线l旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽边分别为6厘米和4厘米,分别绕它的长或宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)6.(2016•丹东七中月考)已知一个长方体的长为4cm,宽为3cm,高为5cm,请求出:(1)长方体所有棱长的和.(2)长方体的表面积.7.(能力提升题)将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱等分.附答案:1.1生活中的立体图形A基础知识训练1.【解析】选C.A、角是平面图形,故A错误;B、圆是平面图形,故B错误;C、圆锥是立体图形,故C正确;D、三角形是平面图形,故D错误.2.【解析】选C.因为教科书是一个空间实物体,是长方体所以不能说它是一个长方形,因为有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱所以它是棱柱.教科书的表面是一个长方形.3.【解析】是柱体的序号为①②⑤⑦⑧;是锥体的序号为④⑥;是球的序号为③.答案:①②⑤⑦⑧,④⑥,③.4.【解析】与平面ADHE垂直的棱有:AB,DC,HG,EF.共4条.答案:45.【解析】汽车的雨刷把玻璃上的雨水刷干净,是运用了线动成面的原理,答案:线动成面.6.【解析】如图:B基本技能训练1.【解析】选D.由圆柱的特征可知,D是圆柱.2.【解析】选B.一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.3.【解析】选C.绕直线l旋转一周,可以得到的圆台.4.【解析】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体.答案:面动成体.5.解:(1)得到的图形是圆柱形;(2)绕宽旋转得到的圆柱的底面半径为6cm,高为4cm,体积=π×62×4=144πcm3;绕长旋转得到的圆柱底面半径为4cm,高为6cm,体积=π×42×6=96πcm3.6.解:长方体的长、宽、高分别为4cm,3cm,5cm,(1)这个长方体的棱长总和为4×(4+3+5)=48cm,(2)长方体的表面积为:2×(4×3+4×5+3×5)=2×47=94cm2.7. 解:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,所以正方体的棱n等分时三面被涂色的有8个,有(n-2)3个是各个面都没有涂色的,故答案为:8,(n-2)3;(3)由(2)得将这个正方体的棱n等分,有(n-2)3个是各个面都没有涂色的,所以(n-2)3=100,解得6<n<7,∴至少应该将此正方体的棱7等分,故答案为:7.。
2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版

2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版一.选择题(共9小题)1.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱2.如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.3.如图,在长方体ABCD﹣EFGH中,与棱AD平行的平面共有()A.1个B.2个C.3个D.4个4.直四棱柱,长方体和正方体之间的包含关系是()A. B C. D.5.下列物体的形状类似于球体的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡6.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A.4个B.8个C.16个D.27个7.如图,正方体ABCD﹣A′B′C′D′中,面ABB′A′上△AOA′的实际图形是()A.B.C.D.8.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个9.下列立体图形中,是多面体的是()A.B. C.D.二.填空题(共6小题)10.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有_________ 条.11.如图,在长方体中,面ABCD与面_________ 平行.12.圆柱上下两个面是_________ 的圆形;圆锥的底面是一个_________ 形,侧面是一个_________ 面.13.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,则该几何体的体积是_________ .14.下列说法中正确的有_________ 个.①棱锥的底面边数和侧面数相等;②正方体和长方体是特殊的四棱柱,也是特殊的四面体;③长方体是四棱柱,四棱柱也是长方体.15.如图,在每个几何体下面写出它们的名称_________ .三.解答题(共6小题)16.如图是由一个正方体和一个长方体组成的组合体.(1)请你用代数式表示这个组合体的体积;(2)请你说出它是几次几项式.17.如图,画出8个立体图形,请你找出与图②具有相同特征的图形,并说出相同的特征是什么?18.观察图中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平面还是曲面?(2)该圆柱的侧面与底面相交形成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?19.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?20.将下列几何体与它的名称连接起来.21.一位画家有若干个边长为1cm的正方体,他在地面上把它们摆成如图(三层)的形式,然后,他把露出的表面都涂上颜色.(1)图中的正方体一共有多少个?(2)一点颜色都没涂上颜色的正方体有多少个?(3)如果画家摆按此方式摆成七层,那又要多少个正方体?同样涂上颜色,又有多少个正方体没有涂上一点颜色?第四章图形的认识4.1.1认识立体图形参考答案与试题解析一.选择题(共10小题)1.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形.专题:几何图形问题.分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.2如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.考点:认识立体图形.分析:观察长方体,可知第四部分所对应的几何体在长方体中,前面有一个正方体,后面有三个正方体,前面一个正方体在后面三个正方体的中间.解答:解:由长方体和第一、二、三部分所对应的几何体可知,第四部分所对应的几何体一排有一个正方体,一排有三个正方体,前面一个正方体在后面三个正方体的中间.故选A.点评:本题考查了认识立体图形,找到长方体中,第四部分所对应的几何体的形状是解题的关键.3.如图,在长方体ABCD﹣EFGH中,与棱AD平行的平面共有()A.1个B.2个C.3个D.4个考点:认识立体图形.分析:根据图示,我们可以看出,与AD相交的面有前面、后面、左面、下面四个面,只有上面和右面与其平行,解答即可.解答:解:观察可知,AD平行的平面有BCGF、EFGH两个面,故选B.点评:正确理解平行的概念是解题的关键.4.直四棱柱,长方体和正方体之间的包含关系是()A B. C.D.考点:认识立体图形.分析:根据正方体,长方体,直四棱柱的概念和定义即可解.解答:解:正方体是特殊的长方体,长方体又是特殊的直四棱柱故选:A.点评:本题考查了直四棱柱,长方体和正方体之间的包含关系.5.下列物体的形状类似于球体的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡考点:认识立体图形.分析:根据球的形状与特点即可解答.解答:解:根据日常生活常识可知乒乓球是球体.故选:C.点评:熟练掌握常见立体图形的特征,是解决此类问题的关键.6.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A.4个B.8个C.16个D.27个考点:认识立体图形.专题:压轴题.分析:本题要求所得到的正方体最小,则每条棱是由两条小正方体的边组成.解答:解:根据以上分析要组成新的正方体至少要2×2×2=8个.故选B.点评:本题主要考查空间想象能力,解决的关键是要能想象出正方体的形状.7.如图,正方体ABCD﹣A′B′C′D′中,面ABB′A′上△AOA′的实际图形是()A.B.C.D.考点:认识立体图形.分析:结合正方体的特点,根据围成正方体6个面都是正方形,再由正方形的性质判断△AOA′的实际图形.解答:解:因为围成正方体6个面都是正方形,且正方形的对角线垂直平分,所以△AOA′是等腰直角三角形.故选B.点评:本题考查了立体图形的认识,属于基础题型.解题的关键是熟记正方体和正方形的性质.8.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个考点:认识立体图形.分析:仔细观察图,从左向右依次相加即解.注意被挡住的一个.解答:解:这个立体图形有小正方体5+2+1+3=11个.故选:C.点评:解决此类问题,注意不要忽略了被挡住的小正方体.9.下列立体图形中,是多面体的是()A.B. C. D.考点:认识立体图形.分析:多面体指四个或四个以上多边形所围成的立体图形.解答:解:A、只有一个面是曲面;B、有6个面故是多面体;C、有3个面,一个曲面两个平面;D、有2个面,一个曲面,一个平面.故选B.点评:本题考查的是多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体图形.二.填空题(共6小题)10.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 4 条.考点:认识立体图形.分析:在长方体,棱与面之间的关系有平行和垂直两种.解答:解:与平面ADHE垂直的棱有:AB,DC,HG,EF.共4条.故答案为4.点评:本题考查的知识点为:与一个平面内的一条直线垂直的直线就与这个平面垂直.11.如图,在长方体中,面ABCD与面A1B1C1D1平行.考点:认识立体图形.分析:根据图形可直接得到答案.解答:解:根据图形可得面ABCD与面A1B1C1D1平行,故答案为:A1B1C1D1.点评:此题主要考查了认识立体图形,题目比较简单.12.圆柱上下两个面是相等的圆形;圆锥的底面是一个圆形,侧面是一个扇形面.考点:认识立体图形.分析:根据圆柱和圆锥的特征,即可进行解答.解答:解:由圆柱和圆锥的特征可以得知:圆柱的底面都是圆,并且大小一样,侧面是曲面;圆锥的底面也是圆形,侧面是扇形面,则圆柱上下两个面是相等的圆形;圆锥的底面是一个圆形,侧面是一个扇形面.故答案为:相等;圆;扇形.点评:此题考查了对圆柱体和圆锥体的认识,正确记忆重点图形的形状是解题关键.13.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,则该几何体的体积是56a .考点:认识立体图形.分析:根据正方体的体积减去正方体的体积,可得答案.解答:解:V=(4a)3﹣(2a)3=64a3﹣8a3=56a3,故答案为:56a3.点评:本题考查了认识立体图形,利用了正方体的体积.14.下列说法中正确的有 1 个.①棱锥的底面边数和侧面数相等;②正方体和长方体是特殊的四棱柱,也是特殊的四面体;③长方体是四棱柱,四棱柱也是长方体.考点:认识立体图形.分析:根据棱锥的特点,可判断①;根据长方体的特点,可判断②③.解答:解:①棱锥的底面边数和侧面数相等,故①说法正确;②正方体和长方体是特殊的四棱柱,也是特殊的六面体,故②说法错误;③长方体是四棱柱,四棱柱不一定是长方体,故③说法错误;故答案为:1.点评:本题考查了认识立体图形,利用了长方体和四棱柱的关系.15.如图,在每个几何体下面写出它们的名称长方体、圆柱、三棱锥.考点:认识立体图形.分析:根据所给图形的特征进行判断.解答:解:从左向右三个几何体的名称是:长方体、圆柱、三棱锥.故答案为长方体、圆柱、三棱锥.点评:熟记常见立体图形的特征,是解决此类问题的关键,此题属于简单题型.三.解答题(共6小题)16.如图是由一个正方体和一个长方体组成的组合体.(1)请你用代数式表示这个组合体的体积;(2)请你说出它是几次几项式.考点:认识立体图形;多项式.分析:(1)根据正方体的体积公式,长方体的体积公式,可得组合体的体积;(2)根据多项式的项与次数,可得多项式的表示方法.解答:解;(1)由题意,得这个组合体的体积是:a3+a2b;(2)a3+a2b是三次二项式.点评:本题考查了认识立体图形,利用了正方体的体积公式,长方体的体积公式.17.如图,画出8个立体图形,请你找出与图②具有相同特征的图形,并说出相同的特征是什么?考点:认识立体图形.分析:根据立体图形的特点从形状的特征考虑.解答:解:图④、⑦与图②,相同的特征是:它们都是锥体.点评:本题考查了认识立体图形,题目简单但不容易解答,需熟悉立体图形的特点,找出与题目已经提供的特征不相同的共同特征.18.观察图中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平面还是曲面?(2)该圆柱的侧面与底面相交形成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?考点:认识立体图形.分析:根据立体图形可得圆柱有3个面,六棱柱有8个面,圆柱的侧面与底面相交形成曲线,棱柱的侧面与下底面相交形成6条线.解答:解:(1)圆柱有3个面,上下底为平面,侧面为曲面;六棱柱有8个面,都是平面;(2)圆柱的侧面与底面相交形成2条线,是曲线;(3)该棱柱的侧面与下底面相交形成6条线;(4)棱柱共有12个顶点,经过一个顶点有3条棱.点评:此题主要考查了认识立体图形,根据图形的形状进行解答即可.19.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?考点:认识立体图形;几何体的表面积.分析:(1)(2)(3)根据直四棱柱的特征直接解答即可.(4)根据棱柱的侧面积公式:底面周长×高,进行计算.解答:解:(1)它有6个面, 2个底面,底面是梯形,侧面是长方形;(2)侧面的个数与底面多边形的边数相等都为4;(3)它的侧面积为20×8=160cm2.点评:本题考查了立体图形.解题时勿忘记四棱柱的特征及展开图的特征.四棱柱是由四个长方形的侧面和上下两个底面组成.20.将下列几何体与它的名称连接起来.考点:认识立体图形.分析:根据常见立体图形的特征直接连线即可.注意正确区分各个几何体的特征.解答:解:如图所示:点评:考查了认识立体图形,熟记常见立体图形的特征是解决此类问题的关键.此题属于简单题型.21.一位画家有若干个边长为1cm的正方体,他在地面上把它们摆成如图(三层)的形式,然后,他把露出的表面都涂上颜色.(1)图中的正方体一共有多少个?(2)一点颜色都没涂上颜色的正方体有多少个?(3)如果画家摆按此方式摆成七层,那又要多少个正方体?同样涂上颜色,又有多少个正方体没有涂上一点颜色?考点:认识立体图形.分析:(1)图中的正方体一共的个数=三层的个数的和;(2)观察图形可知最底层正中间一个没涂上颜色;(3)观察图形可知最底层有72个正方体,第2层有62个正方体,第3层有52个正方体,第4层有42个正方体,第5层有32个正方体,第6层有22个正方体,第7层有12个正方体,相加即可求出摆成七层的正方体一共的个数;没有涂上一点颜色的正方体第5层有12个正方体,第4层有22个正方体,第3层有32个正方体,第4层有42个正方体,最底层有52个正方体,相加即可求出.解答:解:(1)图中的正方体一共有1+4+9=14个;(2)一点颜色都没涂上颜色的正方体有1个;(3)七层的正方体一共的个数12+22+32+42+52+62+72=140个;没有涂上一点颜色的正方体12+22+32+42+52=55个.答:(1)图中的正方体一共有14个.(2)一点颜色都没涂上颜色的正方体有1个.(3)如果画家摆按此方式摆成七层,要140个正方体,同样涂上颜色,有55个正方体没有涂上一点颜色.点评:本题考查学生对简单几何图形的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.2019-2020年七年级数学上册4.1生活中的立体图形4.1.2跟踪训练含解析新版华东师大版一.选择题(共8小题)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.球B.圆柱C.半球D.圆锥2.将一个长方形绕它的一条边旋转一周,所得的几何体是()A.圆柱B.三棱柱C.长方体D.圆锥3.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.4.将如图放置的含30°角的直角三角形,绕点A旋转90°所得的图形是()A. B.C.D.5.图中的几何体,由两个正方体组合而成,大正方体的棱长为a,小正方体的棱长是b,则这个几何体的表面积等于()A.6a2+4b2B.6a2+6b2C.5a2+6b2D.6(a+b)(a﹣b)6.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.217.正四面体的顶点数和棱数分别是()A.3,4 B.3,6 C.4,4 D.4,68.一个画家有14个边长为1m的正方体,他在地面上把它们摆成如下图的形状,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()A.19m2B.21m2C.33m2D.34m2二.填空题(共6小题)9.5个棱长为1的正方体组成,如图的几何体,该几何体的表面积是_________ .10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是_________ .11.矩形绕其一边旋转一周形成的几何体叫_________ ,直角三角形绕其中一条直角边旋转一周形成的几何体叫_________ .12.如图所示的图形可以被折成一个长方体,则该长方体的表面积为_________ cm2.13.长方体有_________ 个顶点,_________ 条棱,_________ 个面.14.把一块学生使用的三角板以一条直角边为轴旋转成的形状是_________ 形状.三.解答题(共6小题)15.将下列平面图形绕直线AB旋转一周,所得的几何体分别是什么?16.一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.17.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.18.如图,一个棱长为10cm的正方体,在它的一个角上挖掉一个棱长是2cm的正方体,求出剩余部分的表面积和体积.19.棱长为a的正方体摆放成如图的形状:(1)试求其表面积(含底面);(2)若如此摆放10层,其表面积是多少?若如此摆放n层呢?20.下列各图是棱长为1cm的小正方体摆成的,如图①中,共有1个小正方体,从正面看有1个正方形,表面积为6cm2;如图②中,共有4个小正方体,从正面看有3个正方形,表面积为18cm2;如图③,共有10个小正方体,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,共有多少个小正方体?从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?第四章图形的初步认识4.1.2参考答案与试题解析一.选择题(共8小题)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.球B.圆柱C.半球D.圆锥考点:点、线、面、体.分析:根据半圆绕直径旋转一周,结合几何体的特点可得答案.解答:解:将平面图形绕轴旋转一周,得到的几何体是球,故选:A.点评:本题考查了点、线、面、体,半圆绕直径旋转一周得到的几何体是球.2.将一个长方形绕它的一条边旋转一周,所得的几何体是()A.圆柱B.三棱柱C.长方体D.圆锥考点:点、线、面、体.分析:一个长方形围绕它的一条边为中为对称轴旋转一周,根据面动成体的原理即可解.解答:解:一个长方形绕着它的一条边旋转一周,围成一个光滑的曲面是圆柱体.故选A.点评:本题考查了平面图形旋转可以得到立体图形,体现了面动成体的运动观点.3.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.考点:点、线、面、体.分析:先根据面动成体得到圆锥,进而可知其侧面展开图是扇形.解答:解:直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个圆锥,那么它的侧面展开得到的图形是扇形.故选:D.点评:主要考查了圆锥的侧面展开图和面动成体的道理.4.将如图放置的含30°角的直角三角形,绕点A旋转90°所得的图形是()A. B.C.D.考点:点、线、面、体.分析:图形的旋转关键是对应点的旋转,根据三角形其他两点绕点A旋转90°的位置,即可得出所得的图形的位置.解答:解:根据三角形其他两点绕点A旋转90°的位置,即可得出所得的图形的位置如图所示:故选:C.点评:此题主要考查了图形绕点旋转:考查学生图形的空间想象能力及分析问题,解决问题的能力.5.图中的几何体,由两个正方体组合而成,大正方体的棱长为a,小正方体的棱长是b,则这个几何体的表面积等于()A.6a2+4b2B.6a2+6b2C.5a2+6b2D.6(a+b)(a﹣b)考点:几何体的表面积;整式的混合运算.分析:分大正方体的表面积为六个正方形的面积减去重叠部分小正方形的面积,小正方体的五个表面的面积,然后根据正方形的面积公式列式进行计算即可得解.解答:解:∵大正方体的棱长为a,小正方体的棱长是b,∴大正方体的表面积为6a2﹣b2,小正方体可看见的面的面积为5b2,所以,这个几何体的表面积等于6a2﹣b2+5b2=6a2+4b2.故选A.点评:本题考查了几何体的表面积,以及整式的加减运算,要注意重叠部分的面积为小正方形的面积,需要在大正方体与小正方体分别减去一次.6.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.21考点:几何体的表面积.专题:压轴题.分析:此题可根据表面积的计算分层计算得出红色部分的面积再相加.解答:解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5;第二层露出的表面积为:1×1×6×4﹣1×1×13=11;第,三层露出的表面积为:1×1×6×9﹣1×1×37=17.所以红色部分的面积为:5+11+17=33.故选B.点评:此题考查的知识点是几何体的表面积,关键是在计算表面积时减去不露的或重叠的面积.7.正四面体的顶点数和棱数分别是()A.3,4 B.3,6 C.4,4 D.4,6考点:欧拉公式.分析:正四面体也就是正三棱锥,根据三棱锥的侧面是三个三角形围成和底面是一个三角形的特征,可以判断它的顶点数和棱数.解答:解:正四面体的顶点数和棱数分别是4,6.故选D.点评:掌握三棱锥的侧面是三个三角形围成和底面是一个三角形的特征,即三棱锥共有4个面,三个侧面,一个底面.8.一个画家有14个边长为1m的正方体,他在地面上把它们摆成如下图的形状,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()A.19m2B.21m2C.33m2D.34m2考点:几何体的表面积.专题:压轴题.分析:解此类题首先要计算表面积即从上面看到的面积+四个侧面看到的面积.解答:解:根据分析其表面积=4×(1+2+3)+9=33m2,即涂上颜色的为33m2.故选C.点评:本题的难点在于理解露出的表面的算法.二.填空题(共6小题)9.5个棱长为1的正方体组成,如图的几何体,该几何体的表面积是22 .考点:几何体的表面积.分析:先根据正方体的棱长为1,求出1个正方形的面积为1,再根据该几何体的表面有22个正方形构成,即可得出答案.解答:解:∵正方体的棱长为1,∴1个正方形的面积为1,∵该几何体的表面有22个正方形构成,∴该几何体的表面积22.故答案为:22.点评:此题考查了几何体的表面积,解决这类题的关键是找出该几何体的表面有多少个正方形构成.10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是18cm2.考点:点、线、面、体;简单几何体的三视图.分析:首先根据题意可得将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,再找出主视图的形状可得答案.解答:解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,几何体的主视图是长6cm,宽3cm的矩形,因此面积为:6×3=18(cm2),故答案为:18cm2.点评:此题主要考查了点、线、面、体,以及三视图,关键是掌握主视图是从几何体的正面看所得到的图形.11.矩形绕其一边旋转一周形成的几何体叫圆柱,直角三角形绕其中一条直角边旋转一周形成的几何体叫圆锥.考点:点、线、面、体.分析:根据线动成面的知识可判断矩形及三角形旋转后的图形.解答:解:长方形绕它的一边旋转一周可形成圆柱,直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆柱,圆锥.点评:本题考查线动成面的知识,难度不大,解决本题的关键是掌握各种面动成体的特征.12.如图所示的图形可以被折成一个长方体,则该长方体的表面积为88 cm2.考点:几何体的表面积;展开图折叠成几何体.专题:计算题;几何图形问题.分析:由图形可知,这是一个长方体图形的展开图,先得出长方体的长、宽、高,根据长方体的表面积计算公式即可求解.解答:解:长方体的表面积是:2×(6×4+6×2+4×2)=88m2.故答案为:88.点评:本题考查了几何体的展开图和表面积,长方体的表面积=2(长×宽+长×高+宽×高).13.长方体有8 个顶点,12 条棱, 6 个面.考点:欧拉公式.。
1.1 生活中的立体图形 提高练习 2021-2022学年北师大版数学七年级上册

1.1 生活中的立体图形提高练习一、选择题1.如图,含有曲面的几何体编号是()A.①②B.①③C.②③D.②④2.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转3.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于()A.圆柱体B.球体C.圆D.圆锥体4.围成下列这些立体图形的各个面中,都是平的面为()A.B.C.D.5.如图,一个正方体有盖盒子(可密封)里装入六分之一高度的水,改变正方体盒子的放置方式,下列选项中不是盒子里的水能形成的几何体是()A.正方体B.长方体C.三棱柱D.三棱锥6.从棱长为a的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.6a2+3B.6a2C.6a2﹣3D.6a2﹣17.如图所示,过长方体的一个顶点,截掉长方体的一个角,则新几何体的棱数为()A.11B.12C.13D.148.下边的立体图形是由哪个平面图形绕轴旋转一周得到的()A.B.C.D.9.下列几何体中,是圆柱的为A.B.C.D.10.六棱柱中,棱的条数有()A.6条B.10条C.12条D.18条二、填空题11.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为_____个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个_____面体.12.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).13.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____.14.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高________cm.15.一个棱柱有12个面,它有__________个顶点,___________条棱.16.这是一个_______体,它的长是_______ cm,宽是_______ cm,高是_______ cm.棱长总和是_______cm.17.“枪打一条线,棍打一大片”这个现象用数学知识解释说明:___________.18.如图,把一个长方体的礼盒用丝带打上包装,蝴蝶结部分需丝带42cm,那么打好整个包装所用丝带总长为________cm.19.请同学们手拿一枚硬币,将其立在桌面上用力一转,它形成的是一个______体,由此说明______________.20.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说______.三、解答题21.如图,把下列物体和与其相似的图形连接起来.22.如图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体.用线连一连.23.如图是一张长方形纸片,AB长为3cm,BC长为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是______;(2)若将这个长方形纸片绕AB边所在直线旋转一周,则形成的几何体的体积是____3cm(结果保留 );(3)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的表面积(结果保留 ).24.十八世纪瑞士数学家欧拉证明了简单多面体中项点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列儿种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是______________________.(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是;(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.参考答案一、选择题1--10CBABA BDAAD二、填空题11.12.12.12.).13.814.315或115.20 3016.长方25 12 18 22017.点动成线,线动成面18.14019.球面动成体20.线动成面三、解答题21..22.. 23.(1)圆柱;(2)48π;(3)240cm π或233cm π. 24.(1)V+F -E=2;(2) 20;(3)26。
生活中的立体图形练习题

生活中的立体图形十分钟测试1、棱柱的两个底面是形,侧面是形;圆柱的两个底面是形,侧面是面,展开图形是形。
2、棱柱和圆柱统称体。
3、棱锥的底面是形,侧面是形;圆锥的底面是形,侧面是面。
4、棱锥和圆锥统称体。
5、常见的立体图形分为体,体,体。
6、如图,下列图形()是柱体.7、把下列立体图形的名称填到下面括号里。
8、判断下列的陈述是否正确(1)柱体的上、下两个面不一样大( )(2)圆柱、圆锥的底面都是圆()(3)棱柱的底面不一定是四边形()(4)圆柱的侧面是平面()(5)棱锥的侧面不一定是三角形()(6)柱体都是多面体()小测试(1)一、选择1.与易拉罐类似的几何体是()A、圆锥B、圆柱C、棱锥D、棱柱2.下图中是三棱锥的立体图形是( )3.埃及金字塔类似于几何体 ( )A 、圆锥B 、圆柱C 、棱锥D 、棱柱 4.下列各组图形中都是平面图形的是( )A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、正方形、圆D.点、相交线、线段、长方体 5.下列说法正确的是 ( ) A .有六条侧棱的棱柱的底面一定是三角形 B .棱锥的侧面是三角形 C .长方体和正方体不是棱柱D .柱体的上、下两底面可以大小不一样二、填空6.立体图形的各个面都是__________的面,这样的立体图形称为多面体. 7.篮球、排球、足球、乒乓球都是球形的,不是球形的球是。
8.棱柱的长相等,上下底面是的多边形,侧面是。
9.一个棱锥有7个面,这是棱锥,有个侧面。
10.长方体ABCD -A ′B ′C ′D ′有个面,条棱,个顶点。
与棱AB 垂直相交的棱有条,与棱AB 平行的棱有条。
11.如图所示立体图形中,(1)球体有___________;(2)柱体有_________;(3)锥体有____________.12.如图,是一座粮仓,它可以看作是由和几何体组成的.13.如图,用边长为4的正方形,做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积是______.14、判断(1)柱体上下两个面一样大。
初一数学《生活中的立体图形》例题测试(北师大版)

初一数学《生活中的立体图形》例题测试(北师大版)北师大版七上数学生活中的立体图形例题解析(含解析)1.生活中常有的立体图形(1)常有的立体图形和对应的几何体图(1)是生活中几种常有的实物图形,其对应的几何体如图(2)所示.图(1)图(2)生活中包括着大量的几何图形,这些几何图形可以抽象为几何体.常有的几何体有长方体、正方体、圆柱、圆锥、球和棱柱等.注意:棱锥也是一种常有的几何体.如上面的最后一图.(2)几何体的组成几何体是由平面或曲面围成的立体图形.若是围成的面都是平的,叫做多面体.【例 1】以下列图形中,上面一行是一些详尽的实物图形,下面一行是一些几何体,试用线连接几何体和近似的实物图形.解析:比较实物图与几何体,从实物图形中抽象出数学几何体即可.第1页/共8页解:以下列图.2.几何图形的组成(1)几何图形的组成几何图形包括立体图形和平面图形,几何图形是由点、线、面组成的.面有平面和曲面,面不分厚薄;线有直线和曲线,线不分粗细.面与面订交获取线,线与线订交获取点,点不分大小.(2)点、线、面的关系从运动的角度看,点动成线,线动成面,面动成体.比方,把笔尖看做一个点,笔尖在纸上搬动就能形成一条线,即点动成线.点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球转动过的路线等.钟表的分针旋转一周形成一个圆面,即线动成面.线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等.长方形绕它的一边旋转一周就能形成一个圆柱,即面动成体.面动成体的实例还有:以三角形的一边为轴旋转一周形成的几何体等.【例 2】以下列图的立体图形,是由__________个面组成的,其中有 __________个平面,有 __________个曲面;面与面相交成 __________条线,其中曲线有__________条.解析:该几何体的两个底面是平面;两个侧面中一个是平面,一个是曲面.两个底面与曲侧面订交成两条曲线,两个底面与平侧面订交成两条直线,两个侧面订交成两条直线.答案: 43162点技巧线与面的数法对于几何体,面与面订交获取线,线与线订交获取点.在数面时可先数底面,再数侧面;数线时,可先数底面与侧面相交成的线,再数侧面与侧面订交成的线.3.立体图形的鉴别几何图形的特色:(1)圆柱:两个底面是等圆,侧面是曲面.如八宝粥盒、茶杯等.(2)圆锥:底面是圆,侧面是曲面.像锥子.如烟囱帽、铅锤、漏斗等.(3)长方体:有 6 个面,底面是长方形,相对的两个面平行且完好相同.如砖、文具盒等.(4)正方体: 6 个面是大小完好相同的正方形.如魔方等.(5)棱柱:所有侧棱长都相等,底面是多边形,上、下底面的形状相同,侧面的形状都是平行四边形.(6)球:由一个曲面组成,圆圆的.如足球、乒乓球等.(7)棱锥:一个面是多边形,其余各面是一个有公共极点的三角形.多边形的面称为棱锥的底面,其余各面称为棱锥的侧面.依照底面的边数可将棱锥分为三棱锥、四棱锥谈重点从哪几个方面认识几何体的特色①有几个面围成,是平面还是曲面;②有无极点,有几个极点;③侧面是平面还是曲面;④底面是什么形状,是多边形还是圆,有几个底面等.【例 3- 1】请在每个几何体下面写出它们的名称.解析:依照立体图形的定义特色即可得出图形的名称.答案:三棱柱圆柱长方体圆锥四棱柱正方体球【例 3- 2】如图,在下面四个物体中,最凑近圆柱的是 ().解析:圆柱是“直”的,与弯管 B 有明显差异; D 中的饮料瓶的盖确实可以看作是圆柱,但它在该物中只占很小的一部分,该物体从整体上讲更凑近于棱柱; A 中烟囱上下粗细不同,不是圆柱,故应消除 A ,B,D ;作为柱体的本质特色之一是“粗细”各处相同,而与高、矮 (长、短 )没关, C 中玩具硬币尽管扁一些,但是最凑近圆柱,所以应选 C.答案: C4.几何体的分类(1)几何体按柱、锥、球的特色分为:(2)按围成的面分为:分类是数学中的基本方法,在分类时要一致标准,做到不重不漏.__________________________________________________________________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ ____【例 4- 1】在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,形状近似于棱柱的有().A.1 个 B.2 个 C.3 个 D.4 个解析:粉笔盒、三棱镜、书本可以看作棱柱,乒乓球是球体,易拉罐瓶是圆柱,热水瓶胆既不是棱柱,也不是圆柱和球体.故答案选 C.答案: C【例 4- 2】将以下几何体分类,并说明原由.解析:分类时,先确定分类标准.分类标准不相同,所属种类也不相同,同时应注意分类要不重不漏.解:(1)按柱、锥、球划分:①②④⑤为一类,它们都是柱体;③⑦为一类,它们都是锥体;⑥为一类,它是球体.(2)按围成几何体的面是平面或曲面分:①④⑤⑦为一类,它们是多面体;②③⑥为一类,它们是旋转体.(3)按几何体有无极点分:①③④⑤⑦为一类,它们都有极点;②⑥为一类,它们都无极点.5.几何体的形成(1)长方形绕其一边所在直线旋转一周获取圆柱;(2)直角三角形绕其一条直角边所在直线旋转一周获取圆锥;(3)半圆绕其直径所在直线旋转一周获取球体.释疑点旋转体的形成①平面图形旋转会形成几何体;②平面图形绕某素来线旋转一周才可以形成几何体;③由平面图形旋转而获取的几何体有:圆柱、圆锥、球以及它们的组合体.___________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ ____【例 5】我们曾学过圆柱的体积计算公式: V = Sh=πR2h(R 是圆柱底面半径, h 为圆柱的高 ),现有一个长方形,长为 2cm,宽为 1cm,以它的一边所在的直线为轴旋转一周,获取的几何体的体积是多少?解析:问题中的几何体可由两种方式旋转获取.一种是绕这个长方形的长所在的直线旋转,另一种是绕这个长方形的宽所在的直线旋转,其结果不相同,注意不要漏解.解:(1)当以长方形的宽所在的直线为轴旋转时,如图 (1)所示,获取的圆柱的底面半径为 2cm,高为 1cm. 所以,其体积是 V1 =π× 22×1=4π(cm3).宋今后,京师所设小学馆和武学堂中的教师称号皆称之为“教谕”。
七年级数学上册 第一章 丰富的图形世界 1 生活中的立体图形 第1课时 常见的立体图形同步练习(含解

第一章丰富的图形世界1生活中的立体图形第1课时常见的立体图形1.将下列几何体分类,并说明理由.解:按球体、柱体、锥体分类,(1)(2)(4)(6)(7)是柱体,(5)是锥体,(3)是球体.2.如图是一个五棱柱,它的底面边长都是4 cm,侧棱长是6 cm.回答下列问题:(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱一共有多少条棱?它们的长度分别是多少?解:(1)这个五棱柱一共有7个面,其中5个是长方形,2个是五边形.2个五边形的形状、面积完全相同,所有的侧面(5个长方形)形状、面积完全相同.(2)这个五棱柱一共有15条棱.5条侧棱长度彼此相等,都等于6 cm,围成底面的所有的边的长都相等,都等于4 cm.3.下面图形中为圆柱的是( D )A B C D4.下列标注的图形名称与图形不相符的是( A )A.球B.长方体C.圆柱D.圆锥5.乒乓球类似于几何体中的__球体__;篮球类似于几何体中的__球体__;易拉罐与几何体中的__圆柱__体形状相似;魔方与几何体中的__正方体__形状相似.6.一个正方体共有( D )A.1个面 B.2个面C.4个面 D.6个面7.下列说法错误的是( D )A.长方体与正方体都有六个面B.圆锥的底面是圆C.棱柱的上、下底面的形状相同D.三棱柱有三个面、三条棱8.下列物体的形状属于球体的是( B )A B C D9.下列几何体属于柱体的个数是( D )A.3 B.4 C.5 D.610.下面几种图形:①三角形;②长方体;③正方形;④圆;⑤圆锥;⑥圆柱.其中立体图形有( D )A.6个 B.5个C.4个 D.3个11.直棱柱的侧面都是( B )A.正方形 B.长方形C.五边形 D.菱形12.长方体有__6__个面,__8__个顶点,过每个顶点有__3__条棱,长方体共有12条棱.13.圆柱由__3__个面围成,其中一个是__曲面__,另外两个是__平面__.14.长方体和圆柱都是__柱__体,圆锥和三棱锥都是__锥__体.15.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥,如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是( B )A.五棱柱 B.六棱柱C.七棱柱 D.八棱柱16.如图所示的一些物体与我们学过的哪些图形类似?把相应的物体和图形连接起来.17.将如图所示几何体分类,并说明理由.解:①③④⑤是柱体,②⑥是锥体,⑦是球体.(答案不唯一)18.一个正n棱柱,它有18条棱,一条侧棱长为10 cm,一条底面边长为5 cm.(1)这是几棱柱?(2)此棱柱的侧面积是多少?(3)过它一个底面的某个顶点连接该底面的其他各顶点,可把该底面分成几个三角形?[底面是正多边形的直棱柱叫做正棱柱,各边相等,各角也相等的多边形叫做正多边形(多边形:边数大于或等于3)]解:(1)18÷3=6,这是一个六棱柱.(2)此棱柱的侧面积是6×5×10=300(cm2).(3)可把该底面分成4个三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学《生活中的立体图形》测试题
一、判断题:
1.柱体的上、下两个面一样大.………………………………………………..()
2.圆柱的侧面展开图是长方形.………………………………………………()
3.球体不是多面体.……………………………………………………………()
4.圆锥是多面体.………………………………………………………………..()
5.长方体是多面体.……………………………………………………………..()
6.柱体都是多面体.……………………………………………………………..()
二、选择题:
1、如图,下列图形()是柱体.
2、下面给出的图形中,绕虚线旋转一
周能形成圆锥的是()
3、如下图,下列图形中有十四条棱的
是()
三、填空题:
1、一个多面体有12条棱,6个顶点,
则这个多面体是体。
2、把下列图形的名称填在括号内:
3、长方体有个顶点,经过每个顶点有
条棱,共有条棱。
4、一个七棱柱共有个
面,条棱,个顶点,形状和面积完全相同的只有个面.
5、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
四.连线题:
把图形与对应的图形名称用线连接起来。
五.解答题:
1、将图4-8中的几何体进行分类,并说明理由。