中考数学专题复习(二)圆
中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。
精品 中考数学二轮复习 圆专题复习

中考二轮复习 圆专题 综合复习题 一1.已知⊙ 0的直径AB=40,弦CD ⊥AB 于点E ,且CD=32,则AE 的长为( ) A .12 8.8 C .12或28 D .8或322.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A 、2cmB 、错误!未找到引用源。
cm C.cm 32D 、错误!未找到引用源。
3.如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于点E ,AE=3,ED=4,则AB 的长为( ) A.3 B.23 C.21 D.354.如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ) A.12 B.34 C.32D.45 5.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= °.6.如图,AB 是半圆O 的直径,以0A 为直径的半圆I 与弦AC 交于点D ,IE ∥AC ,并交OC 于点E .则下列四个结论:①点D 为AC 的中点;②AO C IOE S S ∆∆=21;③2AC AD = ;④四边形I'DEO 是菱形.其中正确的结论是 _________.(把所有正确的结论的序号都填上)7.如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于点D ,OE ⊥AC 于点E ,且AB =8cm ,AC =6cm ,那么⊙O 的半径OA 长为 .8.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB 、CD 的延长线交于点E ,若AB =2DE ,∠B =18°,则∠AOC 的度数为_ .9.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②OE CE =;③△ODE ∽△ADO ;④AB CE CD ⋅=22.其中正确结论的序号是 .10.如图,△ABC 内接于⊙O ,若B ∠=30°,3AC =,则⊙O 的直径为 .11.如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .12.如图,已知O ⊙的半径为1,锐角△ABC 内接于圆O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于( )A.OM 的长B.2OM 的长C.CD 的长D.2CD 的长13.如图,OA 是⊙B 的直径,OA=4,CD 是⊙B 的切线,D 为切点,∠DOC=30°,则点C 的坐标为 15.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D,DE ⊥AC,交AC 的延长线于点E . (1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AE=8,⊙O 的半径为5,求DE 的长.16.已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F .(1)求证:AC 与⊙O 相切;(2)当BD=6,sinC=53时,求⊙O 的半径.AFD OEBG C17.如图,AB 为⊙O 的直径, D 、T 是圆上的两点,且AT 平分∠BAD ,过点T 作AD 延长线的垂线PQ ,垂足为C .(1)求证:PQ 是⊙O 的切线;(2)若⊙O 的半径为2,3TC =,求弦AD 的长.18.已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作D E A C ⊥于点E . (1)请说明DE 是⊙O 的切线;(2)若30B ∠=,AB =8,求DE 的长.19如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB=AD=AO . (1)求证:BD 是⊙O 的切线.(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为8,cos ∠BFA=32,求△ACF 的面积.20.如图,AB 是⊙O 的直径,AB=10,DC 切⊙O 于点C ,AD ⊥DC ,垂足为D ,AD 交⊙O 于点E 。
2025年中考数学二轮复习专题圆与锐角三角函数综合题(第二课时)练习

2025年中考数学二轮复习专题圆与锐角三角函数综合题(第二课时)练习例1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊙BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且⊙ODB=⊙AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sin A=,求BH的长.练习1.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊙CD于点E.(1)求证:⊙BME=⊙MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin⊙BAM=,求线段AM的长.例2.如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊙AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求P A的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.练习2.如图,AB是⊙O的直径,弦CD⊙AB,垂足为H,连结AC,过上一点E作EG⊙AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:⊙ECF⊙⊙GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan G=,AH=3,求EM的值.例3.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分⊙ABM,弦CD交AB于点E,DE=OE.(1)求证:⊙ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan⊙ACD的值.练习3如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO⊙AC;(2)求证:DE•DA=DC2;(3)若tan⊙CAD=,求sin⊙CDA的值.例4.如图,已知在⊙ABP中,C是BP边上一点,⊙P AC=⊙PBA,⊙O是⊙ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:P A是⊙O的切线;(2)过点C作CF⊙AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin⊙ACE的值.练习4.如图1所示,已知AB,CD是⊙O的直径,T是CD延长线的一点,⊙O的弦AF交CD于点E,且AE=EF,OA2=OE•OT.(1)如图1,求证:BT是⊙O的切线;(2)在图1中连接CB,DB,若=,求tan T的值;(3)如图2,连接DF交AB于点G,过G作GP⊙CD于点P,若BT=6,DT=6.求:DG的长.例5.如图,已知AO为Rt⊙ABC的角平分线,⊙ACB=90°,,以O为圆心,OC为半径的圆分别交AO,BC于点D,E,连接ED并延长交AC于点F.(1)求证:AB是⊙O的切线;(2)求tan⊙CAO的值;(3)求的值.课后练习1.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,连结AD,过点D作⊙O的切线交CB的延长线于点E.(1)求证:DE∥AB.(2)若⊙O的半径为1,求CA•CE的最大值.(3)如图2,连结AE,若,求tan∠AEC的值.2.如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC=∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC的延长线于点N,交⊙O于点M(点M在劣弧上).(1)BD是⊙O的切线吗?请作出你的判断并给出证明;(2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tan D)2的值;(3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.3.如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在上,四边形MNPQ为正方形,点C在上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.(1)求sin∠AOQ的值;(2)求的值;(3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.4.如图,已知等腰三角形ABC内接于⊙O,AB=AC,点D为上一点(不与点A,C重合),连接AD,BD,CD,且BC=3CD=18.(1)如图1,若BD为⊙O直径.①求tan∠BAC的值;②求四边形ABCD的面积.(2)如图2,在上取一点E,使,连接CE,交AB于点F,若∠BDC=∠AFC,求AD的长度.5.如图1,AB是⊙O的直径,点P是直径AB上一动点,过点P作直径AB的垂线交⊙O于C,D两点.(1)若⊙O的半径为2,,连接CO,DO,求劣弧的长度;(2)如图2,点K是劣弧上一点,连接AK,BK,AK交CD于点Q,连接BQ,记∠BAK=α,∠ABQ=β,若BQ恰好平分∠ABK,且,求β的正切值;(3)如图3,当动点P移动到点O时,点K是劣弧上一点,连接AK,DK,AK交CD于点Q,DK交AB于点N,连接AD,QN.①求证:△DAQ∽△AND;②记∠OND=θ,△ANQ的面积为S1,△DON的面积为S2,求的值(结果用含有θ的三角函数值的式子进行表示).。
2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)(含答案)

2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)1.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2;以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3;以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中弧的长 .2.如图,△ABC 的内切圆⊙O 分别与三角形三边相切于点D 、E 、F ,若∠DFE =55°,则∠A = °.3.如图,在Rt △ABC 中,点D 是AB 上的一点,将Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 的对应点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,若AC =2BC =2,则阴影部分的面积是 .4.如图,以半圆的一条弦AN为对称轴,将AN弧折叠过来和直径MN交于点B,如果MB:BN =2:3,若MN=10,那么弦AN的长为.5.如图,PA与⊙O切于点A,PO的延长线交⊙O于点B,若⊙O的半径为3,∠APB=54°,则弧AB的长度为.6.如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为(用含m、n的代数式表示).7.如图△ABC中,AC=BC=5,AB=6,以AB为直径的⊙O与AC交于点D,若E为的中点,则DE.8.在矩形ABCD中,AB=4,BC=6,若点P是矩形ABCD上一动点,要使得∠APB=60°,则AP的长为.9.如图,在⊙O中,,AB=3,则AC=.10.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号).11.如图,⊙O是等边△ABC的外接圆,其半径为3.图中阴影部分的面积是.12.如图所示,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为D,如果CD=2,那么AB 的长是.13.过三点A(3,3)、B(7,3)、C(5,6)的圆的圆心坐标为.14.如图,在扇形OAB中,∠AOB=90°,OA=1,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则线段AC的长等于.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分=.面积S阴影16.如图,在边长为的正八边形ABCDEFGH中,点P在CD上,则△PGH的面积为.17.如图,已知⊙O的半径为6,C、D在直径AB的同侧半圆上,∠AOC=96°,∠BOD=36°,动点P在直径AB上,则CP+PD的最小值是.18.如图,四边形ABCD内接于以AC为直径的⊙O,AD=,CD=2,BC=BA,AC与BD 相交于点F,将△ABF沿AB翻折,得到△ABG,连接CG交AB于E,则BE长为.19.如图,⊙O的半径为5,弦AB的长为5,C为⊙O内一动点,且△ACB=90°,则△ABC的周长的最大值为.20.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.如果∠ACB=75°,圆O的半径为2,则BD的长为.参考答案1.解:连接P1O1,P2O2,P3O3,P4Q4,…,如图所示:∵P1是⊙1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,P n O n垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO n=2n﹣1,∴=×2π•OO n=π×2n﹣1=2n﹣2π,∴n=2020时,=22020﹣2π=22018π,故答案为:22018π.2.解:连接OD,OE,如图所示:则∠ADO=∠AEO=90°;由圆周角定理知,∠DOE=2∠DFE=110°;∴∠A =360°﹣∠ADO ﹣∠AEO ﹣∠DOE =70°.故答案为:70.3.解:如图,连接CD 、CD ′,∵Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 与点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,∴∠DCD ′=∠ACA ′=∠BCB ′=90°,CB =CD =CB ′=CD ′=,AC =A ′C =2,∴∠BCD +∠DCB ′=∠B ′CD ′+∠DCB ′=90°,∴∠DCB =∠D ′CB ′,∴△DCB ≌△D ′CB ′(SAS ),由旋转可知:△ABC ≌△A ′CB ′,∴S △DCB =S △D ′CB ′,S △ABC =S △A ′CB ′,∴S △BCD +S △A ′CD ′=S △ABC∴S 阴影=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △BCD ﹣S △A ′CD ′=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣(S △BCD +S △A ′CD ′)=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △A ′CB ′=S 扇形ACA ′﹣S 扇形DCD ′=﹣=.故答案为.4.解:连接MA并延长至M',使AM'=AM,连接M'N,交半圆于D,连接AD,如图所示:∵MN是半圆的直径,∴∠MAN=90°,∴AN⊥AM,∵AM'=AM,∴M′N=MN=10,∵MB:BN=2:3,∴MB=4,BN=6,由折叠的性质得:AD=AB,BN=DN,∴DM'=BM=4,∵四边形AMND是圆内接四边形,∴∠M'AD=∠M'NM,∵∠M'=∠M',∴△M'AD∽△M'NM,∴=,∴M′A•M′M=M′D•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2﹣AN2,∴20=100﹣AN2,∴AN=4.故答案为:4.5.解:连接OA,∵PA与⊙O切于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APB=54°,∴∠AOB=∠APB+∠PAO=54°+90°=144°,∵⊙O的半径为3,∴弧AB的长度为=π.故答案为:π.6.解:如图,作DE⊥CA与E,DF⊥BC于F.∵AB是直径,∴∠ECF=∠CED=∠CFD=90°,∴四边形DECF是矩形,∵DC平分∠ACB,DE⊥CA,DF⊥CB,∴DE=DF,∴四边形DECF是正方形,∵∠DCA=∠DCB,∴=,∴AD=BD,∴Rt△ADE≌Rt△FDB(HL),∴AE=BF,∴CE+CF=AC+AE+CB﹣BF=AC+BC=m+n,∴CE=CF=DE=DF=(m+n),∴CD=(m+n),故答案为:(m+n).7.解:连接OC、OE、BD,OE与BD交于点F,如图所示:∵AC=BC=5,O为AB的中点,∴OA=OB=3,OC⊥AB,∴OC===4,∵AB为⊙O的直径,∴∠ADB=90°∴AD⊥BD,∴BD===,∴AD===,∵E为的中点,∴OE⊥BD,∴OE∥AD,∵OA=OB,∴OF为△ABD的中位线,∴DF=BF=BD=,OF=AD=,∴EF=OE﹣OF=3﹣=,∴DE===;故答案为:.8.解:如图,取CD中点P,连接AP,BP,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=6,∠D=∠C=90°,∵点P是CD中点,∴CP=DP=2,∴AP===4,BP===4,∴AP=PB=AB,∴△APB是等边三角形,∴∠APB=60°,过点A,点P,点B作圆与AD交于点P′,与BC交于点P″,连接BP′,AP″,此时∠AP′B=∠APB=60°,∠AP″B=60°,∴AP′==4,AP″==8,故答案为:4或4或8.9.解:∵在⊙O中,,∴AC=AB=3,故答案为:310.解:∵五边形ABCDE是正五边形,∴五边形ABCDE为圆内接正五边形,∴====,∴∠BAE==108°,∠HAN=∠AEH=∠BAC=∠DAE=∠ABE=∠BAE=×108°=36°,∴∠EAH=∠BAN=36°+36°=72°,∴∠AHE=180°﹣72°﹣36°=72°,∠ANB=180°﹣72°﹣36°=72°,∴∠EAH=∠EHA=72°,∠ANH=∠AHN=72°,∴AE=HE,∠EAH=∠EHA=∠ANH=∠AHN,∴△AEH∽△AHN,∴=,∵五角星的边框总长为40cm,∴AH=AN=EN==4,HN=HE﹣NE=AE﹣4,∴=,整理得:(AE﹣2)2=20,∴AE=2+2(cm),故答案为:2+2.11.解:∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π,故答案为:3π.12.解:连接OA,∵半径OC⊥AB,∴AD=BD=AB,∵OC=5,CD=2,∴OE=3,在Rt△AOD中,AD===4,∴AB=2AD=8,故答案为8.13.解:如图,在平面直角坐标系中画出点A、B、C,连接AB、AC、BC,过C作CE⊥AB于E,设所求的圆的圆心为D,半径为r,连接AD∵A(3,3)、B(7,3)∴圆心D在直线x=5上∴D的横坐标为5∵C(5,6)∴CE=3∵CD=r∴DE=3﹣r在Rt△DAE中,由勾股定理得:AE2+DE2=AD2∴22+(3﹣r)2=r2解得r=∴点D的纵坐标为6﹣=∴D(5,)故答案为:(5,).14.解:连接OD,BC,AB,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴OB=BD=OD,∴△BOD是等边三角形,∴∠OBD=60°,即旋转角等于60°,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=OB=,故答案为:15.解:连接OC.∵AB⊥CD,∴=,CE=DE=,∴∠COB=∠BOD,∵∠BOD=2∠BCD=60°,∴∠COB=60°,∵OC=OB=OD,∴△OBC,△OBD都是等边三角形,∴OC=BC=BD=OD,∴四边形OCBD是菱形,∴OC∥BD,∴S△BDC =S△BOD,∴S阴=S扇形OBD,∵OD==2,∴S阴==,故答案为.16.解:作正八边形的外接圆O,则∠HGD=×360°=90°,∠FGD=×360°=45°,在正八边形ABCDEFGH中,CD∥HG,∴S△HGP =S△CDH,过F作FM⊥DG于M,过E作EN⊥DG于N,在Rt△GMF中,∠FGD=45°,GF=,∴GM=GF=1,同理,DN=1,∵MN=EF=,∴GD=1++1=2+,∴S△HGP =S△HGD=HG•GD=.故答案为:+1.17.解:过D作DE⊥AB交⊙O于E,连接CE交AB于P,连接OE,作OF⊥CE于F,如图所示:此时CP+PD=CE最小.,∴∠BOE=∠BOD=36°,∵∠AOC=96°,∴∠BOC=84°,∴∠COE=∠BOC+∠BOE=120°,∵OC=OE=6,∴∠OCE=∠OEC=30°,∵OF⊥CE,∴CF=EF,OF=OC=3,CF=OF=3,∴CE=2CF=6.即CP+PD的最小值为6;故答案为:6.18.解:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵AD=,CD=2,∴AC==,∵AB=BC,∴∠1=∠2,过F作FM⊥AD于M,FN⊥CD于N,∴FM=FN,∴====2,∴AF=AC=,∵将△ABF沿AB翻折,得到△ABG,∴∠GAE=∠CAE,∴==3,∵AG=AF=,∵∠BAG=∠BAC=45°,∴∠GAC=90°,∴CG==,∴EG=CG=,∴tan∠CGA==3,过A作AH⊥EG于H,∴HG=AG•cos∠AGH=×=,AH=AG•sin∠AGH=×=1,∴EH=EG﹣HG=,∴AE==,∵AB=AC=,∴BE=AB﹣AE=.故答案为:.19.解:如图,连接OA、OB,∵OA=OB=5,AB=5,∵52+52=(5)2∴OA2+OB2=AB2,∴△AOB是直角三角形,∴∠AOB=90°,∵△ACB=90°,即当点C与点O重合时,△ABC的周长最大,因为AB是定值,AO+BO是直径最大,则△ABC的周长的最大值为:10+5.故答案为:10+5.20.解:如图,连接OB,∵∠DOC=2∠ACD=90°.∴∠ACD=45°,∵∠ACB=75°,∴∠BCD=∠ACB﹣∠ACD=30°,∵OC=OD,∠DOC=90°,∴∠DCO=45°,∴∠BCO=∠DCO﹣∠BCD=15°,∵OB=OC,∴∠CBO=∠BCO=15°,∴∠BOC=150°,∴∠DOB=∠BOC﹣∠DOC=150°﹣90°=60°,∵OB=OD,∴△BOD是等边三角形,∴BD=OD=2.故答案为2.。
2021年九年级中考复习数学考点提分专练——几何专题:《圆的提高题》(二)

九年级中考复习数学考点提分专练——几何专题《圆的提高题》(二)1.如图,⊙O是直角三角形ABC的外接圆,直径AC=4,过C点作⊙O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.(1)求证:BM与⊙O相切;(2)当∠A=60°时,求弦AB和弧AB所夹图形的面积;(3)在(2)的条件下,在⊙O的圆上取点F,使∠ABF=15°,求点F到直线AB的距离.2.如图,已知四边形ABCD内接于⊙O,AC⊥BD于E,=.(1)求证:∠BDC=2∠ADB;(2)若直径BM交AC于点N,AD﹣BN=2,BC=8,求⊙O的半径.3.如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°≤∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(1,0),P2(1,1),P3(0,2)中,⊙O的环绕点是;②直线y=x+b与x轴交于点A,与y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为1,圆心为(0,t),以为圆心,为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.4.如图,△ABC内接于⊙O,AB是⊙O的直径,C是中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD.(1)求证:P是线段AQ的中点;(2)若⊙O的半径为5,D是的中点,求弦CE的长.5.如图,MB,MD是⊙O的两条弦,点A,C分别在弧MB,弧MD上,且AB=CD,点M是弧AC的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于E,OE=1,⊙O的半径是2,求MD的长.6.如图,△ABC内接于⊙O,AB是⊙O的直径,AC=6,CB=8,CE平分∠ACB交⊙O于E,交AB于点D,过点E作MN∥AB分别交CA、CB延长线于M,N.(1)补全图形,并证明MN是⊙O的切线.(2)分别求MN、CD的长.7.如图,AB为⊙O的直径,AC,BE为⊙O上位于AB异侧的两条弦,连接BC,CE,延长AB到点D,使得∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)当AC=CE时,①求证:BC2=BEBD;②若BD=3BE,AC=2,求⊙O的半径r.8.如图,⊙O与△ABC的AB边相切于点B,与AC、BC边分别交于点D、E,DE∥OA,BE是⊙O的直径.(1)求证:AC是⊙O的切线;(2)若∠C=30°,AB=3,求DE的长.9.如图,四边形ABCD内接于⊙O,对角线BD是⊙O的直径,AC平分∠BAD,过点C作CG∥BD交AD的延长线于点G.(1)求证:CG是⊙O的切线;(2)若AB=3,AD=5,求AC的长.10.在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P (0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.参考答案1.解:∵∠A=600,OA=OB,∴△ABO为等边三角形,∴∠AOB=60,∵AC=4,∴OA=2,∴S阴影=S扇形AOB﹣S△AOB=﹣×22=﹣;(3)①如图1:∠ABF=15°时,∠AOF=30°,过点O作OH⊥AB,过F作FP⊥OH,FG⊥BA,由(2)知∠AOB=60°,∴∠AOH=30°,∴∠FOP=60°.Rt△FPO中,∠FOP=60°,OF=2,∴OP=1.Rt△AOH中,AO=2,∠AOH=30°,∴OH=,∴FG=HP=﹣1.②如图2:∠ABF=15°时,∠AOF=30°,等边△ABO中,OF平分∠AOB,∴OF⊥AB.Rt△AOH中,AO=2,∠AOH=30°,∴OH=,∴FH=2﹣.综上所述,点F到直线AB的距离是﹣1或2﹣.2.(1)证明:如图1,作直径DG,交AC于F,交BC于P,交⊙O于G,连接CG,∵=.∴DG⊥BC,BD=CD,∴∠CBD=∠BCD,∵AC⊥BD,∴∠DEF=90°,∵∠CPF=90°,∴∠DEF=∠CPF,∵∠DFE=∠CFP,∴∠EDF=∠ACB=∠ADB=∠CDG,∴∠BDC=2∠ADB;(2)解:如图2,作直径DG,交AC于F,交BC于P,交⊙O于G,连接CG,BG,由(1)知:∠ADB=∠BDG=∠CDG,∴=,∴∠CBG=∠BCA,∴BG∥AC,∴∠ONF=∠OBG,∠OFN=∠OGB,∵OB=OG,∴∠OBG=∠OGB,∴∠ONF=∠OFN,∴OF=ON,∵AC⊥BD,∠ADB=∠FDB,∴∠DAE=∠AFD,∴AB=DF,同理得:CF=CG,∴AD﹣BN,=DF﹣BN=OD+OF﹣(OB﹣ON)=OF+ON=2,∴OF=ON=1,∵CF=CG,CP⊥FG,∴FP=PG,设FP=a,则OB=OG=2a+1,FP=a+1,∵DG⊥BC,且BC=8,∴BP=BC=4,Rt△OBP中,OB2=OP2+BP2,∴(2a+1)2=(a+1)2+42,3a2+2a﹣16=0,(a﹣2)(3a+8)=0,∴a1=2,a2=﹣(舍),∴⊙O的半径OG=2a+1=5.3.解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN.当∠MPN=60°时,∵PT平分∠MPN,∵∠TPM=∠TPN=30°,∵TM⊥PM,TN⊥PN,∴∠PMT=∠PNT=90°,∴TP=2TM,以T为圆心,TP为半径作⊙T,观察图象可知:当60°≤∠MPN<180°时,⊙T的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点).如图1中,以O为圆心2为半径作⊙O,观察图象可知,P2,P3是⊙O的环绕点,故答案为:P2,P3.②如图2中,设小圆交y轴的正半轴与于E.当直线y=x+b经过点E时,b=1.当直线y=x+b与大圆相切于K(在第二象限)时,连接OK,由题意B(0,b),A(﹣b,0),∴OB=b,OA=b,AB==b,∵OK=2,ABOK=OAOB,∴b×2=bb,解得b=2,观察图象可知,当1<b≤2时,线段AB上存在⊙O的环绕点,根据对称性可知:当﹣2≤b<﹣1时,线段AB上存在⊙O的环绕点,综上所述,满足条件的b的取值范围为1<b≤2或﹣2≤b<﹣1.(2)如图3中,不妨设E(m,m),则点E在直线y=x时,∵m>0,∴点E在射线OE上运动,作EM⊥x轴,∵E(m,m),∴OM=m,EM=,∴以E(m,m)(m>0)为圆心,m为半径的⊙E与x轴相切,作⊙E的切线ON,观察图象可知,以E(m,m)(m>0)为圆心,m为半径的所有圆构成图形H,图形H即为∠MON的内部,包括射线OM,ON上.当⊙T的圆心在y轴的正半轴上时,假设以T为圆心,2为半径的圆与射线ON相切于D,连接TD.∵tan∠EOM==,∴∠EOM=30°,∵ON,OM是⊙E的切线,∴∠EON=∠EOM=30°,∴∠TOD=30°,∴OT=2DT=4,∴T(0,4),当⊙T的圆心在y轴的负半轴上时,且经过点O(0,0)时,T(0,﹣2),观察图象可知,当﹣2<t≤4时,在图形H上存在⊙T的环绕点.4.(1)证明:∵CE⊥AB,AB是直径,∴,又∵∴,∴∠CAD=∠ACE,∴AP=CP,∵AB是⊙O的直径,∴∠ACB=90˚,∴∠ACE+∠BCP=90°,∠CAD+∠CQA=90°,∴∠BCP=∠CQA,∴CP=PQ,∴AP=PQ,即P是线段AQ的中点;(2)解:∵,AB是直径,∴∠ACB=90˚,∠ABC=30˚,又∵AB=5×2=10,∴AC=5,BC=5,∴CH=BC=,又∵CE⊥AB,∴CH=EH,∴CE=2CH=2×=5.5.证明:(1)∵AB=CD,∴=,又∵点M是弧AC的中点,∴=,∴+=+,即:=,∴MB=MD;(2)过O作OE⊥MB于E,则ME=BE,连接OM,在Rt△MOE中,OE=1,⊙O的半径OM=2,∴ME===,∴MD=MB=2ME=2.6.证明:(1)补全图形如图所示,连接OE,∵AB是⊙O的直径,∴∠ACB=90°,又∵CE平分∠ACB,∴∠ACE=∠BCE=∠ACB=45°,∴∠AOE=2∠ACE=90°,∴OE⊥AB,又∵MN∥AB,∴OE⊥MN,∴MN是⊙O的切线;(2)过点C作CQ⊥MN,垂足为Q,交AB于点P,则CQ⊥AB,在Rt△ABC中,∵AC=6,BC=8,∴AB===10∴OE=PQ=OA=OB=5,由三角形的面积公式得,ACBC=ABCP,∴6×8=10CP,∴CP=4.8,∴CQ=4.8+5=9.8,∵AB∥MN,∴△CAB∽△CMN,∴=,即=,∴MN=,连接BE,则BE=AE,在Rt△ABE中,AE=BE=×AB=5,∵EN是⊙O的切线,∴∠BEN=∠BCE=∠ACE,∵ACBE是⊙O的内接四边形,∴∠EBN=∠CAB,∴△AEC∽△BNE,∴=,即=,∴BN=,∵∠ACE=∠ECN,∠CAE=∠CEN,∴△CAE∽△CEN,∴=,即=,解得,CE=7,又∵∠ACD=∠ECB,∠CAD=∠CEB,∴△ACD∽△ECB,∴=,即=,解得,CD=,∴MN=,CD=.7.①∵∠BAE=∠BCE,∴∠CAE=∠CAB+∠BAE=∠CAB+∠BCE,∵∠BCD=∠CAB,∴∠CAE=∠BCD+∠BCE=∠DCE,∵AC=CE,∴∠CAE=∠AEC,∴∠AEC=∠DCE,∴CD∥AE,∴∠BAE=∠D,∵∠BAE=∠BCE,∴∠BCE=∠D,∵∠CAB和∠CEB是所对的圆周角,∴∠CEB=∠CAB,∵∠BCD=∠CAB,∴∠CEB=∠BCD,∵∠BAE=∠D,∴△BCE∽△BDC,∴,∴BC2=BEBD;②如图2,连接OC,AE,设BE=x(x>0),∵BD=3BE,∴BD=3x,由①知,BC2=BEB,∴BC=x,由①知,△BCE∽△BDC,∴,∵CE=AC=2,∴,∴CD=2,在Rt△OCD中,OD=OB+BD=r+3x,根据勾股定理得,OC2+CD2=OD2,∴r2+(2)2=(r+3x)2,∴3x2+2rx﹣4=0(Ⅰ),在Rt△ABC中,根据勾股定理得,AC2+BC2=AB2,∴22+(x)2=(2r)2,∴3x2﹣4r2+4=0(Ⅱ),(Ⅰ)+(Ⅱ)得,6x2+2rx﹣4r2=0,∴3x2+rx﹣2r2=0,∴(3x﹣2r)(x+r)=0,∵r>0,x>0,∴x+r>0,∴3x﹣2r=0,∴x=r,将x=r代入(Ⅱ)得,3×(r)2﹣4r2+4=0,∴r=(舍去负值),即⊙O的半径r为.8.证明:(1)连接OD,∵AB与⊙O相切于点B,∴∠ABO=90°,∵DE∥OA,∴∠OED=∠BOA,∠EDO=∠AOD,又∵OD=OE=OB,∴∠OED=∠ODE,在△ABO和△ADO中,∵OB=OD,∠BOA=∠DOA,AO=AO,∴△ABO≌△ADO(SAS),∴∠ADO=∠ABO=90°,即OD⊥AC,∴AC是⊙O的切线;(2)∵∠C=30°,∠ODC=90°,∴∠DOE=90°﹣30°=60°,又∵OD=OE,∴△ODE是正三角形,∴OD=OE=DE=OB,在Rt△ABO中,∠AOB=60°,AB=3,∴OB===,∴DE=.9.证明:(1)如图,连接OC,∵BD是⊙O的直径,∴∠BAD=90°,∴∠BAC=∠DAC=∠BAD=45°,∴∠BOC=2∠DAC=90°,∴OC⊥BD,又∵CG∥BD,∴OC⊥CG,∴CG是⊙O的切线;(2)∵BD是⊙O的直径,∴∠BAD=∠BCD=90°,又∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,在Rt△ABD中,BD===,在Rt△BCD中,BC=CD=BD=×=,∵CG是⊙O的切线;∴∠DCG=∠DAC=∠BAC,∠ACG=∠ABC,又∵∠CDG=∠ABC,∴△ABC∽△CDG,∴=,即=,∴DG=,由∠ACG=∠ABC,∠BAC=∠DAC可得△ABC∽△ACG,∴=,即=,解得,AC=4.10.解:(1)根据“Math点”的定义,观察图象可知,△POQ关于边PQ的“Math点”为B、C.故答案为:B,C.(2)如图2中,∵P(0,4),Q(4,0),∴OP=4,OQ=4,∴tan∠PQO=,∴∠PQO=30°,①当点E与PQ的中点K重合时,点E是△POQ关于边PQ的“Math点”,此时E(2,2),∵D(0,8),∴DE==4,当⊙E′与x轴相切于点Q时,E′(4,8),∴DE′=4,观察图象可知,当点E在线段KE′上时,点E为△POQ关于边PQ的“Math点”,∵E′Q⊥OQ,∴∠E′QO=90°,∴∠E′QK=60°,∴∠E′KQ=90°,∴∠EE′Q=30°,∵DE′∥OQ,∴∠DE′K=60°,∵DE′=DK,∴△DE′K是等边三角形,∵点D到E′K的距离的最小值为4sin60°=6,∴.②如图3中,分别以O为圆心,2和4为半径画圆,当线段MN与图中圆环有交点时,线段MN上存在△POQ关于边PQ的“Math点”,当直线MN与小圆相切时,b=±4,当直线MN与大圆相切时,b=±8,观察图象可知,满足条件的b的值为:或.。
中考数学复习基本过关训练 21.圆(二)

卷21:圆(二)班级: 姓名: 分数:一、选择题(8×3′=24′)1. 经过A 、B 两点作圆,圆心在……………………………………………………( ) (A )AB 的中点;(B )AB 的延长线;(C )过A 点的垂线上;(D )AB 的垂直平分线上.2. 已知两圆的半径分别为7和1,当它们外切时,圆心距为……………………( ) (A) 6; (B) 7; (C) 8; (D) 9.3. 如果正n 边形的一个内角等于一个外角的2倍,那么n 的值是………………( ) (A) 4; (B) 5; (C) 6; (D) 7.4. 已知⊙O 的半径为r ,圆心O 到直线l 的距离为d . 若直线l 与⊙O 有公共点,则下列结论中正确的是……………………………………………………………………( ) (A) d = r ; (B) d ≤ r ; (C) d r ; (D) d > r .5. 在平面直角坐标系中,以点(2,1)为圆心,1为半径的圆,必与……………( ) (A) x 轴相交; (B) y 轴相交; (C) x 轴相切; (D) y 轴相切.6.已知两圆有公共点,两圆半径分别为2、3,则这两圆的圆心距d 的取值范围是( ) (A) d = 5; (B) d =1; (C) 1 < d <5; (D) 1≤ d ≤5.7.下列判断中正确的是……………………………………………………………( ) (A )弦的垂直平分线必平分弦所对的两条弧; (B )平分弦的直线也必平分弦所对的两条弧; (C )平分弦的直线垂直于弦;(D )平分一条弧的直线必平分这条弧所对的弦. 8.下列命题中,是真命题的是……………………………………………………( ) (A)相等的圆心角所对的弧相等;(B)两圆相交时,连心线垂直平分公共弦;(C)三角形的重心到三角形的三个顶点的距离相等; (D)两圆相切时,公切线必有三条. 二、填空题(16×4′=64′)9.正五边形有_____条对称轴,它是_____对称图形.10.如图1在⊙O 中,AB 是直径,弦CD 与AB 相交于点E ,若 ,则CE =DE .(只需填一个适合的条件).11.⊙O 的半径为4,点P 到圆心O 的距离为5,则P 点与⊙O 的位置关系是 . 12. 已知⊙O 的半径为3,如果圆心O 到直线l 的距离是2.5,那么直线l 与⊙O 的位置关系是 .13.已知∠AOB =30°,M 为OB 上一点,且OM =6cm ,以M 为圆心,以3cm 为半径的圆与直线OA 的位置关系是 .14.已知两圆的半径分别为2和1,且圆心距为3,则这两个圆有___ ___条公切线. 15. ⊙O 1与⊙O 2的圆心距为5,⊙O 1的半径为3,若两圆相切,则⊙O 2的半径图1为 .16.若三角形的外心在它的一条边上,那么这个三角形是 . 17. 在△ABC 中,∠ABC =60°,∠ACB =80°,点O 是△ABC 的内心,则∠BOC 的度数为 ________.18.已知两个圆的半径分别为8 cm 和3 cm ,两个圆的圆心距为7 cm ,则这两个圆的位置关系是 ,外公切线长为 .19.PA 、PB 切⊙O 于A 、B ,P A =3cm ,∠APB =600,则PO 的长为________ cm . 20.直角三角形两条直角边长为6、8,则该直角三角形的内切圆半径是______. 21.如图2,若⊙O 1的半径为10,⊙O 2的半径为5,圆心距是13,则两圆的外公切线AB 长是______.22.如图3,⊙O 1和⊙O 2相交于A 、B 两点,且A O 1、A O 2分别是两圆的切线,A 是切点,若⊙O 1的半径r =3,⊙O 2的半径R =4,则公共弦AB 的长为 .23.如图4,⊙O 1与⊙O 2内切,它们的半径分别为3和1,过圆心1O 作⊙O 2的切线,切点为A ,那么A O 1的长为__________.24.已知四边形ABCD 外切于⊙O ,四边形ABCD 的面积为24,周长为24,则⊙O 的半径是 .三、解答题(4×8′+3×10′=62′)25. 如图,一条公路的转弯处是一段圆弧(图中的弧AB ),点O 是这段弧的圆心,点C 是弧AB 上的一点,AB OC ⊥,垂足为D ,如m AB 60=,m CD 10=,求这段弯路的半径.图2图426. 如图,在△ABC中,∠C=90°,点O为AB上一点,以O为圆心,OB为半径的半圆切AC于E,交AB于D,AC=12,BC=9,求AD的长.27.如图,P A、PB是⊙O的两条切线,切点分别为A、B,若直径AC=12cm,∠P=60°,求弦AB的长.28. 如图,已知直角梯形ABCD中,AD//BC,∠A=90º,AD+BC=CD.求证:以CD为直径的圆O与AB相切.图6E29. 已知:如图,在RtABC 中,90A C B ∠=︒,∠A 的平分线交边BC 于点D ,E 是AC 延长线上一点,DE = BD ,以点D 为圆心,DC 长为半径作⊙D . 求证:(1)AB 是⊙D 的切线; (2)AB = AE .30. 在△ABC 中,AB =AC =10,BC =12,AF ⊥BC 于点F ,点O 在AF 上,⊙O 经过点F ,并分别与AB 、 AC 边切于点D 、E .(1)求△ADE 的周长;(2)求内切圆的面积.31.已知:⊙O 1与⊙O 2相交于A 、B 两点,公共弦AB =16cm ,若两圆半径分别为10cm 和17cm ,两求圆的圆心距.ABC DEO ABCDE卷21、圆(二)参考答案:一、1.D ;2.C ;3.C ;4.B ;5.C ;6.D ;7.A ;8.B.二、9.5,轴;10.CD ⊥AB (弧AC =弧BC 或弧AD =弧BD );11.点P 在⊙O 外;12.相交;13.相切;14.3;15、2或8;16.直角三角形;17.110°;18.相交,62;19.2; 20.2;21.12;22.4.8;23;24.2. 三、25.50m ;26.AD =415;27.36cm ; 28.(提示:过O 作AC 的垂线,垂足为E ,证OE =半径);29.(提示:1.过D 作AB 的垂线,垂足为F ,证DF =DC ;2.可HL 证全等);30.解:(1)△ADE 的周长=12.8.(2)S ⊙O =π·OD 2=9π;31.21或9.。
中考数学二轮复习专题 圆的基本性质及答案详解

中考数学二轮复习专题圆的基本性质一、单选题1.如图,AB是⊙O的弦,圆心O到弦AB的距离,点C是弧AB中点,点D是优弧AB上的一点,,则弦AB的长为()A.6B.9C.10D.122.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A.πB.πC.2πD.π3.如图,菱形中,,.以A为圆心,长为半径画,点P为菱形内一点,连,,.若,且,则图中阴影部分的面积为()A.B.C.D.4.如图,中,,,,,为,边上的两个动点,且,为中点,则的最小值为()A.B.C.D.5.如图,上有A、B两点,点C为弧AB上一点,点P是外一点,且,,则的度数为()A.B.C.D.6.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A.2B.2.5C.3D.3.57.如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()A.B.C.D.8.以为中心点的量角器与直角三角板按如图方式摆放,量角器的0刻度线与斜边重合.点为斜边上一点,作射线交弧于点,如果点所对应的读数为,那么的大小为()A.B.C.D.9.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D10.如图,点C,D是劣弧上两点,CD∥AB,∠CAB=45°,若AB=6,CD=2,则所在圆的半径长为()A.B.C.2 D.二、填空题11.如图,点A、B、C在⊙O上,∠ACB+∠AOB=90°,则∠ACB的大小为12.如图,水平放置的圆柱形油桶的截面半径是,油面高为,截面上有油的弓形(阴影部分)的面积为.13.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为.14.如图5,AB是半圆O 的直径,E是BC的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.15.如图,AB是的直径,点C,D,E都在上,∠1=55°,则∠2=°16.在中,若,,则的面积的最大值为. 17.已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为.18.如图,网格纸中每个小正方形的边长为1,一段圆弧经过格点,点O为坐标原点.(1)该图中弧所在圆的圆心D的坐标为;.(2)根据(1)中的条件填空:①圆D的半径=(结果保留根号);②点(7,0)在圆D(填“上”、“内”或“外”);③∠ADC的度数为.三、作图题19.如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm, CD=8cm(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径四、解答题20.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB 的长.21.小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.五、综合题22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=AB时,求⊙O的直径长.23.以的一条边AC为直径的⊙O与BC相交于点D,点D是BC的中点,过点D作⊙O的切线交AB于点E.(1)求证:AB=AC;(2)若BE=1,,求⊙O的半径.24.如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE= ,∠C=30°,求的长。
中考数学专题2:隐圆问题

引导探究
1.如图,正方形ABCD,E是BC边上一点,连接AE交BD 于点F.过点C作CG⊥AE交AE的延长线于点G,连接DG. 求证:∠BDG=∠BAE.
ok啊,这里也是先看段视频,简单了解学习一下
引导探究
如图,在矩形ABCD中,AB=4,AD=6,E是AB 边的中点,F是线段BC边上的动点,将△EBF沿EF 所在直线折叠得到△EB′F,连接B′D,则B′D的最 小值是_________.
专题:“圆”来如此简单
课题导入
“圆”是初中数学重要的知识之一,纵观近几年中考数学, 除了填空选择关于圆的计算以及解答题关于圆的证明以外,常 常会以压轴题的形式考察圆的重要性质,往往这类题目中明明 图形中没有出现“圆”,但若能依据题目的特点把实际存在的 圆找出来,再利用圆的有关性质来解决问题,像这样的题我们
O
当堂诊学
如图,在正方形ABCD中,∠EAF=45°,AE,AF分 别交射线CB,DC于点E,F,交直线BD于M,N. (1)如图1,当点E,F在边BC,CD上时,求证: △AMN∽△DFN. (2)在(1)的条件下,求证:AE= 2 AN. (3)如图2,当E,F在边CB,DC的延长线上, AM=3时,求AF的长.
方法指导:利用隐圆转化为 圆外一点到圆上的最短距离
引导探究
如图,在RT△ABC中,AB⊥BC,AB=6,BC=4, P是△ABC内部的一个动点,且满足 ∠PAB=∠PBC.则线段CP长的最小值为( )
3
8 13 12 13
A. B.2 C.
D.
2
13
13
方法指导:利用隐圆转化为
圆外一点到圆上的最短距离
感谢您的聆听与观看
目标升华
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整理为word格式 专题二:圆 知识要点扫描归纳 一 圆的基本概念 (1)圆的定义:在平面内到定点的距离等于定长的点的集合叫做圆。定点叫做圆心,定长叫半径。 (2)确定圆的条件; ①已知圆心和半径,圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; ③已知圆的直径的位置和长度可确定一个圆; (3)点和圆的位置关系 设圆的半径为r,点到圆心的距离为d,则点与圆的位置关系有三种。 ①点在圆外d>r; ②点在圆上d=r; ③点在圆内 d<r; (4)弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直线。直径是圆中最大的弦。圆心到弦的距离叫做弦心距。 (5)弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (6)等圆、等弧:能够重合的两个圆叫做等圆。同圆或等圆的半径相等。在同圆或等圆中,能够互相重合的两条弧叫做等弧。 (7) 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。圆绕圆心旋转任何角度,都能够与原来的图形重合,因此圆还具有旋转不变性。
二 圆中的重要定理 1.垂径定理及其推论: 垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧. 推论1:一条直线,如果具有①过圆心;②垂直于弦;③平分弦(非直径);④平分弦所对的劣弧;⑤平分弦所对的优弧.这五个性质中的任何两个性质这条直线就具有其余的三条性质. 推论2:圆的平行弦所夹的弧相等. 2.圆心角、弧、弦、弦心距之间的关系、定理及推论. 在同圆或等圆中,四组量:①两个圆心角;②两条弧;③两条弦;④两条弦心距.其中任一组量相等,则其余三组量也分别相等.即在同圆或等圆中: 圆心角相等所对所对所对弧相等弦相等弦心距相等 3.圆周角 ①定义:顶点在圆上,且两边与圆相交的角. ②定理及推论 定理:一条弧所对的圆周角等于它所对的圆心角的一半. 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角;90o的圆周角所对的弦是直径. 整理为word格式
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 推论4:圆内接四边形定理:圆的内接四边形对角互补,并且任何一个外角都等于它的内对角. 三、直线和圆的位置关系: 1.直线和圆的位置关系的定义及有关概念 (1)直线和圆有两个公共点时,叫做直线和圆相交(图1),这时直线叫圆的割线. (2)直线和圆有唯一公共点时,叫做直线和圆相切(图2) 这时直线叫做圆的切线,唯一的公共点叫做切点. (3)直线和圆没有公共点时,叫做直线和圆相离(图3)
2.直线和圆的位置关系性质和判定 如果⊙O的半径r,圆心O割直线l的距离为d,那么(1)直线l和⊙O相交dr(图 1);(2)直线l和⊙O相切dr(图2);(3)直线l和⊙O相离dr(图3).
四、切线的判定和性质: (一)切线的判定 1.切线判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线; 2.和圆心距离等于半径的直线是圆的切线; 3.经过半径外端点且与半径垂直的直线是圆的切线. (二)切线的性质 1.切线的性质定理,圆的切线垂直于经过切点的半径; 推论1:经过圆心且垂直于切线的直线必经过切点; 推论2:经过切点且垂直于切线的直线必经过圆心. 2.切线的性质: (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径;
· l O 图1 · l O
图2
·
l O
图2
· l
O
图1 d r ·
l
O
图2 d r ·
l O
图3 d r 整理为word格式
(4)经过圆心垂直于切线的直线过切点; (5)经过切点垂直于切线的直线必过圆心. 五、三角形的内切圆 1.三角形的外接圆 过三角形三个顶点的圆,叫做三角形的外接圆,三条边中垂线的交点,叫做三角形的外心。三角形的外心到各顶点的距离相等. 2.外心的位置 锐角三角形的外心在三角形内部,钝角三角形的外心在三角形的外部,直角三角形的外心在斜边中
点,外接圆半径2CR(C为斜边长)
3.三角形的内切圆 到三角形三条边距离都相等的圆,叫三角形的内切圆,三角形中,三个内角平分线的交点,叫三角
形的内心,三角形内心到三条边的距离相等,内心都在三角形的内部.若三角形的面积为ABCS,周长为
a+b+c,则内切圆半径为:cbaSrABC2,当ba,为直角三角形的直角边,c为斜边时,内切圆半径cbaabr或2cbar.
4.圆内接四边形的性质 (1)圆内接四边形的对角互补; (2)圆内接四边形的任何一个外角等于它的对角. 注意:①圆内接平行四边形为矩形;②圆内接梯形为等腰梯形. 六、切线长定理: 1.切线长概念: 在经过圆外一点的切线上,这点和切点之间的线段的R,叫做这点到圆的切线长. 2.切线长和切线的区别 切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 3.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 要注意:此定理包含两个结论,如图,PA、PB切⊙O于A、B两点,①PA=PB②PO平分APB. 4.两个结论: 圆的外切四边形对边和相等; 圆的外切等腰梯形的中位线等于腰长. 七、弦切角定理: ·
AOCDB
P 整理为word格式
1.弦切角概念: 理解体弦切角要注意两点:①角的顶点在圆上;②角的一边是过切点的弦,角的边一边是以切点为端点的一条射线. 2.弦切角定理: 弦切角等于它所夹的弦对的圆周角,该定理也可以这样说:弦切角的度数等于它所夹弧的度数的一半. 3.弦切角定理的推论: 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角相等. 八 与比例线段相关的定理(了解) 1.相交弦定理及其推论: (1)定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 如图,AB,CD相交余E,则AE·EB=CE·DE
(2),推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成 的两条线段的比例中项.如上右图,有AE·EB=CE2成立 2,切割线定理及其推论 (1) 定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆 交点的两条线段长的比例中项. 如上左图,PT切⊙O,PAB是⊙O的一条
割线,则有PT2=PA·PB成立. (2) 推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点 的两条线段长的积相等. 如上右图,有PA·PB=PC·PD成立. 九 圆中的相关计算 1. 弧长公式:半径为R的圆,其周长是R2,将圆周分成360份,每一份弧就是1o的弧,1o弧的弧长
应是圆周长的3601,而为1803602RR,因此,on的弧的弧长就是180Rn,于是得到公式:
)(180代表弧长lRnl。
2. (1)扇形的定义:一条弧和经过这条弧的端点的两条半径组成的图形叫做扇形(如图)。 (2)扇形的周长: (3)扇形的面积:如图,阴影部分的面积即为扇形OAB的面积。
P A
B
C
D P A B C D ·
O
P A B
T · · O
P A B C D
ABABlRlOBOA2 整理为word格式
S扇形=)(3602为扇形圆心角的度数为半径,nRRn 由上面两公式可知S扇形=213602nRlR.可据已知条件灵活选用公式。
3. 弓形的面积 (1)由弦及其所对的劣弧组成的图形,S弓形=S扇形-S△OAB。 (2)由弦及其所对的优弧组成的弓形,S弓形=S扇形+S△OAB。 十.两圆的位置关系: 1 圆与圆的位置关系 外 离 外 切 相 交 内 切 内 含
图形 公共点 0个 1个 2个 1个 0个 d、r、R的关系 d>R+r d=R+r R-r外公切线 2条 2条 2条 1条 0条 内公切线 2条 1条 0条 0条 0条 2.两圆连心线的性质 (1)如果两圆相切,那么切点位于这两个圆的连心线上. (2)相交两圆的连心线垂直平分这两个圆的公共弦. 3.两圆的公切线 (1)与两圆都相切的直线,叫做这两个圆的公切线,两个圆在公切线的同旁时,这条公切线叫做这两个圆的外公切线;两个圆在公切线的两旁时,这条公切线叫做这两个圆的内公切线;公切线上两个切点间的距离,叫做这条公切线(段)的长; (2)两圆的两条外公切线长相等; (3)两圆的两条内公切线长相等,且交点位于这两个圆的连心线上; (4)两圆相切可以运用于弧与弧的平浓连接. 考点扫描归纳
· O A B
· A B
O m ·
A B
O
m
· O2 ·
O1
· ·
O1 O2
R r d
· O1 ·
O2
R r R r
O2
O1 · ·
R
r
· O2
·
O1 R r