勾股定理第一课时
勾股定理(第1课时)精选教学PPT课件

勾股定理的运用
已知直角三角形的任意两条边 长,求第三条边长.
c2=a2+b2 a2=c2-b2 b2=c2-a2
例2:将长为5米的梯子AC斜靠在墙上, BC长为2米,求梯子上端A到墙的底端 B的距离.
解:在Rt△ABC中,∠ABC=90° A ∵BC=2 ,AC=5 ∴AB2= AC²- BC²
情境引入
换成下图你有什发现?说出你的观点.
等腰直角三角形斜边的平方等于两直角边的平方和.
数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系? SA+SB=SC
直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
课中探究
其它直角三角形是否也存在这种关系? 观察下边两个图并填写下表:
A的面积 B的面积 C的面积
于斜边的平方.
B
在Rt△ABC中,∠C=900 ,
边BC、AC、AB所对应的边 勾 a
分别为a、b、c则存在下列
弦
c
关系, a2+b2=c2
Cb
A
股
此结论被称为“勾股定理”.
勾股定理
如果直角三角形的两直角边分别为a,b,
斜边为c,那么
a2 + b2 = c2.
即直角三角形两直角边的平方和等于斜边的平方.
劫匪饮弹自尽。 很多人问过她到底说了什么让劫匪居然放了她,然后放弃了惟一生存的机会。她平静地说,我只说了几句话,我对我哥说的最后一句话是:“哥,天凉了,你多穿衣。”
她没有和别人说起劫匪的眼泪,说出来别人也不相信,但她知道那几滴眼泪,是人性的眼泪,是善良的眼泪。
感谢父母给了我生命和无私的爱; 感谢老师给了我知识和看世界的眼睛;
17.1.1勾股定理第一课时

17.1.1勾股定理(第一课时)编制:目标:理解勾股定理。
掌握勾股定理的相关证明及一般地运用 重点:勾股定理及其证明。
难点:勾股定理的证明方法及一般运用一. 知识要点1.勾股定理:如果直角三角形的两条直角边长分别为a ,b 斜边长为c ,那么222c b a =+2.勾股定理的证明方法:赵爽弦图,毕达哥拉斯证法,总统证法 二.经典例题和变式知识点1:勾股定理的证明例1.已知:如图为四个全等的直角边为a ,b ,斜边为c 的直角三角形拼接而成的大正方形,中空部分为小正方形,求证:a 2+b 2=c 2变式练习1.已知:如图,大正方形的边长为a+b ,中间正方形的边长为c 周围是四个全等的直角三角形,求证:a 2+b 2=c 2变式练习2.已知:如图,为两个直角边为a ,b 的全等的直角三角形和一个以c 为直角边的等腰直角三角形拼接而成的,求证:a 2+b 2=c 2ab c知识点2:勾股定理的一般运用例2.如图,在Rt △ABC 中,∠ACB=90°,∠A 、∠B 、∠C 所对的边分别是a ,b ,c(1)若a=b=2,求c(2)若a=5,c=13,求b(3)若a :b=3:4,c=15,求b(4)若a=6,b=8,求c 的长及斜边的高变式练习3.若一个直角三角形两边长分别是3和4,则第三边长为( )A. 5B. 5或7C.7D.5变式练习4.在Rt △ABC 中,∠C=90°(1)若a=1.5,b=2,则c=_______(2)若a=24,c=25,则b=_______(3)若a=132+,b=132-,则c=_______变式练习5.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,求阴影部分的面积知识点3:与勾股定理有关的折叠问题例3.如图,将长方形的一边AD 沿AE 折叠,使点D 落在BC 边上的点F 处,已知AB=8cm ,BC=10cm,求EC 的长.变式练习6.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 的中点C ’处,点B 落在B ’处,其中AB=9,BC=6,则FC ’的长度为( ) A.310 B.4 C.4.5 D.5变式练习7.如图长方形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为_________变式练习8.在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积A 基础演练1. 已知长方形的长为40厘米,对角线长为41厘米,则它的面积为( )A. 21640cmB.2369cmC.2360cmD.2180cm2.已知直线AB 与平面直角坐标系中坐标轴分别交于A ,B 两点,已知AB=10,点B (-6,0),则点A 的坐标为__________.3.在△ABC 中,AB=AC=13cm ,BC=10cm,则△ABC 的面积是__________.4.若直角三角形的两边长分别为a ,b ,且满足04962=-++-b a a ,则该直角三角形的第三边长为__________.5.在Rt △ABC 中,∠C=90°,AB=10,则222BC AC AB ++=__________.6.如图,在△ABC 中,∠A=45°,∠B=30°,CD ⊥AB 于点D ,CD=1,则△ABC 的周长为_________.7.如图,在△ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线。
勾股定理(第一课时)课件 人教版八年级下册数学课件

9 9 18
4
4
8
C A
S正方形c
B 图2-1
C A
B 图2-2
4 1 33 18 2
(单位面积)
(图中每个小方格代表一个单位面积)
分“割”成若干个直 角边为整数的三角形
C A
S正方形c
B 图2-1
C A
B 图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
证明十
I II III
注意:
面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
I II III
注意:
面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意: 面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意: 面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意: 面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意: 面积 I : 面积 II : 面积 III = a2 : b2 : c2 由此得,面积 I + 面积 II = 面积 III 因此,a2 + b2 = c2 。
x 62 22 32 4 2
2.求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁
20
算
得
快 方法小结: 可用勾股定理建立方程.
!
活动 4
《勾股定理》PPT(第1课时)

命题1 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
ac
b
课程讲授
1 勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c b a
b-a
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4S三角形+S小正方形,
课程讲授 2 勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及 正多边形、圆都具有相同的结论:两直角边上图 形面积的和等于斜边上图形的面积.本例考查了 勾股定理及半圆面积的求法,解答此类题目的关 键是仔细观察所给图形,面积与边长、直径有平 方关系,就很容易联想到勾股定理.
课程讲授Biblioteka 2 勾股定理与图形面积定有a2+b2=c2.
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
课程讲授
1 勾股定理
几何语言: ∵在Rt△ABC中 ,∠C=90°,
B ac
∟
∴a2+b2=c2(勾股定理).
C
勾股定理揭示了直角三角形三边之间的关系.
bA
课程讲授 1 勾股定理
例 在Rt△ABC中,∠C=90°,AB=10 cm, BC=8 cm,求AC的长.
(1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米; (3)正方形R的面积是 2 平方厘米.
AR P
CQ B
上面三个正方形的面积之间有什么关系? SP+SQ=SR
(图中每一格代表一平方厘米)
课程讲授 1 勾股定理
直角三角形ABC三边长度之间存在什么关系吗? SP=AC2 SQ=BC2 SR=AB2 AC2+BC2=AB2
《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
勾股定理(第一课时) 初中数学 八年级数学

例:在Rt △ ABC中,∠C=90° 3 1)如果 b=4 , c =5 , 那么a = _____ 20 2)如果 a=15 , c=25 ,那么 b= _____ 10 3)如果 a =6 , b=8 , 那么 c = ____ B 总结归纳: 直角三角 c 形中,如果知道其中的 a 任意的两边,则可以求 C A b 出第三边 像这些满足两个数的平方和等于第三个数的平方的 一组整数称为勾股数
勾股定理
如果直角三角形两直角边分别为a、b,斜 边为c,那么
a b c
2 2
2
a
c
b
即 直角三角形两直角边的平方和等 于斜边的平方。
利用拼图来验证勾股定理:
1、准备四个全等的直角三角形(设直角三 角形的两条直角边分别为a,b,斜边c); 2、你能用这四个直角三角形拼成一个正 方形吗?拼一拼试试看 3、你拼的正方形中是否含有以斜边c为边 的正方形?
课堂小结
1、这节课我的收获是_ _ _ ;源自2、我最感兴趣的地方是_ _ _ ;
3、我想进一步研究的问题是_ _ _ ;
毕达哥拉斯(公元前572公元前492),古希腊著 名的哲学家、数学家、天 文学家)
推广至一般直角三角形 即:两条直角边上的正
方形面积之和等于斜边 上的正方形的面积 A B
图1-1
C
SA+SB=SC
C A B
图1-2
即:直角三角形
两直角边的平方 和等于斜边的平 方。
勾股定理
c a
勾
股
b
在中国古代,人们把弯曲成直角的手臂的上半部 分称为"勾",下半部分称为"股"。我国古代学者把直 角三角形较短的直角边称为“勾”,较长的直角边称 为“股”,斜边称为“弦”.
第1课时 勾股定理

的三边满足a2+b2=c2
D. 在Rt∆ABC 中,若∠B=90° ,则三角形对应
的三边满足a2+b2=c2
数学小知识
勾
弦
股
我国古代称直角三角形的较短的直角边 为勾,较长的直角边为股,斜边为弦, 这便是勾股定理的由来。
一 想
小明量了电视机的屏幕后,发现屏幕只有58厘米 长和46厘米宽,他觉得一定是售货员搞错了。你 能解释这是为什么吗?
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
∵ 582 462 5480
742 5476
荧屏对角线大约为74厘米 ∴售货员没搞错
运用新知,深化理解
1、在直角三角形ABC中,∠C=90°,若a=5,
1、在纸上画若干个直角三角形,分别测 量它们的三条边,看看三边长的平方和 之间有怎么样的关系?
观ห้องสมุดไป่ตู้与发现
观察图形,正方形A中有 个小方格,即A的面积 为 个面积单位。
正方形B中有 个小方格,即B的面积为 个面积 单位。
正方形C中有 个小方格,即C的面积为 个面积 单位。
你发现A、B、C的面积之间 有什么关系?
探索勾股定理
第1课时 勾股定理
情景导入 按三角形内角的大小把三角形分为三类
锐角三角形 三 角 形 直角三角形 的 分 类 钝角三角形
三个内角都是锐角 有一个内角是直角 有一个内角是钝角
直角三角形
A
直
斜
角
边
边
B 直角边
1、常用符号“Rt∆ABC”来 表示直角三角形ABC.
苏科版初中八年级数学上册3-1勾股定理第一课时勾股定理课件

圆的面积S2= 9 π,以BC为直径的半圆的面积S3=25 π,S△ABC=6,
8
8
∴S阴影=S1+S2+S△ABC-S3=6,故选A.
13.(2023江苏南京中考,5,★☆☆)我国南宋数学家秦九韶的 著作《数书九章》中有一道问题:“问沙田一段,有三斜,其 小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲 知为田几何?”问题大意:在△ABC中,AB=13里,BC=14里,AC =15里,则△ABC的面积是 ( C ) A.80平方里 B.82平方里 C.84平方里 D.86平方里
解析 (1)证明:∵BD⊥AC, ∴∠C+∠CBD=90°=∠EDA+∠BDF, ∵∠BDF=∠C,∴∠CBD=∠EDA. (2)设AD=x,则AB=AC=AD+CD=x+1, ∵BD=3,AD2+BD2=AB2,∴x2+32=(x+1)2, 解得x=4,∴AB=x+1=5.
能力提升全练
11.(情境题·中华优秀传统文化)(2023江苏苏州姑苏期中,5,★ ★☆)勾股定理是人类最伟大的科学发现之一,在我国古算书 《周髀算经》中早有记载.如图1,以直角三角形的各边为边 分别向外作正方形,再把较小的两个正方形按如图2所示的 方式放置在最大正方形内.若知道图中阴影部分的面积,则一 定能求出 ( C )
8.(2022江苏盐城校级期末)若一个直角三角形的两边长分别 为4和5,则第三条边长的平方为 9或41 . 解析 当5为直角边长时,第三条边长的平方为42+52=41;当5 为斜边长时,第三条边长的平方为52-42=9.故答案为9或41.
9.如图,在由边长为1的小正方形组成的网格中,A、B、C均 在格点上,求AB2-CA2的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国家之一。早在三千多年前, 我国是最早了解勾股定理的
国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, “勾三、股四、弦五”,它被记 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。早在三千多年前 《周髀算经》中。
随堂练习
填空: (1)在Rt△ABC,∠C=90°,a=8,b=15,则c= 17 。 (2)在Rt△ABC,∠B=90°,a=3,b=4,则c= 7 。 (3)在Rt△ABC,∠C=90°,c=10,a:b=3:4, 则a= 6 ,b= 8 。 (4)一个直角三角形的三边为三个连续偶数, 则它的三边长分别为 6,8,10 。 (5)已知直角三角形的两边长分别为3cm和5cm, 则第三边长为 4或 34cm 。 (6)已知等边三角形的边长为2cm, 则它的高为 3 ,面积为 3 。
5
10
x B
初步应用定理
练习1 求图中字母所代表的正方形的面积.
80 225 A 144
24 B
A
8
A
17
如图,所有的三角形都是直角三角形,四 边形都是正方形,已知正方形A,B,C,D 的边长分别 是12,16,9,12.求最大正方形E 的面积. B A
C
D
E
通过这种方法,可以把一个正方形的面积分成若干 个小正方形的面积的和,不断地分下去,就可以得到一 棵美丽的勾股树.
其它直角三角形是否也存在这种关系? 观察下边两个图并填写下表:
A的面积 图1-2 B的面积 C的面积
16
9
25
图1-3
4
9
13
结论:如果直角三角形的两直角边长分别为a、b,斜边长为c,
那么 a 2 b 2 c 2 .
根据下图你能写出勾股定理的证明过程吗?
c a
b
∵ 1 ab×4+(b-a)² =c² ,
例2.已知:如图,等边△ABC的边长是6cm。 (1)求等边△ABC的高。 (2)求S△ABC。
C
A
D
B
例3.已知:如图,四边形ABCD中,AD∥BC, AD⊥DC,AB⊥AC,∠B=60°,CD=1cm, 求BC的长。
A
D
B
C
初步应用定理
练习 求下列直角三角形中未知边的长度.
C
A 4
C 6 x B A
勾 股 世 界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年希 年希腊曾经发行了一枚纪念票。 腊曾经发行了一枚纪念邮票。
我国数学家赵爽的“弦图”
2002年的世界数学家大会 在中国北京举行,这是21 世纪数学家的第一次大聚 会,这次大会的会标就选 定了验证勾Байду номын сангаас定理的“弦 图”作为中央图案,可以 说是充分表现了我国古代 数学的成就,也充分弘扬 了我国古代的数学文化,
我国古代两种证法
1.“赵爽弦图”
c b a
I
朱实 中黄实 ( b- a) 2
勾股定理
一、自学指导(阅读教材P22页,)
• 动手做一做:1.画一个直角边为6cm和8cm 的直角△ABC,用刻度尺量出AB的长为 ______cm. • 2.再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB的长为____
• 3.探究:你能发现其中斜边c与两直角边a.b 之间的数量关系是___________.与你的同伴 交流一下。
2.刘徽的“青朱出入图”
D
E C
F
A
B
H
G
勾 股 定 理
如果直角三角形两直角边长分别为a、b,斜边长为c, 2 2 2 那么 a b c .
1.成立条件: 在直角三角形中; 2.公式变形:
a c b ,
2 2 2
b
c
b2 c2 a 2 ;
a
3.作用:已知直角三角形任意两边长, 求第三边长.
(注意:哪条边是斜边)
再见
小正方形的面积 c 2 , 1 所以(a b) 2 4 ab c 2 , 2 即:a 2 b 2 c 2 .
例1:在Rt△ABC,∠C=90°
(1)已知a=b=5,求c。
(2)已知a=1,c=2,求b。
(3)已知c=17,b=8,求a。
(4)已知a:b=1:2,c=5,求a。 (5)已知b=15,∠A=30°,求a,c。
2
2ab+(b² -2ab+a² )=c² , ∴a² +b² =c² .
结论:
直角三角形中,两条直角边的平方和, 等于斜边的平方. B
在Rt△ABC中,∠C=900 , 边BC、AC、AB所对应的边 勾 a 分别为a、b、c则存在下列 C 关系, a2+b2=c2 .
股
b
c
弦
A
此结论被称为“勾股定理”.
图1
图2
图3
自主证明
图1
图3
梯形的面积 (a b)(a b), 解: 1 2 c , 2 1 1 1 所以 (a b)(a b) 2 ab c 2 , 2 2 2 即a 2 b 2 c 2 . 直角三角形的面积 1 2
解: 大正方形的面积 (a b) 2 ,
勾股定理
如果直角三角形的两直角边分别为 a,b,斜边为c,那么 a2 + b2 = c2. 即直角三角形两直角边的平方和等于斜边的平方.
B
∵ ∠C=90°
∴ a2 + b2 = c2 C
a
b
c
A
证明勾股定理
请先用手中的全等直角三角形按图示进行摆 放,然后根据图示的边长,选择其中一个图形, 分析其面积关系后证明.