高中数学 第一章《命题及其关系》教案1 新人教A版选修11
《命题及其关系》教案新人教A版选修

《命题及其关系》教案4(新人教A版选修1-1)四种命题(一)课标导示1. 知识与技能:了解四种命题的概念,能判断四种命题的真假;注意命题的否定与否命题的区别;会用反证法证明简单问题。
2. 过程与方法:利用多媒体教学,多让学生举命题的例子,并写出四种命题3. 情感、态度与价值观:(1)通过学生的举例,培养他们的辨析能力;(2)以及培养他们的分析问题和解决问题的能力(二)教学重点与难点重点:(1)会写四种命题并会判断命题的真假;(2)四种命题的关系难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)用反证法证明简单问题(三)教学过程设计1.引入课题问题一:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数(2)若f(x)是周期函数,则f(x)是正弦函数(3)若f(x)不是正弦函数,则f(x)不是周期函数(4)若f(x)不是周期函数,则f(x)不是正弦函数有问题一通过学生讨论可以得到:2.定义:原命题、逆命题、否命题和逆否命题问题二:若原命题为"若P则q"则它的逆命题为-----;否命题为-----;逆否命题为------问题三:若(1)是原命题则(2)(3)(4)分别为(1)的什么命题呢?原命题与逆命题、否命题和逆否命题的关系是什么呢?问题四:在问题一中若(1)是真命题则(2)是--------(3)是--------(4)是--------(用真、假命题填空)问题五:命题的否定与原命题的否命题的区别是什么?问题六:完成下列表格:原命题逆命题否命题逆否命题真真假真假真假假3:有问题五可以得到以下结论:(1)两个命题互为逆否命题,他们有相同的真假性;(2)两个命题为互逆命题或互否命题,他们的真假性没有关系;(3)原命题与他的逆否命题等价;否命题与逆命题等价若P则q 若q则p原命题逆命题互逆------------|互 |互|否|否否命题逆否命题-----------互逆若﹁P则﹁q若﹁q则﹁p4:例题分析例1:已知命题P:若a∈A,则b∈B,写出命题P的否定与命题P的否命题目的:命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论分别进行否定,因此在解题时应分请命题的条件和结论例2:把命题"同位角相等两直线平行"写成"若P则q"的形式,并写出它的否命题和逆否命题,并判断其真假例3:若p 0,q 0,p3 + q3 = 2 试用反证法证明 p + q ≦ 2四:小结1:(1)两个命题互为逆否命题,他们有相同的真假性;(2)两个命题为互逆命题或互否命题,他们的真假性没有关系;(3)原命题与他的逆否命题等价;否命题与逆命题等价若P则q 若q则p原命题逆命题互逆------------|互 |互|否|否否命题逆否命题-----------互逆若﹁P则﹁q若﹁q则﹁p2:反证法证题的一般步骤:(1)假设命题的结论不成立,即假设命题结论的反面成立(2)从这个结论出发,经过推理论证,得出矛盾(3)有矛盾判断假设不成立,从而肯定命题的结论成立3:在命题中含有"否定式、至少、至多"等均可用反证法证题五:课堂评价本节课共分两课时,学生在判断命题的真假时还有一定的困难,还不能用反证法证题,需通过大量的练习才行。
选修11数学第1章教案

选修11数学第1章教案【篇一:数学选修1-1教案】四种命题、四种命题的相互关系(一)教学目标◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(二)教学重点与难点重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假.教具准备:与教材内容相关的资料。
教学设想:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(三)教学过程学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?2.思考、分析问题1:下列四个命题中,命题(1)与命题(2)(3)(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.3.归纳总结问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。
4.抽象概括定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.让学生举一些互逆命题的例子。
人教版高中数学选修(1-1)-1.1《命题及其关系》教学设计

第一章常用逻辑用语1.1命题及其关系(夏琳)一、教学目标1.核心素养培养数学抽象,形成逻辑推理能力.2.学习目标(1)了解命题及其逆命题、否命题与逆否命题.(2)命题的四种形式.3.学习重点了解命题及其逆命题、否命题与逆否命题.4.学习难点明白四种命题之间的关系,会利用两个命题互为逆否命题的关系判别命题的真假.二、教学设计(一)课前设计1.预习任务任务:阅读教材P1-P4,思考:如何判断命题的真假?四种命题之间有什么关系?2.预习自测1.判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)对数函数是增函数吗?(3)2x<15;解:(1)真命题(2)疑问句,不是命题(3)不能判断真假,不是命题2.将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.解:(1)若两条直线相交,则有且只有一个交点;(2)若两个角是对顶角,则这两个角相等;(3)若两个三角形全等,则它们的面积相等.3.命题“若a>b,则a-1>b-1”的逆否命题是()A.若a-1≤b-1,则a≤bB.若a<b,则a-1<b-1C.若a-1>b-1,则a>bD.若a≤b,则a-1≤b-1答案:A解析:命题“若p,则q”的逆否命题为“若q,则p”.(二)课堂设计1.知识回顾在生活中,我们接触了哪些具体的命题?请大家阅读教材P2中所列举的6个命题例子,并试着列举生活与学习中的命题例子.2.问题探究问题探究一命题的含义1.什么是命题?思考:三位科学家由伦敦去苏格兰参加会议,越过边境不久发现了一只黑羊.“真有意思,苏格兰的羊都是黑的”天文学家谈论道.“这种推断不可靠”数学家应道.我们只能得出”在苏格兰有一些羊是黑色的”这样的结论.逻辑学家马上接着说我们真正有把握的不过是”在苏格兰至少有一个地方有至少一只黑羊”如何判断这些话的真假呢?阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3>12;(3)3>12吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.探究:学生自我举出一些命题,并判断它们的真假.想一想:请大家根据以上结论,思考什么叫做命题?一般地,在数学中用语言、符号或式子表达的,可以__________________叫做命题(proposition),其中判断为真的语句叫做__________(true proposition),判断为假的语句叫做__________(false proposition).说明:(1)并不是任何语句都是命题,只有那些能判断真假的语句才是命题.一般来说,疑问句、祈使句、感叹句都不是命题;也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.。
高中数学选修1-1《命题及其关系》教案

高中数学选修1-1《命题及其关系》教案High school mathematics elective 1-1 "proposition and its relat ionship" teaching plan高中数学选修1-1《命题及其关系》教案前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
一、课前小练:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3 ;(3)3 吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、新课内容:1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,哪些是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,哪些为真命题?哪些为假命题?③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5) ;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若,则”的形式:三、练习:教材 P4 1、2、3四、作业:1、教材P8第1题2、作业本1-10五、课后反思命题教案课题 1.1.1命题及其关系(一)课型新授课教学目标1)知识方法目标了解命题的概念,2)能力目标会判断一个命题的真假,并会将一个命题改写成“若,则”的形式.教学重点难点1)重点:命题的改写2)难点:命题概念的理解,命题的条件与结论区分教法与学法教法:教学过程备注1.课题引入(创设情景)阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3 ;(3)3 吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.2.问题探究1)难点突破2)探究方式3)探究步骤4)高潮设计1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5) ;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若,则”的形式:①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论.②试将例1中的命题(6)改写成“若,则”的形式.③例2:将下列命题改写成“若,则”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练个别回答教师点评)3.小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式.引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。
人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题》优质课教案_3

【典例1】写出命题“若x=2,则x2=4”的逆命题、否命题及逆否命题,并判断真假。
【典例2】写出“矩形的对角线相等”的逆命题、否命题及逆否命题,并判断真假。
生板书师纠错。
注意事项:
1、要写出一个命题的另外三个命题关键是分清命题的条件和结论(即把原命题写成“若p则q”的形式)。
词语
等于
大于
教学重点:四种命题的概念及相互关系.
教学难点:由原命题写出另外三种命题.
教学过程:
教学环节
教学活动
设计意图
1、引入新课
思考:下列命题中,命题(1)与命题(2)(3)(4)的条件与结论分别有什么关系?
(1)若一个数是负数,则这个数的立方是负数
(2)若一个数的立方是负数,则这个数是负数。
(3)若一个数不是负数,则这个数的立方不是负数。
(4)若一个数的立方不是负数,则这个数不是负数。
生思考教师总结四种命题的形式
原命题: 若p则q;
逆命题: 若q则p;
否命题: 若 p则 q
逆否命题:若 q则 p;
通过引导学生思考讨论,教师总结,对互为否命题、互为逆否命题的两命题间的相互关系、概念及表示形式进行学习,其中尤其强调注意否命题、逆否命题中条件和结论同时否定,它和命题的否定概念不同.
学生总结老师补充。
通过小结,深化学生知识理解、完善学生认知结构。
七、作业
1、下列命题中:
①若一个四边形的四条边不相等,则它不是正方形;
②正方形的四条边相等;
③若一个四边形的四条边相等,则它是正方形.
其中互为逆命题的有_____;互为否命题的有____;互为逆否命题的有___(填序号).
2.下列命题中为真命题的是( )
《命题及其关系》教学设计(第一课时)

《命题及其关系》教学设计(第一课时)《命题及其关系》是人教A版数学选修2-1的第一章常用逻辑用语第一节课,本节课的主要内容包括命题、真命题、假命题的概念,命题的构成,这些都是逻辑学的基础知识,数学学科包含了大量的命题,了解命题的基础知识,既是下节课四种命题及其相互关系的基础,又对于掌握具体的数学知识起到重要作用。
本节课的学习过程中,自主学习、探究学习、生生互动、师生互动贯穿了本节内容的始终,体现了学生的主体作用。
二、学情分析学生初中阶段已经接触过命题,但不够系统和详细,教学时要通过学生的参与,不断提出“为什么”对概念层层剖析,激发学生学习数学的兴趣,让学生小组合作探究解决问题,培养他们的辨析能力以及分析问题和解决问题的能力。
三、教学目标:知识与技能:(1)理解命题的概念和命题的构成、命题的分类;(2)能判断给定陈述句是否为命题,能判断命题的真假;(3)能把命题改写成“若p,则q”的形式。
过程与方法:通过学生感兴趣的话题引入数理逻辑,从中引起学生的学习兴趣。
通过小组合作的方式让学生理解命题的概念和判断其真假。
情感态度价值观:(1)通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,了解数理逻辑、理解命题的概念;(2)通过学生的参与,激发学生学习数学的兴趣。
四、教学重难点:重点:命题的概念、分类、形式.难点:理解命题的概念,判断命题的真假,改写命题的形式五、教学过程:观看关于逻辑推理的视频。
视频运用了逻辑学中的逻辑推理,逻辑学是研究思维规律的学科。
逻辑用语被广泛用于日常生活,是语言表达和信息交流的工具。
数学是一门逻辑性很强的学科,常用逻辑用语是数学语言的组成部分,从今天开始我们就来接触数学上有趣的内容——逻辑用语中的命题。
小组合作(一)初中我们已经初步学习过命题的概念,现在,以3~4人为一个小组,根据昨晚预习的内容,完成小组合作的第一份任务单:提问:为什么要这样填?1.定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题(proposition).命题的定义的要点:(1)是陈述句。
人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题》优质课教案_6

1.1.2四种命题一、教学目标1、知识与技能了解命题的逆命题、否命题与逆否命题;四种命题之间的相互关系;理解一个命题的真假与其他三个命题真假之间的关系;用逻辑用语准确地表达内容通过举例使学生体会研究四种命题形式的必要性,采用启发式教学使学生明白四种命题的关系2、情感态度与价值观让学生感受用逻辑语言准确表达数学内容的重要性,通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及分析问题和解决问题的能力二、教学重难点重点:掌握命题的四种形式难点:掌握命题的四种形式,能写出一个简单的命题(原命题)的逆命题、否命题和逆否命题三、教学过程1、创设情境,导入新课“你看看,该来的没来”“哎,不该走的又走了”(师:大家想过这里面所蕴含的数学思想吗?)引入课题2、新课讲解(一)观察思考下列四个命题,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数(2)若f(x)是周期函数,则f(x)是正弦函数(3)若f(x)不是正弦函数,则f(x)不是周期函数(4)若f(x)不是周期函数,则f(x)不是正弦函数(二)师生互动,逐个分析讨论得到定义并会判断真假1提问学生说出这两个命题条件和结论的联系(1)若f(x)是正弦函数,则f(x)是周期函数(2)若f(x)是周期函数,则f(x)是正弦函数定义1:一般地,对于两个命题,如果一个命题的条件和结论是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题,其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.原命题:若p,则q逆命题:若q,则p师:给出命题,生说出逆命题并判断真假例1:平面内同位角相等,两直线平行例2:若f(x)是正弦函数,则f(x)是周期函数探究1:如果原命题是真命题,那么它的逆命题一定是真命题吗?2提问学生说出这两个命题条件和结论的联系(1)若f(x)是正弦函数,则f(x)是周期函数(3)若f(x)不是正弦函数,则f(x)不是周期函数定义2::一般地,对于两个命题,如果一个命题的条件和结论是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题,其中一个命题叫做原命题,另一个命题叫做原命题的否命题.原命题:若p,则q逆命题:若¬p ,则¬q师:给出命题,生说出逆命题并判断真假例1:平面内同位角相等,两直线平行例2:若f(x)是正弦函数,则f(x)是周期函数探究2:如果原命题是真命题,那么它的否命题一定是真命题吗?3提问学生说出这两个命题条件和结论的联系(1)若f(x)是正弦函数,则f(x)是周期函数(4)若f(x)不是周期函数,则f(x)不是正弦函数定义3一般地,对于两个命题,如果一个命题的条件和结论是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题,其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.原命题:若p,则q逆否命题:若¬q,则¬p师:给出命题,生说出逆否命题并判断真假例1:平面内同位角相等,两直线平行例2:若b a >,则22bc ac >探究3:如果原命题是真命题,那么它的逆否命题一定是真命题吗? 结论:两个命题互为逆否命题,他们有相同的真假性(四)典例分析例1写出下列命题的逆命题、否命题、逆否命题,并判断各命题的真假(1)若b a =,则22b a =;(2)若1=x 或2=x ,则0232=+-x x ;(3)若n m ,都是奇数,则n m +是奇数.(4)若0=abc ,则c b a ,,中至少有一个为0(五)思考:判断命题“如果0>m ,则02=-+m x x 有实根”的逆否命题的真假(六)回扣引入中的故事先讨论后总结“该来的没来”其逆否命题为“来了的该走”“不该走的走了”其逆否命题为“没走的该走”同学们,生活中处处是数学,期待我们善于发现的眼睛(七)课堂小结1、我们学到哪些知识?2、我们用到哪些数学方法?(八)作业布置优化设计对应习题。
人教版高中选修1-1《命题及其关系》教学设计

人教版高中选修1-1《命题及其关系》教学设计《人教版高中选修1-1《命题及其关系》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1. 创设情境,引导学生主动发展、提出问题生活情境:“同学们,你们好!我是邓老师,见到你们真高兴呀!”(用课件展示这段话)请学生思考:我的开场白中,有哪些语句是命题?设计意图:(1)以简洁明了的开场白让学生迅速进入问题情境,平实的语言拉近了教师和学生之间的距离,让学生有亲切感并较快进入新知探究。
(2)学习逻辑用语的目的不仅要了解数理逻辑的有关知识,还要让学生通过学习逻辑用语的基本知识,体会逻辑用语在表述论证中的作用,使以后的论证和表述更加准确、清楚和简洁。
因此,在教学过程中应避免对逻辑用语的机械记忆和抽象解释,而应该通过具体、生动的实例让学生体会常用的逻辑用语,这样比较符合学生从具体到抽象的认知规律。
因此,我想用非常简单的命题作探索新知的引入。
另外,值得说明的是,让学生来寻找哪些语句是命题是基于他们原来学过命题这一实际情况。
对学生来说,这既是复习,也是一种探索,从而激发他们的学习热情和信心,同时也符合学生的实际。
2. 重视举例,引导学生不断发现并解决问题(1)对四种命题的概念和结构关系的探讨(活动1)给学生活动空间,让他们举出一些命题的例子,并指出它们的条件和结论。
让同学们从举出的命题中选出一个命题为代表,将其改写成“如果…,那么…”的形式。
围绕这个命题,写出三个相关命题,和学生一起探究这三个命题在条件和结论上的关系。
由此归纳出互逆命题、互否命题、互为逆否命题的概念,并进一步指出逆命题、否命题、逆否命题的概念。
设计意图:这些具体命题来源于学生的生活,对四种命题概念的理解都是在具体命题的基础上完成的,这样,就坚持了教学“贴近教材,贴近学生,贴近生活”的教学原则。
同时,他们自己解决自己提出的问题,也能有效激发他们学习的兴趣。
[例1]写出命题“若a=0,则ab=0”的逆命题、否命题和逆否命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 1.1.1 命题及其关系(一)
教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.
教学重点:命题的改写.
教学难点:命题概念的理解.
教学过程:
一、复习准备:
阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
>;
(2)312
>吗?
(3)312
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子.
二、讲授新课:
1. 教学命题的概念:
①命题:可以判断真假的陈述句叫做命题(pr oposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.
上述6个语句中,(1)(2)(4)(5)(6)是命题.
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition).
上述5个命题中,(2)是假命题,其它4个都是真命题.
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数a是素数,则a是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
x<;
(5)215
(6)平面内不相交的两条直线一定平行;
(7)明天下雨.
(学生自练→个别回答→教师点评)
④探究:学生自我举出一些命题,并判断它们的真假.
2. 将一个命题改写成“若p,则q”的形式:
①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论.
②试将例1中的命题(6)改写成“若p,则q”的形式.
③例2:将下列命题改写成“若p,则q”的形式.
(1)两条直线相交有且只有一个交点;
(2)对顶角相等;
(3)全等的两个三角形面积也相等.
(学生自练→个别回答→教师点评)
3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式.
三、巩固练习:
1. 练习:教材 P4 1、2、3
2. 作业:教材P9 第1题。