光学薄膜-基础知识

合集下载

光学薄膜的知识

光学薄膜的知识

1mmHg=1.00000014Torr
13
初真空
低真空
高真空 超高真空
真空度Pa
>103
103~10-1
10-1~10-6
<10-6
平均自由 程(cm)
<10-4
10-4~5
5~105
>105
气流特点
1.以气体分子 间的碰撞为主
2.粘滞流
过渡区域
1.以气体分子 与器壁的碰撞 为主
2.分子流
平均吸 附 时间
35
四、辅助系统
加温——————温度测量与控制 充气——————真空度测量与压强控制 工件架——————公、自转,均匀性调整 离子轰击——————直流与射频 比较片架——————透射、反射、内反射
36
五、薄膜材料
透明区 折射率 强度 激光阈值 蒸发方法
1、金属材料:铝、铬、银、金等
2、介质和半导体材料
32
三、控制系统 1、时间 2、颜色 3、光学控制 4、石英晶体震荡控制
33
光学膜厚监控系统
34
石英晶体法监控膜厚
主要是利用了石英晶体的两个效应,即压电效应和质量负荷 效应。 石英晶体的压电效应的固有频率不仅取决于其几何尺寸、切 割类型,而且还取决于晶片的厚度。当晶片上镀了某种膜层, 使晶片的厚度增大,则晶片的固有频率会相应的衰减。石英 晶体的这个效应是质量负荷效应。石英晶体膜厚监控仪就是 通过测量频率或与频率有关的量进行膜厚测量的。
12
15
机械泵原理图
16
17
油扩散泵
18
扩散泵示意图
19
注意事项:
1、不能在泵内气压高于1帕时加热扩散泵;已工作的扩散 泵停止加热后,应继续用机械泵抽空,直至冷却,否则泵 油易氧化变质。

光学薄膜 (optical coating).

光学薄膜 (optical coating).

反射型偏光膜片:
• 背光模块产生的光线在背光模块侧的偏光膜片, 大约有一半的光线被吸收形成所谓的光损,如果将背 光模块的所有光线转换成直线偏光,就可以消除在偏 光膜片的光损。 具体方法是在背光模块与吸收型偏光膜片之间, 插入不会吸收的反射型偏光膜片,如此一来与穿透轴 直交的光线会折返至背光模块侧,在背光模块内部反 射时能够消除偏光使光线再度被利用。 合并使用反射型偏光膜片提高辉度,已经成为不 可欠缺的重要技术,根据实验结果证实相同背光模块 可以获得1.5倍的辉度,反过来说相同的辉度只需要 2/3的背光模块亮度即可,它对消耗电力的降低与使用 寿命的延伸具有重大贡献。
光学薄膜的应用
光学薄膜 (optical coating)
光学薄膜是附着在光学零件表面的厚度薄 而均匀为改变光学零件表面光学特性而镀在光 学零件表面上的一层或多层膜。 薄膜光学理论与设计、薄膜工艺技术、薄 膜材料、薄膜特性测量构成了薄膜技术研究的 主要内容。
光学薄膜的原理
光学薄膜经过纳米的光学结构处理,具有高亮度、发光均匀、 成本低、功耗低、简易方便光学薄膜经过纳米的光学结构处理, 具有高亮度、发光均匀、成本低、功耗低、简易方便、轻薄且不 易损坏等性能,保养经济又耐用。光学薄膜的纳米光学结构技术 处理,可收集光线而增加光通量,减少光损耗从而达到高亮度效 果,将光最大利用的优势。 从技术层面来讲,让其显示技术与照明技术相结合,以光学 外罩和光学反射罩为核心,利用光折射与反射的设计原理从而让 其外观千变万化。
偏光膜片的表面处理
• LED液晶显示的对比被定义成黑暗环境对比与明亮环境对比 两种,一般对比是指黑暗环境的对比,此时偏光膜片的偏光度具 有支配性。然而液晶电视等大型显示器,通常是在有照明影的空 间观视,因此明亮环境的对比反而更受重视。 降低外乱光造成的反射光,是明亮环境下高对比化上非常重 要的一环,为控制外乱反射光,在偏光膜片进行可以使反射光扩 散的反强光(Anti-Glare)处理,以及可以削减反射光的强度的反 反射光(Anti-Rrflection)处理,成为非常有效的方式。 AG处理是将微粒子分散在树脂内,利用微粒子的大小与覆 膜制程控制表面凹凸形状;AR处理是在偏光膜片的表面堆栈诱 电体薄膜。

第1章-光学薄膜基础知识-文档资料

第1章-光学薄膜基础知识-文档资料

12
青岛大学物理科学学院
第1章 薄膜光学基础知识
光在通过分层媒质时,来自不同界面的反射光、透射光在 光的入射及反射方向产生光的干涉现象。
r
n,d
r
厚度为波长量级
能够产生干涉作用
t
t
13
青岛大学物理科学学院
薄膜光学的研究对象
第1章 分支
➢它研究的对象是膜层对光的反射、透射、 吸收以及位相特性、偏振效应等;
➢ 1891年丹尼斯.泰勒(Dennis Taylor)在它的文章 中写到,在使用几年后的普通物镜的火石玻璃透 镜上“失泽”现象是十分明显的。我们很高兴的 是,能够使这种火石玻璃的拥有者放心,通常用 怀疑眼光看待的这层使玻璃“失泽”的薄膜,却 正是观测者的“挚友”,因为它增加了物镜的透 射率。
5
青岛大学物理科学学院
8
青岛大学物理科学学院
第1章 薄膜光学基础知识
➢ 干涉现象是薄膜光学的起源 ➢ 1801年托马斯. 杨干涉实验是其理论基础 ➢ 夫琅和费在1827年制成了第一批减反射膜 ➢ 1873年,麦克斯韦的巨著《论光和磁》,进一
步奠定了薄膜光学的理论基础
➢ 1930年油扩散泵的出现促进了光学薄膜的发展 ➢ 各种制备技术是光学薄膜发展的保障
精品
第1章-光学薄膜基础知识
青岛大学物理科学学院
第1章 薄膜光学基础知识
光学薄膜器件
2
青岛大学物理科学学院
第1章 薄膜光学基础知识
1、光学薄膜的发展历史
人类最早发现的五光十色的肥皂泡; 水面上彩色斑烂的油膜; 两玻璃片间的空气层中常呈现出色彩鲜艳的光环; 所有这些现象早在十七世纪就引起了许多自然科学家的 注意,他们各自部提出了一些初步解释,但均不令人满意 ; 1801年托马斯 .杨干涉实验结果以及菲涅耳对此进一步 发扬光大以后,上述现象才彻底为人们弄清,物理光学的基 础才从此建立起来.今天我们可以说,整部薄膜光学的物理 依据就是光的干涉。

光学薄膜基础知识

光学薄膜基础知识
光学薄膜材料需要适应各 种环境条件,如湿度、紫 外线等,以保证其光学性 能的稳定。
机械性能
硬度与耐磨性
光学薄膜需要有足够的硬 度和耐磨性,以抵抗摩擦 和划痕对光学表面的影响。
韧性
光学薄膜材料需要具有一 定的韧性,以防止因受到 外力而破裂或变形。
附着力
光学薄膜与基材之间的附 着力需要足够强,以保证 薄膜的稳定性和使用寿命。
表面处理与涂层技术
通过表面处理与涂层技术,可以改善光学薄膜的表面质量、提高附着力、增强抗划伤能力等,从而提高其稳定性 和使用寿命。
降低制造成本
规模化生产
通过规模化生产,可以实现成本的降 低和效率的提高,同时提高产品的可 靠性和一致性。
优化工艺参数
通过优化工艺参数,可以减少生产过 程中的浪费和损耗,降低制造成本。 同时,采用先进的生产设备和管理模 式,也能够实现成本的降低和效率的 提高。Fra bibliotek环保照明
光学薄膜可以用于LED照明设备中,提高光 效和照明质量,降低能耗和热量的产生,同 时还可以实现可调色温、可调亮度等功能, 为环保照明提供更多可能性。
THANKS
感谢观看
根据材料分类
光学薄膜可以分为金属膜、介质膜、半导体膜等,不同的材料对光的 反射、透射、吸收等特性有显著差异。
02
光学薄膜的特性
光学性能
反射与透射
光学薄膜能够根据需要改变光的 反射和透射行为,如增反膜增加 反射,减反膜减少反射并增加透
射。
干涉效应
薄膜的厚度和材料会影响光的干涉, 通过调整薄膜的厚度和材料,可以 实现对特定波长的光的干涉增强或 减弱。
光学薄膜广泛应用于光学仪器、摄影 器材、照明设备、显示屏幕等领域, 对提高光学元件的性能和改善光束质 量具有重要作用。

薄膜光学

薄膜光学

N0 N1 cos cos 0 1 当 分 子 为 零 反 射 为 零这 ,一 入 射 角 称 为 布 儒特 斯角 N0 N1 又根据折射定律 N 0 sin 0 N1 sin 1 cos 0 cos1 N1 得 到t an 0 ; 0 布 儒 斯 特 角 N0
对于任何闭合的假想面(叫高斯面),通过假 想面的电场通量与该面所包围的净电荷之间的 关系:
0 E d S q
薄 膜 光 学——基础理论
磁学的高斯定律
对于任何闭合的假想面(叫高斯面),通过假 想面的磁场通量为0:
B d S 0
薄 膜 光 学——基础理论 法拉第电磁感应定律
r H
由麦克斯韦方程: 4 1 D 4 i j E E c c t c c 4 H i N2E E i c c H
薄 膜 光 学——基础理论
平面电磁波理论——E和H的关系
比较可得 ( 1): N E r H; 同 理 E可 得 : H N r E ;这说明 r、 E、 H三 个 量 相 互 垂 直 电磁波是横波 E , 、 H不 但 垂 直 , 而 且 数 值 还 间有
薄 膜 光 学——基础理论
平面电磁波理论
整理后可得: E
2
2 E
c
2
4 E 2 1 2 t c t
设它的解: E E0e
2
i t x

v

2 带入(1)中
c 4 整理得到:2 i v
薄 膜 光 学——基础理论
薄 膜 光 学——基础理论
麦克斯韦方程组
E——电场强度
D——电位移矢量 H——磁场强度 B——磁感应强度 μ——磁导率 D =ε E B =μ H

光学薄膜-基础知识

光学薄膜-基础知识
稳定性和光学性能。
热导率
表示薄膜材料导热的能 力,影响光学薄膜的散
热性能。
光学常数
描述薄膜材料对光传播 的影响,如折射率、消
光系数等。
机械性能参数
硬度
表示薄膜材料的抗划痕能力, 影响光学薄膜的耐用性。
弹性模量
表示薄膜材料的刚度,影响光 学薄膜的稳定性和抗冲击能力 。
抗张强度
表示薄膜材料抵抗拉伸的能力 ,影响光学薄膜的耐用性和稳 定性。
反射率
表示光在薄膜表面反射的比例,影响光的利 用率。
吸收率
表示光被薄膜吸收的比例,影响光的损耗。
透射率
表示光透过薄膜的比例,影响光的透过效果。
干涉效应
由于多层薄膜对光的干涉作用,影响光的相 位和振幅。
物理性能参数
密度
薄膜材料的密度,影响 光学薄膜的质量和稳定
性。
热膨胀系数
薄膜材料受热后的膨胀 程度,影响光学薄膜的
更稳定的性能等。
多功能化
光学薄膜正朝着多功能化的方向发 展,如抗反射、抗眩光、增透、偏 振等功能,以满足不同应用场景的 需求。
环保化
随着环保意识的提高,光学薄膜的 环保性能也受到了越来越多的关注, 如使用环保材料、降低生产过程中 的环境污染等。
技术挑战
制造工艺
光学薄膜的制造工艺非常复杂, 需要高精度的设备和技术,如何 提高制造工艺的稳定性和重复性
02
它是一种重要的光学元件,广泛 应用于各种领域,如显示、照明 、通信、摄影等。
光学薄膜的特性
01
02
03
高反射性
通过选择合适的膜层材料 和厚度,可以获得高反射 率,用于增强光的反射效 果。
高透射性
通过调整膜层的折射率和 厚度,可以获得高透射率, 用于提高ቤተ መጻሕፍቲ ባይዱ的透射效果。

光学薄膜资料

光学薄膜资料

02
介质膜材料
• 氧化铝、氧化锆、氟化镁等
• 具有高透射率、低损耗等特点
• 常用于透射膜、增透膜等
03
复合膜材料
• 金属与介质材料的复合
• 可以实现多种光学性能的兼容
• 常用于抗反射膜、波长选择膜等
光学薄膜在光学仪器中的应用
镜头
⌛️
• 减少反射损耗,提高成
像质量
• 增加透光率,提高光能
利用率
• 实现特定功能,如偏振
光学薄膜:原理、应用与制造技术
DOCS SMART CREATE
CREATE TOGETHER
DOCS
01
光学薄膜的基本概念与原理
光学薄膜的定义与分类
光学薄膜的定义
• 是一种具有特定光学性能的薄膜材料
• 可以通过控制薄膜的厚度、折射率等参数来实现特定的光学效果
• 在光学系统中起到重要作用,如提高成像质量、降低损耗等
常见失效模式
• 膜层脱落:薄膜在使用过程中,膜层与基材分离
• 裂纹:薄膜表面或内部出现裂纹,影响薄膜性能
• 腐蚀:薄膜在使用过程中,受到环境因素的影响,发生腐蚀
原因分析
• 制备工艺问题:如沉积过程中的温度、压力等参数控制不当
• 材料选择问题:如材料本身的稳定性、耐腐蚀性等性能不足
• 使用环境问题:如环境湿度、温度、紫外线等环境因素的影响
• 折射率仪:用于测量薄膜的折射率
估薄膜的可靠性
• 表面形貌仪:用于测量薄膜的表面形貌
光学薄膜的性能指标与评估方法
性能指标
• 透射率:光线通过薄膜的强度与入射光强度的比值
• 反射率:光线在薄膜表面反射回原方向的强度与入射光强度的比值
• 折射率:光线在薄膜中传播时,光线的传播方向与薄膜法线之间的夹角与入射角

一张图秒懂光学薄膜,你还等什么

一张图秒懂光学薄膜,你还等什么

一张图秒懂光学薄膜,你还等什么所谓光学薄膜是指其厚度能够光的波长相比拟,其次要能对透过其上的光产生作用。

具体在于其上下表面对光的反射与透射的作用。

光学薄膜的定义是:涉及光在传播路径过程中,附著在光学器件表面的厚度薄而均匀的介质膜层,通过分层介质膜层时的反射、透(折)射和偏振等特性,以达到我们想要的在某一或是多个波段范围内的光的全部透过或光的全部反射或是光的偏振分离等各特殊形态的光。

光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。

实际应用的薄膜要比理想薄膜复杂得多。

这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,其表面和界面是粗糙的,从而导致光束的漫散射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各向异性;膜层具有复杂的时间效应。

不同物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。

光学薄膜的传统应用光学薄膜按应用分为反射膜、增透膜、滤光膜、光学保护膜、偏振膜、分光膜和位相膜。

减反射膜,是应用最广泛的光学薄膜,它可以减少光学表面的反射率而提高其透射率。

对于单一波长,理论上的反射率可以降到零,透射率为100%;对于可见光谱段,反射率可以降低到0.5%,甚至更低,以保证一个由多个镜片组成的复杂系统有足够的透射率和极低的杂散光。

现代光学装置没有一个是不经过减反射处理的。

由于其具有极低的反射率和鲜艳的表面颜色,现代人们日常生活中的眼镜普遍都镀有减反射膜。

高反射膜能将绝大多数入射光能量反射回去。

当选用介质膜堆时,由于薄膜的损耗极低,随着膜层数的不断增加,其反射率可以不断地增加(趋近于100%)。

这种高反射膜在激光器的制造和激光应用中都是必不可少的。

能量分光膜可将入射光能量的一部分透射,另一部分反射分成两束光,据涂布在线了解,最常用的是T:R=50:50的分光膜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学薄膜-基础知识
干涉截止滤光片的几个重要指标
1.透射曲线开始上升(或下降) 时的波长以及此曲线上升(或下 降)的许可斜率 2.高透射带的光谱宽度、平均 透射率以及在此透射带内许可 的最小透射率 3.具有低透射率的反射带(抑 制带)的光谱宽度以及在此范围 内所许可的最大透射率。
光学薄膜-基础知识
干涉截止滤光片的分类
2、减反膜按层数分类 o 单层减反膜
光学薄膜-基础知识
一、减反膜
o 双层减反膜
% R e f le c t a n c e
单 层 膜 、 λ/4-λ/4 和 λ/2-λ/2 型 双 层 增 透 膜 理 论 曲 线
5
4
3
2
1
0
400
450
500
550
600
650
700
W a v e le n g th (n m )
➢CD、DVD驱动器
➢投影显示
➢数码领域
光学薄膜-基础知识
光学薄膜在光学系统中的作用
➢提高光学效率、减少杂光。如高效减反射膜、高反射膜。 ➢实现光束的调整或再分配。如分束膜、分色膜、偏振分 光膜就是根据不同需要进行能量再分配的光学元件。 ➢通过波长的选择性透过提高系统信噪比。如窄带及带 通滤光片、长波通、短波通滤光片。 ➢实现某些特定功能。如ITO透明导电膜、保护膜等
常见的有: 1、干涉截止滤光片 2、带通滤光片 3、金属滤光片 4、负滤光片
光学薄膜-基础知识
三、滤光片
1、干涉截止滤光片 要求某一波长范围的光束高透,而偏离
这一区域的光束骤然变为截止------我们把这中 类型的膜叫干涉截止滤光片。此类膜有着广泛 的用途,例如照明上用的冷光碗上的冷光膜、 舞厅里色彩变幻的旋转灯以及我们在做的 IRCUT都属于此类。
物理定义:
当2个或多个光波(光束)在空间叠加 时,在叠加区域内出现的各点强度稳定的强弱 分布现象。
产生的条件:
1、光波产生的相位差固定不变 2、光波的振幅不能相互垂直 3、光波的频率要一致
光学薄膜-基础知识
什么叫做光学薄膜?
➢所谓光学薄膜,首先它应该是薄的 ➢然后它应该会产生一定光学效应的
那么要薄到什么程度呢?
➢定性的讲:它的厚度应该和入射光波长可以相 比拟的
➢物理意义上讲:能引起光的干涉现象的膜层
光学薄膜-基础知识
与镀膜技术密切相关的产业
➢眼镜镀膜----AR
幕墙玻璃----AR
➢滤光片
液晶领域----ITO膜
➢车灯、冷光镜、舞台灯光滤光片
➢光通信领域:DWDM、光纤薄膜器件

➢红外膜
➢激光领域----激光反射腔高反射膜
光学薄膜-基础知识
当前最热门的应用领域
❖1、数码相机用的IR-CUT ❖2、投影显示光学系统----包括LCD、DLP、
LCOS ❖3、光通讯:DWDM (dense wavelengh division multiplexer)滤光片 ❖4、减反射膜----永远的热门
光学薄膜-基础知识
一、光学薄膜的类型
光学薄膜
----基础知识介绍
光学薄膜-基础知识
光是什么?
光是一种电磁波,(在真空中的)可见光波长范围是700~400nm ;红外光为约700 到107nm量级;紫外光1-400nm;比紫外光短的还有X射线、γ射线(<0.001nm)等; 而比红外长的就是我们熟悉的无线电波
光学薄膜-基础知识
什么叫光的干涉?
可以分为长波通和短波通两类,见下图
光学薄膜-基础知识
四、带通滤光片
从光学薄膜的角度来讲,最有意义的进 展是1899年出现的法布里-珀珞干涉仪。 它是干涉带通滤光片的一种基本结构。而 自从1940年出现金属-介质滤光片以来, 它已经在光学、光谱学、激光、天文物理 学等各个领域得到了广泛的应用。
光学薄膜-基础知识
光学薄膜-基础知识
我们根据其作用,可以简单的分为
➢ 1、减反射膜或者叫增透膜 ➢ 2、分束膜 ➢ 3、反射膜 ➢ 4、滤光片 ➢ 5、其他特殊应用的膜
光学薄膜-基础知识
一、减反膜
1、减反膜的作用 o 增加光学系统透过率 o 减少杂散光 o 提高象质 o 增加作用距离
光学薄膜-基础知识
一、减反膜
四、带通滤光片
法布里—珀珞的结构
光学薄膜-基础知识
四、带通滤光片
带通的主要参数
λ0——中心波长,或峰值波长 Tmax——中心波长透射率,
光学薄膜-基础知识
一、减反膜
o 多层减反膜
% R e f le c t a n c e
K9基 底 上 各 种 设 计 的 增 透 膜 理 论 曲 线 比 较
5
4
3
2
1
0
400
450
500
550
600
650
700
光学薄W a膜v e-le基n g础th (知n m识)
一、减反膜
3、另一种分类 ➢ 单点减反 ➢ 宽波段减反(超宽波段) ➢ 双波段减反 ➢ 宽角度减反
光学薄膜-基础知识
减反膜几个重要的技术指标
使用的波段 使用的角度或者角度范围 剩余反射率要求 使用环境 在激光领域还有激光阈值要求
光学薄膜-基础知识
二、分束膜
一般来讲,分束膜总是倾斜使用,常用的是 45度。分束膜有两种:中性分束膜(也就是一 般讲的消偏振NPBS)、偏振分束膜(也就是通 常讲的PBS)。
中性分束镜有两种结构:平板型和棱镜型。 而PBS一般都用棱镜。平板结构由于不可避免 的象散问题所以只用于中低要求的光学装置。
光学薄膜-基础知识
二、分束膜
正确
NPBS
错误
光学薄膜-基础知识
PBS
二、分束膜
分束膜根据镀膜材料还有金属分 束镜和介质分束镜两种。
两种分束镜各有各的优缺点,可 以根据不同的使用要求和工艺水平 采用不同的类型。
% T r a n s m it t a n c e
K9基 底 上 分 光 膜 理 论 曲 线
100 80 60 40 20 0
400 450 500 550 600 650 700 750 800 W a v e le n g th (n m )
光学薄膜-基础知识
三、滤光片
一般我们把改变光束性质或者颜色的膜 叫做滤光膜。
光学薄膜-基础知识
二、分束膜
金属分束镜的优缺点
优点:中性好,光谱范围宽、偏振效 应小、制作简单
缺点:吸收大、激光阈值低 使用注意事项:光的入射方向
光学薄膜-基础知识
二、分束膜
介质分束镜的优缺点
优点:吸收小,几乎可以忽略 缺点:光谱范围窄、偏振分离明
显、角度效应明显
光学薄膜-基础知识
二、分束膜
两类分束镜的曲线
相关文档
最新文档