小学六年级数学小升初比比例应用题讲义教案
小学六年级数学小升初比、比例应用题讲义教案

六年级辅导教案学员姓名学员年级学员性别就读学校辅导学科辅导教师辅导时间月日教学目标1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
重点难点1.理解比的意义以及比与分数、除法之间的关系。
2.理解比与分数、除法之间的关系,明确比与比值的区别。
作业评价优良忘做忘带教学过程1.概念的引入2.例题讲解3.习题练习4.总结巩固提升5.课后作业教学反思签字确认教学主任:学管师:学员:六年级第6讲:比和比的应用题一、知识要点:1、比:例1、○1一辆汽车5小时行驶300km ,写出路程和时间之比,并化简。
路程和时间之比=300:5=60练习2:○2小明身高1.2米,小张身高1.4米,写出小明与小张身高之比,并化简。
2、比值15:10=15÷10=23=1.5练习1:1、求出下面各比的比值。
(1)6:10= (2) 9:15= (3)21:31=(4)3:5; (5) 0.4:0.16; (6) :8。
2、填上适当的数。
例2、甲数是0.75,乙数是1.25,甲数与乙数的比是( )∶( ),比值是( )。
【解析】,0.75:1.25;化简为3:5=0.6练习2:(4)( ):1=20:4; (5)0.6:0.2=6:( );(6) 43:41=( ):1; (7)4.5:2.7=10:( )。
拓展:1、从家到学校,姐姐用了5分钟,妹妹用了7分钟,姐姐和妹妹的速度之比是()。
2.男生是女生的1.2倍,男生和女生的比是( )3、应用题:例3、甲、乙两数的比是5:3,他们的和是24,甲乙数各是多少?【解析】:甲、乙两数的比是5:3,可以看成甲占了总数的5份,乙占了3份,把总数平均分成了8份,每份数33524=+÷)(,可以看成甲占了总数的5份,就是5×3=15,乙占了3份,就是3×3=9. 或者写成1535524=+⨯,935324=+⨯ 练习3:1、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?2、一种药水,药粉和水的质量比是1∶200,现有400克药粉,需加水多少克?3、某校篮球队男生与女生人数的比是4:3,男生占全班人数的几分之几,女生占全班人数的几分之几?4、用70厘米长的铁丝围成长、宽比为3:2的长方形,这个长方形的长宽各是多少例4、【解析】【解析】 1.解题思路:该是个不规则的图形,没有直接计算面积的公式,通过观察发现,该指示牌是由左边一个长方形和右边一个三角形组合而成;2.解题公式:长方形的面积是:( ) ;三角形的面积:( )3.列式计算:指示牌的面积是:( )+( )把苹果按4:5:6分,可以分成4+5+6=15份,小班占了期中4份,中班占了5份,大班占了6份,300÷15=20,小班4×20=80;中班5×20=100;大班6×20=120.或者:小班:806544300=++⨯;中班:1006545300=++⨯;大班1206546300=++⨯ 练习4:1、用35厘米的铁丝围成一个三角形,已知三边长度比是2 :2∶1,求三边分别是多少厘米?2、在一次数学竞赛中,共有70人分别获一、二、三等奖,一、二,三等奖人数的比是1:2∶4。
六年级数学下册教案- 比和比例 -人教版 (1)

六年级数学下册教案 - 比和比例 - 人教版一、教学目标1. 让学生理解比和比例的概念,掌握比和比例的基本性质。
2. 培养学生运用比和比例解决实际问题的能力,提高学生的数学思维和逻辑推理能力。
3. 培养学生的合作意识和团队精神,提高学生的表达和沟通能力。
二、教学内容1. 比的概念和基本性质2. 比例的概念和基本性质3. 比例尺的应用4. 比例分配问题三、教学重点和难点1. 教学重点:比和比例的概念,比例尺的应用,比例分配问题。
2. 教学难点:比和比例的基本性质,比例尺的理解和应用。
四、教学方法1. 讲授法:讲解比和比例的概念和基本性质。
2. 案例分析法:通过具体的实例,让学生理解比和比例的应用。
3. 小组讨论法:让学生分组讨论,共同解决实际问题,培养学生的合作意识和团队精神。
五、教学步骤1. 导入新课通过引入生活中的实例,让学生对比的概念有一个初步的认识。
2. 讲解比的概念和基本性质通过讲解,让学生理解比的概念,掌握比的基本性质。
3. 讲解比例的概念和基本性质通过讲解,让学生理解比例的概念,掌握比例的基本性质。
4. 比例尺的应用通过讲解和实例分析,让学生理解比例尺的概念,掌握比例尺的应用。
5. 比例分配问题通过讲解和实例分析,让学生理解比例分配的概念,掌握比例分配的方法。
6. 小组讨论让学生分组讨论,共同解决实际问题,培养学生的合作意识和团队精神。
7. 课堂小结对本节课的内容进行总结,强调重点和难点。
8. 作业布置布置相关的练习题,让学生巩固所学知识。
六、教学反思本节课通过讲解、实例分析和小组讨论等方式,让学生理解了比和比例的概念,掌握了比和比例的基本性质,能够运用比和比例解决实际问题。
在教学过程中,要注意引导学生积极参与,培养学生的合作意识和团队精神。
同时,要对学生的表现进行及时的评价和反馈,激发学生的学习兴趣,提高学生的学习效果。
需要重点关注的细节是“比例尺的应用”。
比例尺是数学中一个重要的概念,它广泛应用于地图、设计、建筑等领域。
小学六年级数学小升初比、比例应用题讲义教案

六年级辅导教案学员姓名学员年级学员性别就读学校辅导学科辅导教师辅导时间月日教学目标1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
重点难点1、理解比的意义以及比与分数、除法之间的关系。
2、理解比与分数、除法之间的关系,明确比与比值的区别。
作业评价优良忘做忘带教学过程1.概念的引入2.例题讲解3.习题练习4.总结巩固提升5.课后作业教学反思签字确认教学主任: 学管师: 学员:六年级第6讲:比与比的应用题一、知识要点:1、比:例1、○1一辆汽车5小时行驶300km,写出路程与时间之比,并化简。
路程与时间之比=300:5=60练习2:○2小明身高1、2米,小张身高1、4米,写出小明与小张身高之比,并化简。
2、比值15:10=15÷10=23=1、5 练习1:1、求出下面各比的比值。
(1)6:10= (2) 9:15= (3)21:31= (4)3:5; (5) 0、4:0、16; (6) :8。
2、填上适当的数。
例2、甲数就是0、75,乙数就是1、25,甲数与乙数的比就是( )∶( ),比值就是( )。
【解析】,0、75:1、25;化简为3:5=0、6练习2:(4)( ):1=20:4; (5)0、6:0、2=6:( );(6) 43:41 =( ):1; (7)4、5:2、7=10:( )。
拓展:1、从家到学校,姐姐用了5分钟,妹妹用了7分钟,姐姐与妹妹的速度之比就是( )。
2、男生就是女生的1、2倍,男生与女生的比就是( )3、应用题:例3、甲、乙两数的比就是5:3,她们的与就是24,甲乙数各就是多少?【解析】:甲、乙两数的比就是5:3,可以瞧成甲占了总数的5份,乙占了3份,把总数平均分成了8份,每份数33524=+÷)(,可以瞧成甲占了总数的5份,就就是5×3=15,乙占了3份,就就是3×3=9、或者写成1535524=+⨯,935324=+⨯ 练习3:1、一个直角三角形的两个锐角度数的比就是2 :1,这两个锐角分别就是多少度?2、一种药水,药粉与水的质量比就是1∶200,现有400克药粉,需加水多少克?3、某校篮球队男生与女生人数的比就是4:3,男生占全班人数的几分之几,女生占全班人数的几分之几?4、用70厘米长的铁丝围成长、宽比为3:2的长方形,这个长方形的长宽各就是多少例4、【解析】【解析】 1、解题思路:该就是个不规则的图形,没有直接计算面积的公式,通过观察发现,该指示牌就是由左边一个长方形与右边一个三角形组合而成;2、解题公式:长方形的面积就是:( ) ;三角形的面积:( )3、列式计算:指示牌的面积就是:( )+( )把苹果按4:5:6分,可以分成4+5+6=15份,小班占了期中4份,中班占了5份,大班占了6份,300÷15=20,小班4×20=80;中班5×20=100;大班6×20=120、或者:小班:806544300=++⨯;中班:1006545300=++⨯;大班1206546300=++⨯ 练习4:1、用35厘米的铁丝围成一个三角形,已知三边长度比就是2 :2∶1,求三边分别就是多少厘米?2、在一次数学竞赛中,共有70人分别获一、二、三等奖,一、二,三等奖人数的比就是1:2∶4。
小学数学六年级《比例的应用》教案(通用8篇)

小学数学六年级《比例的应用》教案〔通用8篇〕小学数学六年级《比例的应用》教案〔通用8篇〕小学数学六年级《比例的应用》教案篇1设计说明1、注重培养学生学习的自主性。
引导和培养学生的自主学习才能是实在可行的,对学生养成终身学习的习惯起着不可估量的重要作用。
本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2、培养学生的解题才能。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的亲密联络,使学生的解题才能、合作才能及归纳才能得到进步。
课前准备老师准备多媒体课件教学过程⊙创设情境,提出问题1、介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。
在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。
我们今天所学的数学知识就从“物物交换”开场。
2、呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定根底。
⊙尝试解决,体会联络1、想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2、说一说。
老师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设方法一14÷4=3。
5,3。
5×10=35〔本〕。
方法二10÷2=5,14÷2=7,5×7=35〔本〕。
方法三4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35〔本〕。
方法四4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14〔个〕,30+5=35〔本〕。
小升初中数学比例教案

小升初中数学比例教案教学目标:1. 理解比例的概念,掌握比例的组成和基本性质。
2. 学会解比例题,能够运用比例解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 比例的概念和基本性质。
2. 解比例题的方法和技巧。
教学难点:1. 比例的灵活运用。
2. 解决实际问题时比例的转化。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入比例的概念,让学生回顾生活中常见的比例现象,如身高与脚长的比例、物体与影子的比例等。
2. 引导学生思考比例的组成和基本性质。
二、新课(20分钟)1. 讲解比例的定义和表示方法,如 a:b = c:d 表示 a 与 b 的比等于 c 与 d 的比。
2. 介绍比例的基本性质,如比例的两内项之积等于两外项之积。
3. 举例讲解解比例题的方法,如已知两个比例的内项或外项,求第三个比例的内项或外项。
4. 引导学生通过实际例子体会比例的运用,如购物时商品的原价与折扣价的比例关系。
三、练习与讨论(15分钟)1. 让学生独立完成一些比例练习题,巩固所学知识。
2. 组织学生进行小组讨论,分享解题心得和方法。
四、总结与拓展(5分钟)1. 对本节课的内容进行总结,强调比例的概念和基本性质。
2. 提出一些拓展问题,激发学生的学习兴趣,如比例在几何中的应用、比例在科学实验中的应用等。
教学反思:本节课通过引入生活中的比例现象,引导学生思考比例的组成和基本性质,让学生掌握比例的概念。
通过讲解比例的定义和表示方法,介绍比例的基本性质,举例讲解解比例题的方法,让学生学会运用比例解决实际问题。
通过练习和讨论,巩固所学知识,提高学生的解题能力。
最后,通过总结和拓展,使学生对比例有更深入的理解和应用。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,引导学生主动思考和探索。
同时,要注重培养学生的逻辑思维能力和解决问题的能力,让学生能够灵活运用比例知识解决实际问题。
比例应用题教案

比例应用题教案一、教学内容:本节课将学习比例应用题的解题方法与技巧,让学生通过实际问题应用比例的概念和计算方法,提升他们的数学解决问题的能力。
二、教学目标:1. 理解比例的概念和性质。
2. 学会在实际问题中运用比例进行计算。
3. 发展学生的逻辑思维和推理能力。
三、教学过程:1. 导入(5分钟)老师可以利用一个生活中常见的实际问题引起学生的兴趣和思考。
例如:小明每天骑车上学的路程是5公里,他计划用30分钟骑到学校,那么他的平均速度是多少?2. 概念讲解与示范(10分钟)在引入比例的概念之后,教师可以给出比例的定义,并解释比例的性质。
之后,通过几个实际问题的示例,让学生理解比例的应用。
3. 练习与讨论(15分钟)教师可以通过提供不同难度的比例应用题给学生,并引导他们通过比例的计算方法解答问题。
鼓励学生在解答问题的过程中积极思考,并进行讨论和交流。
4. 拓展应用(10分钟)为了加深学生对比例应用的理解,教师可以提供一些拓展应用题,要求学生在限定的条件下解答问题。
例如:某商店打折销售,原价为500元的商品现在打8折,售价为多少?5. 归纳总结(5分钟)在课堂结束前,教师可以让学生回顾整个比例应用题的解题过程,归纳总结出解题的关键步骤和方法。
四、巩固练习:为了巩固学生对比例应用题的掌握,可以布置一些相关的练习题作为家庭作业。
同时,教师也可以根据学生的学习情况,设计一些拓展性的练习题,以提高学生的解决问题的能力。
五、教学反思:比例应用题是数学中重要的内容之一,通过这个教案的设计和实施,可以帮助学生加深对比例概念及其应用的理解。
同时,通过让学生从实际问题中解答比例应用题,培养他们的逻辑思维和推理能力,提高他们解决实际问题的能力。
然而,在实施过程中,要注意引导学生积极思考和主动探索,以促进他们在数学学习中的积极性和自主性。
小学六年级数学教案:比例的应用实例讲解

小学六年级数学教案:比例的应用实例讲解教学目标通过本课的学习,使学生掌握比例的概念及比例应用问题的思路,进而能够灵活运用比例解决实际问题。
二. 教学重点1.比例的概念及特点。
2.比例应用问题的思路及方法。
三. 教学难点1.把比例应用问题转化为比例等式的形式。
2.结合实际问题,采用不同的计算方法求解。
四. 教法选择通过案例讲解,让学生了解比例的应用实践,从实践中把握比例的本质。
五. 教学过程1.导入(10分钟)教师首先引导学生谈谈比例在日常生活中的应用,引起学生对课题的兴趣。
2.定义比例(5分钟)根据学生的讲述,引导学生逐渐明确比例的基本概念及特点,同时为学生提供概念的正确定义。
3.案例分析(30分钟)出示如下问题,请学生尝试使用比例的知识解答。
问题:小明到学校的路程有2 000 米,他从起点开始用时15分钟到达终点。
假设他一直以同样的速度行进,请问他在30分钟后还有多远距离才能到达目的地?分析思路:第一步:求解小明一分钟走的路程。
个人建议:小明走的速度 = 总路程÷ 时间S = V × t因为小明用 15 分钟到达地点,所以他走的速度为:V = S / t = 2000 / 15 = 133.33(m/min)第二步:求解小明在30分钟后到达目标地还有多少路程。
这里要熟练掌握比例转换的方法。
答案:小明在 30 分钟后到达目的地所需的时间为: 15 + 30 = 45(min)小明在 45 分钟内走的路程为:133.33 × 45 = 6000(m)所以小明在 30 分钟后,还要行走的路程为:6000 - 2000 = 4000(m)4.总结(15分钟)通过本例的讲解,学生了解到了比例的本质,并掌握了一些实用的计算方法。
在教师的引导下,学生自主思考并得出结论。
最后进行总结,发掘比例在日常生活中的实际应用。
六. 课后习题:1.小明要买一些灯泡,每盏灯泡售价2美元。
如果他要购买50盏灯泡,那他需要支付多少钱?2.比例是什么?它在日常生活中的应用有哪些?3.如果小李步行到学校的路程是3 200 米,花费时间为20分钟。
六年级数学教案比例的应用

六年级数学教案比例的应用六年级数学教案-比例的应用教案概述:本教案是针对六年级学生,在数学课程中学习比例的应用。
通过充分理解比例的概念和特点,帮助学生掌握比例在实际问题中的运用,培养学生的分析和解决问题的能力。
教学目标:1. 理解比例的定义和性质,能够正确运用比例的概念。
2. 掌握比例的计算方法,能够独立完成简单的比例计算。
3. 能够在实际问题中应用比例进行分析和解决问题。
4. 培养学生的逻辑思维和数学推理能力。
教学步骤:一、引入比例的概念(10分钟)用生活中简单易懂的例子,如购买水果,介绍比例的概念。
通过抽取生活中的实际问题,引导学生理解比例的定义和性质。
二、比例的计算方法(15分钟)1. 分数形式的比例:通过展示几个有关分数的比例例子,引导学生理解比例中分子和分母的含义,并进行简单的比例计算练习。
例如:如果1辆自行车需要2个轮子,那么3辆自行车需要多少个轮子?2. 百分数形式的比例:通过展示几个有关百分数的比例例子,帮助学生掌握百分数形式的比例计算方法。
例如:小明考试得了80分,占总分100分的四分之三,求小明的总分是多少?三、比例的应用举例(15分钟)提供一些实际问题,让学生运用已学的比例知识进行解答。
例如:某地图的比例尺是1:5000,如果两个地点之间的直线距离是7.5千米,用地图上的实际距离应该表示多长?四、综合应用题训练(20分钟)提供一系列综合应用题,让学生在老师的引导下,独立思考并解答,以巩固比例的应用技能。
例如:1. 小明用了3小时骑自行车到某地,如果小红的车速是小明的2倍,那么小红用多长时间能骑到同样的地方?2. 某种商品原价是100元,现在打八折出售,小刚买下了5件,他需要支付多少钱?3. 三辆车参加比赛,第一辆车跑完全程比第二辆车快20分钟,第二辆车比第三辆车快15分钟,第一辆车用多长时间跑完全程?五、总结与反思(10分钟)回顾今天所学的内容,让学生总结比例的定义、计算方法和应用技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级辅导教案
学员姓名学员年级学员性别就读学校辅导学科辅导教师辅导时间月日
教学目标1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法.
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣.
重点难点1。
理解比的意义以及比与分数、除法之间的关系。
2。
理解比与分数、除法之间的关系,明确比与比值的区别。
作业评价优良忘做忘带
教学过程1.概念的引入
2.例题讲解
3.习题练习
4.总结巩固提升
5.课后作业
教学反思
签字确认教学主任:学管师:学员:
六年级第6讲:比和比的应用题
一、知识要点:
1、比:
例1、错误!一辆汽车5小时行驶300km ,写出路程和时间之比,并化简。
路程和时间之比=300:5=60
练习2:
○2小明身高1。
2米,小张身高1。
4米,写出小明与小张身高之比,并化简。
2、比值
15:10=15÷10=23
=1。
5
练习1:
1、求出下面各比的比值。
(1)6:10= (2) 9:15= (3)21:31
=
(4)3:5; (5) 0。
4:0.16; (6) :8。
2、填上适当的数.
例2、甲数是0.75,乙数是1.25,甲数与乙数的比是( )∶( ),比值是(
)。
【解析】,0.75:1。
25;化简为3:5=0。
6
练习2:
(4)( ):1=20:4; (5)0.6:0.2=6:( );
(6) 43
:41
=( ):1; (7)4。
5:2.7=10:( )。
拓展:1、从家到学校,姐姐用了5分钟,妹妹用了7分钟,姐姐和妹妹的速度之比是(
)。
2。
男生是女生的1.2倍,男生和女生的比是( )
3、应用题:
例3、甲、乙两数的比是5:3,他们的和是24,甲乙数各是多少?
【解析】:甲、乙两数的比是5:3,可以看成甲占了总数的5份,乙占了3份,把总数平均
分成了8份,每份数33524=+÷)(,可以看成甲占了总数的5份,就是5×3=15,
乙占了3份,就是3×3=9. 或者写成1535524=+⨯,93
5324=+⨯ 练习3:
1、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?
2、一种药水,药粉和水的质量比是1∶200,现有400克药粉,需加水多少克?
3、某校篮球队男生与女生人数的比是4:3,男生占全班人数的几分之几,女生占全班人数
的几分之几?
4、用70厘米长的铁丝围成长、宽比为3:2的长方形,这个长方形的长宽各是多少
例4、
【解析】【解析】 1。
解题思路:该是个不规则的图形,没有直接计算面积的公式,通过观
察发现,该指示牌是由左边一个长方形和右边一个三角形组合而成;
2。
解题公式:长方形的面积是:( ) ;三角形的面积:( )
3。
列式计算:指示牌的面积是:( )+( )
把苹果按4:5:6分,可以分成4+5+6=15份,小班占了期中4份,中班占了5份,大班占了
6份,300÷15=20,小班4×20=80;中班5×20=100;大班6×20=120. 或者:小班:806544300=++⨯;中班:1006545300=++⨯;大班1206
546300=++⨯ 练习4:
1、用35厘米的铁丝围成一个三角形,已知三边长度比是2 :2∶1,求三边分别是多少厘米?
2、在一次数学竞赛中,共有70人分别获一、二、三等奖,一、二,三等奖人数的比是1:2∶4。
有多少人获一等奖?
例5、甲、乙两数的比是3∶4,甲、丙两数的比是9∶7,甲乙丙的和是56,甲乙丙各是多少?乙、丙两数的比是?
【解析】法1:甲、乙两数的比是3∶4,可以根据比的性质变成:甲、乙两数的比是9∶12,目的就是和后面,甲、丙两数的比是9∶7中的甲的数值9一样,便于计算。
因为甲的数值不会变,只是比的结果进行了化简约分,乙:丙=12:7
比是4:5,那么,篮球比足球多几个?
*拓展
例6、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?【解析】:解题步骤:1.已知梨和苹果共50,梨的筐数是苹果的2/3,
2.若求出梨和苹果的筐数分别是几分之几,即可求得出答案
苹果:50÷(2/3+1)=30(筐)
梨:30x2/3=20(筐)或50—30=20(筐)
练习6:
1、甲数与乙数的比是4∶5,乙数与丙数的比是3∶4,甲数∶丙数=()∶( )。
2、从六(1)班调全班人数的1/10,到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是().
*3、男生比女生的比是4:5,女生比男生多4人,男女各多少人?
*4、商店运来一批洗衣机,卖出24台,卖出的台数与剩下的台数的比是3∶5,这批洗衣机一共有多少台?
*5、有甲、乙两袋水泥,甲袋重96千克,从甲袋取出它的13,从乙袋取出它的20%,这时甲、乙两袋余下的水泥质量比是4∶3。
乙袋原有水泥多少千克?
*6、水果店运进梨和苹果的筐数比是3∶2,当只卖出15筐梨后,苹果的筐数占梨的4/5
.现在的梨和苹果各有多少筐?
六年级数学下册六课时作业
(请在35分钟之内完成)
一。
学习内容回顾:
(1)在含盐10%的500克盐水中,再加入50克盐,这时盐与盐水的比是()。
解题过程:1.解题思路:
2、列式计算:
一、填空:
(2)( )÷5=6∶10=错误!=错误!=( )∶15=()%
(3)走完同一段路,甲用12分钟,乙用8分钟,甲与乙的速度比是( )。
二、求下列各比的比值。
(1)错误!∶0。
25 (2)错误!∶错误!
三、应用题:
1、公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵。
柳树和杨树各有多少棵?
解题过程:1.解题思路:
2、列式计算:
2、甲、乙、丙三个数的平均数是60。
甲、乙、丙三个数的比是3 :2 :1。
甲、乙、丙三个数各是多少?
3、某学校一共有2150人,其中男生人数与女生人数的比是2∶3,女生人数与教师人数的比是8:1,那么教师有多少名?
4、两瓶油共重2。
7千克.大瓶的油用去0。
2千克后,剩下的油与小瓶内的重量比是3:2。
求大瓶子里原来装有多少千克油?
5、甲仓库存粮食180吨,乙仓库存粮食120吨,甲仓库运出一部分到乙仓库后,乙仓库与甲仓库的粮食比为7:3.甲仓库运了多少吨粮食到乙仓库?。