北师大版数学八年级下册数学课件:第一章1等腰三角形第二课时
合集下载
北师大版数学八年级下册1.1.1全等三角形和等腰三角形的性质课件(共39张)

几何语言:
∵△ABC ≌△DEF ∴∠A =∠D,∠B =∠E, ∠C =∠F, AB = DE,AC = DF, BC = EF
A BC
D EF
例1 如图,点B,D在线段AE上,AD=BE,
AC∥EF,∠C=∠F.求证:BC=DF. C
A
D
E
B
F
证明:∵AD=BE,
∴AD-BD=BE-BD,即AB=ED.
第一章 三角形的证明 1 等腰三角形
第1课时 全等三角形和等腰三角形的性质
北师版八年级数学下册
学习目标
1、巩固全等三角形的判定及性质 2、了解并掌握等腰三角形的性质定理及推论
回顾复习
我们已经学了哪些判定三角形全等的方法?
边边边(SSS):三边分别相等的两个三角形全等.
边角边(SAS):两边及其夹角分别相等的两个三 角形全等.
如图,BC=CD=DE=AE,∠A=20°. (1)求∠DEC的度数; (2)求∠B的度数.
解:
练习
知识点三:等腰三角形性质定理的推论
想一想
A
在图中,线段 AD 还具有怎
样的性质?为什么?由此你能得
到什么结论?
B
C
D
推论 等腰三角形顶角的平分线、底边 上的中线及底边上的高线互相重合.
可分解成下面三个方面来理解:
角边角(ASA):两角及其夹边分别相等的两个三 角形全等.
新课导入
建筑工人在建造房子时,为了确定房梁是否水平,常用 这样的方法:把一块等腰三角形板放在梁上,从顶角顶点系 一重物,如果系重物的绳子刚好经过三角形的底边中点,则 认为房梁就是水平的。你知道为什么吗?
新课探究
知识点一:全等,∴∠A=∠E.
北师大版数学八下1.等腰三角形的判定与反证法课件

点作这两个角的公共边的平行线,如图,EF与BE,CF
三者有何数量关系?
A
分析:可证BE=DE,CF=DF
E
F
D
∴EF=DE-DF=BE-CF B
G C
Part 3 典例Part精1 析
新课探索
变式4 若过△ABC的两个外角平分线的交点作这两个
角的公共边的平行线,则EF与BE,CF三者有何数量
关系?
A
(2)EF,EB,FC 之间有什么关系?
分析:由(1)知,EO=EB,FO=FC
∴EF=EO+FO=EB+FC
E OF
B
C
Part 3 典例Part精1 析
新课探索
变式2 在△ABC中,∠ABC≠∠ACB,BO平分∠ABC ,CO平
分∠ACB,过O点作EF, 使EF∥BC
A
(1)此时有几个等腰三角形?
(2)BE+CF=EF仍然成立吗?
(3)在上述条件下当AB=12,AC=8时,
你能求ΔAEF的周长吗?
分析:(1)2个:△BOE、△FOC
E
OF
(2)成立
B
C
(3) C△AEF =AE+BE+CF+AF=AC+AB=20
Part 3 典例Part精1 析
新课探索
变式3 若过△ABC的一个内角和一个外角平分线的交
E
D
(两直线平行,内错角相等) ∴∠ABD=∠EDB(等量代换)
B
C
∴BE=DE(等角对等边)
即△BDE是等腰三角形.
基本构图:角平分线+平行线构造等腰三角形.
新课探索
Part 3 典例Part精1 析
北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件

新课讲授
典例分析
例 如图,已知△ABC,△BDE都是等边三角形. 求证:AE=CD.
分析:要证AE=CD,可通过证AE,CD所在的两个三角 形全等来实现,即证△ABE≌△CBD,条件可从 等边三角形中去寻找.
新课讲授
证明:∵△ABC和△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. AB=CB, 在△ABE与△CBD中, ABE=CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
第一章 三角形的证明
1 等腰三角形
课时2 等腰三角形的特殊性质及等边三角形的性质
学习目标
等腰三角形中相等的线段 等边三角形的性质.(重点、难点)
新课导入
等腰三角形有哪些性质?
1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,即等腰三角形
顶角的平分线、底边上的中线及底边上的高线互相 重合.
新课讲授
典例分析
例 求证:等腰三角形两腰上的中线相等.
分析:先根据命题分析出题设和结论,画出图形,写 出已知和求证,然后利用等腰三角形的性质和 三角形全等的知识证明.
新课讲授
解:如图,在△ABC中,AB=AC,CE和BD分别是AB 和AC上的中线, 求证:CE=BD.
证明:∵AB=AC,CE和BD分别是AB 和AC上的中线,
新课讲授
知识点2 等边三角形的性质
1.等边三角形的定义是什么? 2.想一想
等边三角形是特殊的等腰三角形,那么等边三角 形的内角有什么特征呢?
新课讲授
定理 等边三角形的三个内角都相等,并且每个角 都等于60°.
新课讲授
典例分析
例 已知:如图, 在△ABC中,AB= AC=BC. 求证:∠A= ∠ B = ∠ C = 60°. ∵AB = AC, ∴∠ B = ∠ C (等边对等角). 又∵AC = BC, ∴∠A= ∠ B (等边对等角). ∴∠A= ∠ B = ∠ C. 在△ABC中,∠A+∠ B+∠ C = 180°. ∴∠A= ∠ B = ∠ C = 60°.
北师大版八年级数学下册第一章《等腰三角形》优质公开课课件

达标检测二:
1、如图,CD是等腰直角三角形ABC斜边 上的高,找出图中有哪些等腰直角三角形。
C
A
B
答:图中的等腰直角三角形有: 等腰Rt△ABC、等腰Rt△ADC和 等腰Rt△ CDB
2、已知:如图,AD∥BC,BD 平分∠ABC
求证:AB=AD
A
D
B
C
证明:∵AD ∥BC(已知) ∴∠ADB= ∠CBD(两直线平行,内错 角相等)
证法二:作AD⊥BC,垂足为D
在 △BAD和△CAD中,
∠ADB= ∠ADC,
B
D
∠B=∠C, C AD=AD(公共边),
∵△BAD≌△CAD(AAS)
∴AB=AC(全等三角形的对应边 相等)
请同学们想一想:作等腰三角形底边上的 中线可以证明吗?为什么?
已知:在△ABC中,∠A=∠B=∠C 求证:AB=AC=BC A
例 如图,求证:如果三角形一个
外角的平分线平行于三角形的一边,
那么这个三角形是等腰三角形.
E
1
A2
B
已知:如图, D ∠CAE是△ABC
的外角, ∠1=∠2, AD∥BC C 求证:AB=AC
解:∵AD∥BC, ∴∠1= ∠B (两直线平行,同位角相等), ∠ 2 = ∠C(两直线平行,内错角相等), ∴ ∠1= ∠2 ∵ ∠1= ∠2 ∴ ∠B = ∠C ∴AB=AC (等角对等边)
1 等腰三角形
请同学们回答下面的问题:
1、等腰三角形的性质是什么?
①有两个相等的角. ②有两条相等的边. ③底边上的中线、高和顶角的平分线重合.
2、什么叫互逆命题,什么叫互逆定理?
答:在两个命题中,如果第一个命题的题设是 第二个命题的结论,而第一个命题的结论 又是第二个命题的题设,那么这两个命题 叫做互逆命题.如果一个定理的逆命题经过 证明是真命题,那么它是一个定理,这两 个定理叫做互逆定理.
北师版八年级数学下册1.1.1 等腰三角形的性质 课件(共28张ppt)

导引:给出的条件中,若底角、顶角已确定,可直接运用三 角形的内角和定理与等腰三角形的两底角相等的性质 求解;若给出的条件中底角、顶角不确定,则要分两 种情况求解.
解:(1)∵AB=AC,∴∠B=∠C. ∵∠A+∠B+∠C=180°, ∴50°+2∠B=180°,解得∠B=65°.
例题精析
(2)由题意可知,70°的角可以为顶角或底角,当底角 为70°时,顶角为180°-70°×2=40°.因此顶角 为40°或70°.
形顶角的平分线、底边上的中线及底边上的高线 互相重合. 2.思想方法:转化思想的应用,等腰三角形的性质是 证明角相等、边相等的重要方法.
课堂精练
7. 【中考·台州】如图,在等腰三角形ABC中,AB =AC,若以点B为圆心,BC长为半径画弧,交腰 AC于点E,则下列结论一定正确的是( C ) A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
课堂精练
8. 【中考·苏州】如图,在△ABC中,AB=AC,D 为 BC的 中 点 , ∠ BAD = 35° , 则 ∠ C 的 度 数 为 () A.35° B.45° C.55° D.60°
易错点拨
已知等腰三角形的一个外角等于110°,这个等腰三
角形的一个底角的度数为( D )
A.40°
B.55°
C.70°
D.55°或70°
易错点:求等腰三角形的角时易出现漏解的错误
易错点拨
本题应用分类讨论思想,分顶角为70°和 底角为70°两种情况,解题时易丢掉一种情况 而漏解.
课堂小结
1.知识方面: (1)等腰三角形的性质:等边对等角. (2)等腰三角形性质的推论:三线合一,即等腰三角
EF⊥AB,垂足为F.
解:(1)∵AB=AC,∴∠B=∠C. ∵∠A+∠B+∠C=180°, ∴50°+2∠B=180°,解得∠B=65°.
例题精析
(2)由题意可知,70°的角可以为顶角或底角,当底角 为70°时,顶角为180°-70°×2=40°.因此顶角 为40°或70°.
形顶角的平分线、底边上的中线及底边上的高线 互相重合. 2.思想方法:转化思想的应用,等腰三角形的性质是 证明角相等、边相等的重要方法.
课堂精练
7. 【中考·台州】如图,在等腰三角形ABC中,AB =AC,若以点B为圆心,BC长为半径画弧,交腰 AC于点E,则下列结论一定正确的是( C ) A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
课堂精练
8. 【中考·苏州】如图,在△ABC中,AB=AC,D 为 BC的 中 点 , ∠ BAD = 35° , 则 ∠ C 的 度 数 为 () A.35° B.45° C.55° D.60°
易错点拨
已知等腰三角形的一个外角等于110°,这个等腰三
角形的一个底角的度数为( D )
A.40°
B.55°
C.70°
D.55°或70°
易错点:求等腰三角形的角时易出现漏解的错误
易错点拨
本题应用分类讨论思想,分顶角为70°和 底角为70°两种情况,解题时易丢掉一种情况 而漏解.
课堂小结
1.知识方面: (1)等腰三角形的性质:等边对等角. (2)等腰三角形性质的推论:三线合一,即等腰三角
EF⊥AB,垂足为F.
北师大版八年级数学下册等腰三角形和直角三角形复习课件

选一选 你真棒
6.下列关于直角三角形的判定,正确的有( D) (1)有一个角是直角的三角形是直角三角形. (定义) (2)两内角互余的三角形是直角三角形。 (3)一条边上的中线等于该边的一半,这条边所对的
角是直角,则这个三角形是直角三角形。 (4)较小两边的平方和等于较大边的平方的三角形是
直角三角形. (勾股定理的逆定理)
则底角度数为______顶角度数为_______。
2 如图,已知在直角△ABC中, ∠C=90 °, BD平分∠ABC交AC于D;
(1)若∠BAC=30 °,则AD=——; A
D
B
C
例1.如图,已知在△ABC中,AB=AC,BD⊥AC于D,
CE⊥AB于E,BD与CE相交于M点。求证:
BM=CM。 A
▪ 证明:∵AB=AC
▪ ∴∠ABC=∠ACB(等边对等角)
▪ ∵ BD⊥AC于D,CE⊥AB于E ▪ ∴∠BEC=∠CDB=90° ▪ ∴∠1+∠ACB=90°,
∠2+∠ABC=90°(直角三角形 两个锐角互余)
E
Mபைடு நூலகம்
D
1 B
2 C
说明:本题易习惯性地用全等来
▪ ∴∠1=∠2(等角的余角相等) ▪ ∴BM=CM(等角对等边)
(1)求证ME=MF;
课后思考 (2)若CD为AB边上的高, ME+MF与CD有什
么数量关系?
(3)若M在BC上移动,ME+MF为定值吗?试说明理由。
总结:许多问题可以用基本的性质、判定解决,
用探讨研究的精神去看待
3. 如图,线段OD的一个端点O在直线a上,以 OD为一边画等腰三角形,并且使另一个顶点在直 线a上,这样的等腰三角形能画多少个?
北师大版八年级数学下册课件 1.1.2等腰三角形课件(新版)北师大版(共17张PPT)

A
D C
想一想, 做一做
刚才,我们只是发现并证明了等腰三角形中 比较特殊的线段(角平分线、中线、高)相等,还 有其他的结论吗?你能从上述证明的过程中得到什 么启示?
把腰二等分的线段相等,把底角二等分的线 段相等.如果是三等分、四等分……结果如何呢?
想一想, 做一做
1.在等腰三角形ABC中,
(1)如果∠ABD= 1∠ABC,∠ACE= ∠1ACB,那么BD=CE
证法2:
已知:如图,在△ABC中,AB=AC,BD和 CE是△ABC的角平分线. 求证:BD=CE.
证明:∵AB=AC, ∴∠ABC=∠ACB. 又∵∠3=∠4. 在△ABC和△ACE中, ∠3=∠4,AB=AC,∠A=∠A. ∴△ABD≌△ACE(ASA). ∴BD=CE(全等三角形的对应边相等).
在等腰三角形中作出一些线段(如 角平分线、中线、高等),你能发现其 中一些相等的线段吗?你能证明你的结 论吗?
探究相等线段
(一)证明“等腰三角形两底角的平分线相等”
证法1:已知:如图,在△ABC中, AB=AC,BD和CE是△ABC的角平分 线. 求证:BD=CE. 证明:∵AB=AC, ∴∠ABC=∠ACB(等边对等角). ∵∠1=∠ABC,∠2=∠ABC, ∴∠1=∠2. 在△BDC和△CEB中, ∠ACB=∠ABC,BC=CB,∠1=∠2. ∴△BDC≌△CEB(ASA). ∴BD=CE(全等三角形的对应边相等)
(三)证明“等腰三角形两腰上的高线相等”
方法二: 已知:如图,在△ABC中,AB=AC,BD 和CE是△ABC两腰上的高线. 求证:BD=CE. 证明:∵BD和CE是△ABC两腰上的高线 ∴∠AEC=∠ADB=90°(垂直的定 E
义). 在△AEC和△ADB中, ∠A=∠A,AB=AC,∠AEC=∠ADB.B ∴△AEC≌△ADB (AAS). ∴BD=CE(全等三角形的对应边相等)
北师版数学八年级下册第1章第1节等腰三角形课件

A
N
M
B
C
1.如图,在△ABC中,AB=AC,点D,E分别在边AC和AB上.
(1)如果∠ABD=
1 3
ABC
,
∠ACE=
1 3
ACB,那么BD=CE
吗?如果∠ABD= 1 ABC ,∠ACE=
4
1 ACB 4
呢?
由此你能得到一
个什么结论?
A
(2)如果AD= 1 AC,AE= 1 AB,那么
∵CD是腰AB上的高,
∴∠ADC=90°. ∴CD= 1 AC(在直角三角形中,如果一个锐角等于
2
30°,那么它所对的直角边等于斜边的一半). ∴CD= 1 AB.
2
A
B
C
前面已经证明了等腰三角形的两个底角相等.反过来,有
两个角相等的三角形是等腰三角形吗? A
如图, 在△ABC中, ∠B=∠C.要想证
明AB=AC,只要能构造两个全等的三角形,
使AB与AC成为对应边就可以了.你是怎样构
B
C
造的?
定理 有两个角相等的三角形是等腰三角形.
这一定理可以简单叙述为:等角对等边.
一个三角形满足什么条件时是等边三角形? 一个等腰三角形满足什么条件时是等边三角形? 请证明自己的结论,并与同伴交流.
已知:如图,在△ABC中,AB=AC,∠B=60°. 求证:△ABC是等边三角形.
A
B
C
定理 三个角都相等的三角形是等边三角形. 定理 有一个角等于60°的等腰三角形是等边三角形.
A
B
C
小明是这样想的:
在 △ ABC 中 , 已 知 ∠ B≠∠C, 此 时 ,AB 与 AC 要 么相等,要么不相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 三角形的证明
1 等腰三角形 第 2 课时 等腰三角形(二)
课前预习
1. 等边三角形的三个内角都____相__等____,并且每个角都 等于____6_0_°____. 2. 等边三角形的边长为2,则它的周长为_____6_____. 3. 下列条件中,不能得到等边三角形的是
(A) A. 有两个外角相等的等腰三角形是等边三角形 B. 三边都相等的三角形是等边三角形 C. 有一个角是60°的等腰三角形是等边三角形 D. 有两个内角等边△ABC剪去一个角后,则
∠1+∠2的大小为
(D )
A. 120° B. 180° C. 200°
D. 240°
课后作业
4. 如图1-1-24,D是等边△ABC的边AC上一点,E是等
边△ABC外一点,若BD=CE,∠1=∠2,则△ADE的形
状是
(B)
A. 等腰三角形
课后作业
夯实基础
新知 等边三角形的性质定理
1. 在等边△ABC中,已知BC边上的中线AD=16,则∠BAC的
平分线长等于
( C)
A. 4
B. 8
C. 16
D. 32
2. 如图1-1-22,在等边△ABC中,BD=CE,AD与BE相交于点P,
则∠APE的度数是 A. 45° B. 55°
(C )
C. 60° D. 75°
B. 等边三角形
C. 直角三角形
D. 不等边三角形
课后作业
5. 如图1-1-25,已知等边△ABC的边长为2,AD平分∠BAC. (1)求BD的长; (2)求△ABC的面积.
解:(1)∵等边△ABC的边长为2,AD平分∠BAC, ∴AD⊥BC,且BD= BC=1. (2)在Rt△ABD中, AD=AB2-BD2 = 3, 则S△ABC= BC·AD= ×2× 3 = 3
8. 如图1-1-28,已知在等边△ABC中,AD⊥BC,AD=AC,
连接CD并延长,交AB的延长线于点E,求∠E的度数.
解:∵在等边△ABC中,AB=AC,AD⊥BC, ∴∠CAD= ∠BAC. ∵∠BAC=60°, ∴∠CAD=30°. ∵AD=AC,∴∠ACD=∠ADC. ∵在△ACD中,∠ACD+∠ADC+∠CAD=180°, ∴∠ACD=75°. ∵在△ACE中,∠EAC+∠ACE+∠E=180°, ∴∠E=45°.
课堂讲练
新知 等边三角形的性质定理
典型例题
【例1】如图1-1-19,△ABC是等边三角形,则∠1+∠2=
( C)
A. 60° B. 90°
C. 120°
D. 180°
课堂讲练
【例2】如图1-1-20,在等边△ABC中,AN=BM, 求证: (1)△BMC≌△ANB; (2)∠MOB=∠ACB.
课堂讲练
课后作业
6. 已知:如图1-1-26,在等边△ABC中,D是AC中点, 过点C作CE∥AB,且AE⊥CE. 求证:BD=AE. 证明:∵在等边△ABC中,D是AC中点, ∴AB=CA,BD⊥AC. ∵AE⊥CE,∴∠ADB=∠E. ∵CE∥AB,∴∠BAD=∠ACE.
在△BAD和△ACE中,
∴△BAD≌△ACE(AAS). ∴BD=AE.
证明:(1)∵在等边△ABC中,AN=BM, ∴AB=BC,∠A=∠CBM.
∵在△BMC和△ANB中,
∴△BMC≌△ANB(SAS). (2)由(1)知△BMC≌△ANB, ∴∠BCM=∠ABN. ∵∠ABN+∠NBC=60°, ∴∠BCM+∠OBC=60°. ∴∠MOB=∠ACB=60°.
课堂讲练
课后作业
9. 如图1-1-29,△ABC是等边三角形,△BDC是顶角 ∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角 两边分别交AB,AC边于M,N两点,连接MN. 探究线段BM, MN,NC之间的关系,并加以证明.
课后作业
解:MN=BM+NC. 理由如下. 如答图1-1-3,延长AC至点E,使得CE=BM(或延长AB至点E,使 得BE=CN),并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°. 又∵∠BDC=120°,∴∠DBC=∠DCB=30°. ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°. ∴∠MBD=∠ECD=90°.
模拟演练
1.等边三角形中,两条中线所夹的锐角的度数为( D )
A. 30° B. 40° C. 50°
D. 60°
2. 如图1-1-21,等边△ABC中,∠1=∠2=∠3.
(1)求证:DE=EF=DF;
(2)求∠BEC的度数.
课堂讲练
(1)证明:∵△ABC是等边三角形, ∴∠BAC=∠ABC=∠ACB=60°, AB=BC=AC. 又∵∠1=∠2=∠3, ∴∠CAF=∠ABD=∠ECB. ∴△ADB≌△BEC≌△CFA. ∴AD=BE=CF,BD=CE=AF. ∴DE=EF=DF. (2)解:由(1)可知△DEF为等边三角形, ∴∠DFE=∠DEF=∠EDF=60°. ∵∠BEC=∠FDE+∠EFD, ∴∠BEC=120°.
课后作业
能力提升
7. 如图1-1-27所示,已知△ABC和△DCE均是等边三角形,
点B,C,E在同一条直线上,AE与CD交于点G,AC与BD
交于点F,连接FG,则下列结论:
①AE=BD;②AG=BF;③FG∥BE;④CF=CG.
其中正确结论的个数为
( D)
A. 1个
B. 2个
C. 3个
D. 4个
课后作业
在△MBD和△ECD中,
∴△MBD≌△ECD(SAS). ∴MD=DE,∠BDM=∠CDE. ∵∠BDC=120°,∠BDM=∠CDE, ∴∠MDE=120°-∠BDM+∠CDE=120°. 又∵∠MDN=60°,∴∠NDE=60°. ∴∠MDN=∠NDE.∴△DMN≌△DEN(SAS).
1 等腰三角形 第 2 课时 等腰三角形(二)
课前预习
1. 等边三角形的三个内角都____相__等____,并且每个角都 等于____6_0_°____. 2. 等边三角形的边长为2,则它的周长为_____6_____. 3. 下列条件中,不能得到等边三角形的是
(A) A. 有两个外角相等的等腰三角形是等边三角形 B. 三边都相等的三角形是等边三角形 C. 有一个角是60°的等腰三角形是等边三角形 D. 有两个内角等边△ABC剪去一个角后,则
∠1+∠2的大小为
(D )
A. 120° B. 180° C. 200°
D. 240°
课后作业
4. 如图1-1-24,D是等边△ABC的边AC上一点,E是等
边△ABC外一点,若BD=CE,∠1=∠2,则△ADE的形
状是
(B)
A. 等腰三角形
课后作业
夯实基础
新知 等边三角形的性质定理
1. 在等边△ABC中,已知BC边上的中线AD=16,则∠BAC的
平分线长等于
( C)
A. 4
B. 8
C. 16
D. 32
2. 如图1-1-22,在等边△ABC中,BD=CE,AD与BE相交于点P,
则∠APE的度数是 A. 45° B. 55°
(C )
C. 60° D. 75°
B. 等边三角形
C. 直角三角形
D. 不等边三角形
课后作业
5. 如图1-1-25,已知等边△ABC的边长为2,AD平分∠BAC. (1)求BD的长; (2)求△ABC的面积.
解:(1)∵等边△ABC的边长为2,AD平分∠BAC, ∴AD⊥BC,且BD= BC=1. (2)在Rt△ABD中, AD=AB2-BD2 = 3, 则S△ABC= BC·AD= ×2× 3 = 3
8. 如图1-1-28,已知在等边△ABC中,AD⊥BC,AD=AC,
连接CD并延长,交AB的延长线于点E,求∠E的度数.
解:∵在等边△ABC中,AB=AC,AD⊥BC, ∴∠CAD= ∠BAC. ∵∠BAC=60°, ∴∠CAD=30°. ∵AD=AC,∴∠ACD=∠ADC. ∵在△ACD中,∠ACD+∠ADC+∠CAD=180°, ∴∠ACD=75°. ∵在△ACE中,∠EAC+∠ACE+∠E=180°, ∴∠E=45°.
课堂讲练
新知 等边三角形的性质定理
典型例题
【例1】如图1-1-19,△ABC是等边三角形,则∠1+∠2=
( C)
A. 60° B. 90°
C. 120°
D. 180°
课堂讲练
【例2】如图1-1-20,在等边△ABC中,AN=BM, 求证: (1)△BMC≌△ANB; (2)∠MOB=∠ACB.
课堂讲练
课后作业
6. 已知:如图1-1-26,在等边△ABC中,D是AC中点, 过点C作CE∥AB,且AE⊥CE. 求证:BD=AE. 证明:∵在等边△ABC中,D是AC中点, ∴AB=CA,BD⊥AC. ∵AE⊥CE,∴∠ADB=∠E. ∵CE∥AB,∴∠BAD=∠ACE.
在△BAD和△ACE中,
∴△BAD≌△ACE(AAS). ∴BD=AE.
证明:(1)∵在等边△ABC中,AN=BM, ∴AB=BC,∠A=∠CBM.
∵在△BMC和△ANB中,
∴△BMC≌△ANB(SAS). (2)由(1)知△BMC≌△ANB, ∴∠BCM=∠ABN. ∵∠ABN+∠NBC=60°, ∴∠BCM+∠OBC=60°. ∴∠MOB=∠ACB=60°.
课堂讲练
课后作业
9. 如图1-1-29,△ABC是等边三角形,△BDC是顶角 ∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角 两边分别交AB,AC边于M,N两点,连接MN. 探究线段BM, MN,NC之间的关系,并加以证明.
课后作业
解:MN=BM+NC. 理由如下. 如答图1-1-3,延长AC至点E,使得CE=BM(或延长AB至点E,使 得BE=CN),并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°. 又∵∠BDC=120°,∴∠DBC=∠DCB=30°. ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°. ∴∠MBD=∠ECD=90°.
模拟演练
1.等边三角形中,两条中线所夹的锐角的度数为( D )
A. 30° B. 40° C. 50°
D. 60°
2. 如图1-1-21,等边△ABC中,∠1=∠2=∠3.
(1)求证:DE=EF=DF;
(2)求∠BEC的度数.
课堂讲练
(1)证明:∵△ABC是等边三角形, ∴∠BAC=∠ABC=∠ACB=60°, AB=BC=AC. 又∵∠1=∠2=∠3, ∴∠CAF=∠ABD=∠ECB. ∴△ADB≌△BEC≌△CFA. ∴AD=BE=CF,BD=CE=AF. ∴DE=EF=DF. (2)解:由(1)可知△DEF为等边三角形, ∴∠DFE=∠DEF=∠EDF=60°. ∵∠BEC=∠FDE+∠EFD, ∴∠BEC=120°.
课后作业
能力提升
7. 如图1-1-27所示,已知△ABC和△DCE均是等边三角形,
点B,C,E在同一条直线上,AE与CD交于点G,AC与BD
交于点F,连接FG,则下列结论:
①AE=BD;②AG=BF;③FG∥BE;④CF=CG.
其中正确结论的个数为
( D)
A. 1个
B. 2个
C. 3个
D. 4个
课后作业
在△MBD和△ECD中,
∴△MBD≌△ECD(SAS). ∴MD=DE,∠BDM=∠CDE. ∵∠BDC=120°,∠BDM=∠CDE, ∴∠MDE=120°-∠BDM+∠CDE=120°. 又∵∠MDN=60°,∴∠NDE=60°. ∴∠MDN=∠NDE.∴△DMN≌△DEN(SAS).