5。3展开与折叠(1)
5.3展开与折叠(第一课时)PPT课件

自主探究
小实验( 一)
把你所做的圆柱体纸筒和圆锥体纸筒 展开,看它的平面展开图是什么。
பைடு நூலகம்
圆柱
圆锥
小实验(二)
请同学们拿出课前准备好的几个 正方体纸盒,按不同的方式展开,画 出你所得到的展开图。
第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三 种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
总结规律: 中间四个面 中间三个面 中间两个面 中间没有面
上、下各一面 一、二隔河见 楼梯天天见 三、三 连一线
精讲提高
观察下列图形并思考:这些图形哪些是 一个几何体的展开图?这些图形哪些不能 折叠成几何体?
精讲提高
给出一个正方体的展开图。(每个面 都标有字母)问:面A面B面C的对面各是 哪个面?动手做一做
达标练习
(1)下面的图形都是正方体的展开图吗?
(2)如果“你”在前面,那么谁在后面?
了! 太棒 你们
(3)请思考下图中的图形是什么立体图形的 展开图:
结束语:
谢谢您的到来,为方便回顾本课程内容, 可在课件下载后进行查看,对疑问之处可 随时提问
Thank you for coming. For the convenience of reviewing the content of this course, you can view it after downloading the courseware. You can ask questions at any time
数学:5.3展开与折叠(第1课时)教案2(苏科版七年级上)

⑶对于不能折叠成正方体的平面图形,请说明如何移动正方形的位置就能够使得它变为能折叠成正方体的平面图形。
5.延伸练习
⑴如图,这是一个正方体的展开图,如果将它组成原来的正方体,哪些点与点P重合。
⑵下面哪一个图形折叠起来能做成一只开口的盒子?
⑶有一正方体木块,它的六个面分别标上数字1——6,这是这个正方体木块从不同面所观察到的数字情况。请问数字1和5对面的数字各是多少?
3.想一想
学生动手实践
拿出事先准备的正方体纸盒沿某些棱展开
学生展示交流
通过亲手实践让学生积累数学活动的经验,激发学习兴趣,
让学生动手实践,在活动中初步建立空间观念
教师活动内容、方式
学生活动方式
设计意图
⑴你能设法得到下面的图形吗?试试看。
⑵请说一说你是怎么剪的?
⑶思考:要将一个正方体沿棱展开成一个平面图形,你需要剪几条棱?为什么?
教具准备
正方体,圆柱、圆锥形纸筒,一把剪刀,透明胶带,正方体的十一种展开图。
教学过程
教学内容
教师活动内容、方式
学生活动方式
设计意图
一.问题情境
一只虫子从圆柱上A点处绕圆柱爬到B点处,你能画出它爬行的最短路线吗?
二.自主探究
1、做一做
⑴沿虚线剪开圆柱形纸筒的侧面,得到什么平面图形?小虫从A点绕圆柱爬到B点的最短路线是什么?请画出圆柱的侧面展开示意图和小虫爬行的最短路线。
三.回顾与反思
以提问的方式进行:
⑴研究立体图形的平面展开图,哪些研究方法?谈谈你的经验和体会。
⑵这一节课你学到了什么?说说你最喜欢的是什么?你最大的收获是什么?
四.课堂检测
学生填数
学生独立解答
七年级上册数学《5.3 展开与折叠》教案 (1)【精品】

《5.3 展开与折叠》教案教学目标1.学生通过动手实验、展开讨论等方法,认识多面体与它们展开图的关系;2.让学生经历几何体的展开与折叠等实验活动,丰富空间观念,发展空间想象能力,养成研究性学习的良好习惯;3.获得研究问题的方法和经验;4.通过克服困难的经历和获得成功的体验,培养对数学的兴趣.教学重点1. 通过正方体表面的展开与折叠活动,认识多面体与它们展开图的关系,积累数学活动的经验;2. 丰富空间观念,发展空间想象能力.教学难点建立空间观念,想象几何体的展开与折叠过程.教学过程问题的引入:拿出圆柱和圆锥实物,想一想,你会将圆柱和圆锥展开成平面图形吗?试试并画出示意图.积极思考并动笔画.圆柱的表面展开图是:圆锥的表面展开图是:两个圆(作底面)和一个长方形(作侧面) .一个圆(作底面)和一个扇形(作侧面) .做一做:1.投影一个正方体,如何把一个正方体的表面沿棱剪开,展开成一个平面图形?2.每四人为一组讨论并尝试剪一剪.注意:剪开正方体棱的过程中,正方体的6个面中每个面至少有一条棱与其他面相连.3.巡视,要求尽量剪得与别人不同.4.秀一秀学生所得平面图,根据情况补充全11种图形.5.要求学生操作后相互讨论并思考:同一种正方体纸盒沿不同顺序先后剪开棱展开的平面图形是否相同?一个正方体纸盒展开成平面图形,要剪开几条棱?6.投影出2个正方体的平面展开图,你能展开成下面的图形吗?试试看.1.小组拿出课前准备好的正方体展开讨论.2.拿出小剪刀,每人沿正方体的棱按照自己的想法剪,把正方体展开成平面图.3.小组成员相互对照比较展开图的形状.4.各小组展示所剪得的所有不同形状的展开图.5.积极思考,踊跃回答.(不同,7条)第二问答案参考:(1)从剪的活动过程中得出结论.(2)由于正方体共有12条棱、6个面,将其表面展成一个平面图形,其面与面之间相连的棱(即未剪开的棱)有5条,因此需要剪开7条棱.(3)一条棱剪开后得展开图中小正方形的两条边,数一数展开图的外边线共有十四条边,因而剪开了七条棱.6.小组协作实验并交流.练一练:投影题目1.如图,哪一个是棱锥侧面展开图?2.如图,第一行的几何体表面展开后得到的第二行的某个平面图形,请用线连一连.总结:一些立体图形可展开成平面图形.3.下图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是( )A BCD4.下面这些图形中,能通过折叠围成正方体的是 .对其中不能围成正方体的图形,如何移动其中一个小正方形到新的位置使它能折叠成正方体?(1)(4)(3)(2)5.下面图形经过折叠能否围成棱柱?(1)(2)(3)总结:不是所有的平面图都是几何体的展开图.回答:图(3).因为图(1)是四棱柱的侧面展开图,图(2)是圆锥侧面展开图.2.3.回答:B .4.回答:(1)、(2)、(3).5.回答:(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.(2)可以折成棱柱.(3)两底面在侧面展开图的同一端,不在两端,所以不能围成棱柱.探究:1.下面是正方体的表面展开图(每个面都标有字),你知道面“正”、“方”的对面各是哪个面吗?正方体展开图请一位同学按照投影样式标上字后到讲台上用透明胶粘贴成正方体展示给同学看,验证答案.2.如图,这是一个正方体的展开图,如果将它组成原来的正方体,哪些点与点C重合?请一位同学按照投影样式标上字母后到讲台上用透明胶粘贴成正方体展示给同学看,验证答案.总结:这节课你最大的收获是什么?课后作业:1.请你将一个长方体纸盒沿棱剪开展开成平面图形,试画出展开后的平面图形并与同学交流.要求学生课后用研究正方体的方法研究交流.(不要求归纳所有情况)2.教材132-133页习题5.3中第A:3、4、5、B:6题.。
5[1].3展开与折叠(一)(七上)
![5[1].3展开与折叠(一)(七上)](https://img.taocdn.com/s3/m/56d29ea6dd3383c4bb4cd2bc.png)
5.3展开与折叠(一)盐城市马沟中学数学教研组教学目标:1 学生通过动手实验,发挥讨论等方法,认识多面体与它们展开图的关系。
2 能正确判断展开图是哪个几何体的展开图。
3 经历和体验图形的变化过程,发展空间概念,养成研究性学习的良好习惯。
教学重点:将几何体展开成展开图,利用模型将展开图折叠成几何体。
教学难点:不用模型,展开想象,由展开图怎样叠成几何体。
展开图中,多个面在几何体中的对应位置的判断。
教学过程:一、创设情境(1)展示一个制作精巧的长方体纸盒给学生看,并提问:这个正方体纸盒漂亮不漂亮?(2)展示一个同样制作的长方体纸盒的平面展开图给学生看并用手慢慢地折叠成长方体纸盒,提问:折叠成的正方体纸盒与前面的正方体纸盒是否一样?人们是如何将平的硬纸板做成如此漂亮的纸盒的呢?二、探索新知自学课本P159做一做,完成下列活动。
1 将圆柱形纸筒的侧面沿虚线展开,得到什么平面图形?2 将圆锥形冰淇淋纸筒的侧面沿虚线展开,得到什么平面图形?3投影p159/图5-12 沿图5—12中的红线将无盖的正方体纸盒剪开,得到什么平面图形?试画出它的示意图。
三、议一议(1)同一种正方体纸盒沿不同顺序先后剪开棱展开的平面图形是否相同?(2)一个正方体纸盒展开成平面图形,要剪开几条棱?练一练(1)如图,哪一个图形是棱锥的侧面展开图?(2(3)如图是一个正方体的展开图。
(每个面都标有字母)问:面A面B面C的对面各是哪个面?(4)将如图所示的长方体纸盒沿棱剪开成一个平面图形。
五、课堂小结1 通过实践操作得到了圆柱、圆锥等几何体的侧面展开图。
2通过大量的动手实践、相互合作,得到了正方体的11种形状的平面展开图,培养了学生空间想象能力。
六、作业课本P164/1、2、3、4。
5.3 展开与折叠 课件

A
做一做
如何把一个正方体的表面沿棱剪开,展开成一个 平面图形?分组讨论并尝试剪一剪. 注意:剪开正方体棱的过程中,正方体的6个面中 每个面至少有一条棱与其他面相连 .
“1-4-1”型
“2-3-1”型
“3-3”型
“2-2-2”型
判断下列图形能不能折成正方体?
(1)
不能
(2)
不能
(3)
能
A
B
C
D
4.下面这些图形中,能通过折叠围成正方体的是 (____________ 1)、(2)、( 3) . 对其中不能围成正方体的图形,如何移动其中 一个小正方形到新的位置使它能折叠成正方体?
(1)
( 2)
(3)
(4)
5.下面图形经过折叠能否围4个)≠底面边数(3条),不能围成棱柱.
(2)可以折成棱柱.
(3)两底面在侧面展开图的同一端,不在两端,所以不能 围成棱柱.
6、一只蚂蚁从圆柱上的点A绕圆柱 爬到点B,你能量出它爬行的最短路线长 吗?
B
解:B
B1
A
A
A1
探究
做一做
1.下面是正方体的表面展开图(每个面都标有 字),你知道面“正”、“方”的对面各是哪个面吗?
展 正 方 体 开 图
初中数学
七年级(上册)
5.3
展开与折叠(1)
下列几何体的表 面或侧面可以展开成 平面图形.
想一想
你会将下列几何体展开成平面 图形吗?画出示意图.
圆柱的表面展开图是:两个圆(作底面)和一个长方形(作侧 面) .
圆锥的表面展开图是:一个圆(作底面)和一个扇形(作侧 面) .
一个无盖的正方体纸盒,下底面 标有字母 A,沿图中的红线将该纸 盒剪开,请画出它的示意图。
5.3展开与折叠(一)教案

第五章二节
5.3展开与折叠(一)
一、教学目标:
1 学生通过动手实验,发挥讨论等方法,认识多面体与它们展开图的关系。
2 能正确判断展开图是哪个几何体的展开图。
3 经历和体验图形的变化过程,发展空间概念,养成研究性学习的良好习惯。
二、教学重点、难点:
将几何体展开成展开图,利用模型将展开图折叠成几何体是重点。
不用模型,展开想象,由展开图怎样叠成几何体。
展开图中,多个面在几何体中的对应位置的判断是难点。
三、教学资源:
教具准备:一盒制作精巧的正方体纸盒、同样制作的正方体纸盒的展开图、一个圆柱形牙刷纸筒、一个圆锥形冰淇淋纸筒、同一正方体的11个不同形状的展开图、一些正三角形、正方形、长方形硬纸片、一把小剪刀、透明胶、双面胶、投影仪。
学具准备:一块规定边长的正方体、小剪刀、透明胶。
四、教学过程:。
苏科版七年级数学优质教学案-5.3展开与折叠(1)

七年级上学期数学指导教学书主备人:魏兵役审核人:薛正喜使用时间:2015年月日课题展开与折叠(1)总第课时学习目标1、通过展开、折叠,90﹪的同学能感受立体图形与平面图形之间的关系,经历、体验图形的变化过程,发展空间观念,养成研究性学习的良好习惯2、85﹪的同学能想象并画出简单几何体的表面展开图,能根据表面展开图判断、制作简单几何体。
重点经历数学活动的过程,感受平面图形与立体图形的关系,发展空间想象力。
难点想象简单几何体表面展开图形的形状以及折叠成立体图形的过程。
教学过程一、作业互批,错题标注二、感情调节展示一些漂亮的包装盒,思考他们是怎样制作的,展开之后是什么样的图形,以小组为单位将准备好的盒子展开成平面图形。
三、自学自学内容:课本P129 自学时间:8分钟自学提示:1、说出下列图形的名称,想一想它们的展开图的形状。
()()()()()2、图中纸筒纸盒沿红线或侧棱剪开,能展开成平面图形吗?会是什么形状呢?()()()()四、自学检测:1、如图,哪个是棱锥侧面展开图?2、如图,第一行的几何体表面展开后得到第二行的某个平面图形,请用线连一连。
知者加速:如图:一只无盖的圆桶下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,从侧面应该走哪条路径?五、小组合作:你能通过剪开正方体的某些棱,把你们的正方体纸盒展开成一个平面图形吗?并在展示板上画出你们组的展开图形。
思考:正方体展开图如何分类记忆?至少要剪开几条棱?六、当堂检测1判断下列图形能不能折成正方体。
在能折成正方体的图形上标上+1、—1;+2、—2;+3、—3分别表示对面2、下图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()(A)(B)(C)(D)知者加速:画出无盖的正方体盒子的展开图七、当堂检测:《伴你学》P95检测反馈。
5.3展开与折叠(1)

图3 这样总共 11 种。 图4 下列图形是某些几何体的平面展开 出示习题,学生练习 图,先尝试猜想这些几何体的名称, 哪个图形是棱锥的侧面展开图? .... 然后用纸将这些图形复制下来, .. 折叠 验证你的想法。 .. 展开积极的思考 和激烈的讨论, 通 过开放题的研究, 意识到自己在学 习中的自主性
正方体展开的 11 种图形
板书设计
情境创设 1、 2、
例 1:„„
例 2:„„
习题 „„
„„ „„
„„ „„
„„ „„
作业布置 大量的教学实践活动,展示了新课改,体现了教学活动过程中学生的主体作用。 学生通过实物的折叠和展开两种操作活动,感受了数学来源于生活,数学应 用于生活,并接受了实践是检验真知的标准。 通过简单图形的粘贴和折叠,学生接受了简单图形是复杂图形形成的基础, 也增强了学生动手操作的能力
下面这些图形经过折叠可以围成一 个棱柱吗?先想一想, 然后动手折一 折。 ⑴ ⑵ ⑶ 如图所示是一多面体的展开图形, 每
课后练习,让学生自己准备模型
准备模型,练习
A B E F C D
个面都标有字母, 请根据要求回答提 问:
(1)如果面 A 在多面体的底部,那 么面 在上面。 (2)如果面 F 在前面,从左面看是 面 B,则面 在上面。 (3)从右面看是面 C,面 D 在后面, 面 在上面。
课时编号 备课时间 课 题 5.3 展开与折叠(1)[教案]
教学目标 教学重点 教学难点 将几何体展开成展开图,利用模型将展开图折叠成几何体 展开图中,多个面在几何体中的对应位置的判断 教 教学内容 学 过 程 学生活动 思考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)你还可以得到哪些形状不同的图形?请你尽可能的画出所有可能的图形,并在黑板上进行展示.
3.阅读教材P128做一做和数学实验室,完成“练一练”.
4.本节课学习的主要内容是什么?你是否已经理解并初步学会?
【课后巩固】
1.下面这些图形经过折叠可以围成一个棱柱吗?先想一想,然后动手折一折.
2.下列图形是正方体的展开图形的是()
A B C D
3.一个无上盖的正方体纸盒,底面标有字母A,沿图中的粗线剪开,在右图中补上四个正方形,使其成为它的展开图.
4.下面两图形分别是哪种多面体的展开图?
⑴⑵
5.如图所示,右图是长方体的表面展开图,原来的长方体中,与字母J重合的点是哪几个?动手试一试.
§5.3展开与折叠(1)
【课前预习】
1.三棱锥的展开图是由个形组成的.
2.圆椎的展开图是由一个和一个形组成的图形.
3.圆柱的展开图是由一个和两个形组成的图形.
4.长方体的展开图是由个形组成的图形.
5.正方体的展开图是由个形组成的图形.
6.在如图所示的图形中,是三棱柱的侧面展开图的是()
【课堂重点】
1.请写出下列图形中,各个几何体的展开图是什么几何体的展开图.