5。3展开与折叠(1)

合集下载

5。3展开与折叠(1)

5。3展开与折叠(1)
2.用纸板做几个正方形模型并图形吗?
(2)你还可以得到哪些形状不同的图形?请你尽可能的画出所有可能的图形,并在黑板上进行展示.
3.阅读教材P128做一做和数学实验室,完成“练一练”.
4.本节课学习的主要内容是什么?你是否已经理解并初步学会?
【课后巩固】
1.下面这些图形经过折叠可以围成一个棱柱吗?先想一想,然后动手折一折.
2.下列图形是正方体的展开图形的是()
A B C D
3.一个无上盖的正方体纸盒,底面标有字母A,沿图中的粗线剪开,在右图中补上四个正方形,使其成为它的展开图.
4.下面两图形分别是哪种多面体的展开图?
⑴⑵
5.如图所示,右图是长方体的表面展开图,原来的长方体中,与字母J重合的点是哪几个?动手试一试.
§5.3展开与折叠(1)
【课前预习】
1.三棱锥的展开图是由个形组成的.
2.圆椎的展开图是由一个和一个形组成的图形.
3.圆柱的展开图是由一个和两个形组成的图形.
4.长方体的展开图是由个形组成的图形.
5.正方体的展开图是由个形组成的图形.
6.在如图所示的图形中,是三棱柱的侧面展开图的是()
【课堂重点】
1.请写出下列图形中,各个几何体的展开图是什么几何体的展开图.

5.3展开与折叠(第一课时)PPT课件

5.3展开与折叠(第一课时)PPT课件
展开与折叠(一)
自主探究
小实验( 一)
把你所做的圆柱体纸筒和圆锥体纸筒 展开,看它的平面展开图是什么。
பைடு நூலகம்
圆柱
圆锥
小实验(二)
请同学们拿出课前准备好的几个 正方体纸盒,按不同的方式展开,画 出你所得到的展开图。
第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三 种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
总结规律: 中间四个面 中间三个面 中间两个面 中间没有面
上、下各一面 一、二隔河见 楼梯天天见 三、三 连一线
精讲提高
观察下列图形并思考:这些图形哪些是 一个几何体的展开图?这些图形哪些不能 折叠成几何体?
精讲提高
给出一个正方体的展开图。(每个面 都标有字母)问:面A面B面C的对面各是 哪个面?动手做一做
达标练习
(1)下面的图形都是正方体的展开图吗?
(2)如果“你”在前面,那么谁在后面?
了! 太棒 你们
(3)请思考下图中的图形是什么立体图形的 展开图:
结束语:
谢谢您的到来,为方便回顾本课程内容, 可在课件下载后进行查看,对疑问之处可 随时提问
Thank you for coming. For the convenience of reviewing the content of this course, you can view it after downloading the courseware. You can ask questions at any time

数学:5.3展开与折叠(第1课时)教案2(苏科版七年级上)

数学:5.3展开与折叠(第1课时)教案2(苏科版七年级上)
引导学生小结,张扬学生的个性
⑶对于不能折叠成正方体的平面图形,请说明如何移动正方形的位置就能够使得它变为能折叠成正方体的平面图形。
5.延伸练习
⑴如图,这是一个正方体的展开图,如果将它组成原来的正方体,哪些点与点P重合。
⑵下面哪一个图形折叠起来能做成一只开口的盒子?
⑶有一正方体木块,它的六个面分别标上数字1——6,这是这个正方体木块从不同面所观察到的数字情况。请问数字1和5对面的数字各是多少?
3.想一想
学生动手实践
拿出事先准备的正方体纸盒沿某些棱展开
学生展示交流
通过亲手实践让学生积累数学活动的经验,激发学习兴趣,
让学生动手实践,在活动中初步建立空间观念
教师活动内容、方式
学生活动方式
设计意图
⑴你能设法得到下面的图形吗?试试看。
⑵请说一说你是怎么剪的?
⑶思考:要将一个正方体沿棱展开成一个平面图形,你需要剪几条棱?为什么?
教具准备
正方体,圆柱、圆锥形纸筒,一把剪刀,透明胶带,正方体的十一种展开图。
教学过程
教学内容
教师活动内容、方式
学生活动方式
设计意图
一.问题情境
一只虫子从圆柱上A点处绕圆柱爬到B点处,你能画出它爬行的最短路线吗?
二.自主探究
1、做一做
⑴沿虚线剪开圆柱形纸筒的侧面,得到什么平面图形?小虫从A点绕圆柱爬到B点的最短路线是什么?请画出圆柱的侧面展开示意图和小虫爬行的最短路线。
三.回顾与反思
以提问的方式进行:
⑴研究立体图形的平面展开图,哪些研究方法?谈谈你的经验和体会。
⑵这一节课你学到了什么?说说你最喜欢的是什么?你最大的收获是什么?
四.课堂检测
学生填数
学生独立解答

5.3展开与折叠(1)

5.3展开与折叠(1)

5.3展开与折叠(1)
班级__________ 姓名__________
【学习目标】
1.学生通过动手实验,发挥讨论等方法,认识多面体与它们展开图的关系;
2.能正确判断展开图是哪个几何体的展开图;
3.经历和体验图形的变化过程,发展空间概念,养成研究性学习的良好习惯.
一.问题引入
拿出圆柱和圆锥实物,想一想,你会将圆柱和圆锥展开成平面图形吗?试试并画出示意图.
二.做一做
如何将一个正方体之和展开成一个平面图形?
1.每人动手剪一剪;
2.思考一个正方体纸盒展开成平面图形,要剪开几条棱?
3.秀一秀你的平面展开图,统计一个正方体的展开图总共有多少种.
三.课堂反馈
1.如图,哪一个是棱锥侧面展开图?
2.如图,第一行的几何体表面展开后得到的第二行的某个平面图形,请用线连一连.
A B C
3.下图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()
ABCD
4.下面这些图形中,能通过折叠围成正方体的是.
对其中不能围成正方体的图形,如何移动其中一个小正方形到新的位置使它能折叠成正方体?
(1)(4)(3)
(2)
5.下面图形经过折叠能否围成棱柱? (1)(2)
总结:不是所有的平面图都是几何体的展开图.
探究:
1.下面是正方体的表面展开图(每个面都标有字),你知道面“正”.“方”的对面各是哪个面吗?
正方体展


2.如图,这是一个正方体的展开图,如果将它组成原来的正方体,哪些点与点C 重合?。

七年级数学上册5.3展开与折叠解题三规律素材苏科版

七年级数学上册5.3展开与折叠解题三规律素材苏科版

展开和折叠解题三规律正方体的展开和折叠问题在中考题中经常出现,多见于填空题和选择题。

这种题有利于培养学生的空间观念和实践、探索能力.本文对几种常见类型的解题规律作初步的探讨.一、判断给定的图形是否是正方体的展开图例1:将一个正方体纸盒沿棱剪开并展开,共有_______种不同形式的展开图。

解:具体有以下11种图形,1.“一·四·一”型,中间一行4个作侧面,两边各1个分别作上下底面,•共有6种.2.“二·三·一”(或一·三·二)型,中间3个作侧面,上(或下)边2•个那行,相连的正方形作底面,不相连的再下折作另一个侧面,共3种.3.“二·二·二”型,成阶梯状.4.“三·三”型,两行只能有1个正方形相连.二、找正方体相邻或相对的面1.从展开图找.例2水平放置的正方体六个面分别用“前面、后面、上面、下面、左面、右面”表示。

如图是一个正方体的平面展开图,若图中的“进”表示正方体的前面,“步"表示右面,“习”表示下面,则“祝"、“你”、“学"分别表示正方体的________.解析:“祝”与“进”,“你”与“习”中间都隔一个正方形,是相对的面,所以“学”与“步”也是相对的面。

答案:后面、上面、左面例3右图是一个正方体的展开图,如果正方体相对的面上标注的值,那么x=____,y=_______。

解析:“2x"与“8”中间都隔一个正方形,是相对的面,“y”与“10”是相对的面。

所以,x=4,y=10。

2.从立体图找.例4:如图是3个完全相同的正方体的三种不同放置方式,下底面依次是______。

解析先找相邻的面,余下就是相对的面.上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,•和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,•下底面依次是2、5、1.三、由带标志的正方体图去判断是否属于它的展开图例5小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A C D祝习进步你学10y2x888解析基本方法是先看上下,后定左右,故选(A).例 6 下面各图都是正方体的表面展开图,若将它们折成正方体,•则其中两个正方体各面图案完全一样,它们是_______。

最新-江苏省南京市七年级数学上册 展开与折叠导学案(1

最新-江苏省南京市七年级数学上册 展开与折叠导学案(1

< 课题:5.3展开与折叠(1)>班级小组姓名学习目标:知识目标:通过展开、折叠,感受立体图形与平面图形的关系:有些立体图形可以按不同的方式展开成平面图形;有些平面图形也可以折叠成立体图形。

能力目标:能想象并画出简单几何体的表面展开图,能根据表面展开图判断、制作简单几何体情感目标:经历和体验图形的变化过程,发展空间观念,养成研究性学习的良好习惯使用说明:认真阅读P118-121,准备正方体的纸盒子。

重点、难点:通过展开、折叠,感受立体图形与平面图形的关系,通过适当想象再画出简单几何体的表面展开图一.自主学习:(一)复习巩固:(1)将一个长方体的纸盒展开后是一个怎样的平面图形?(展开图形唯一吗?)(2)将一个圆柱体的侧面展开后是一个怎样的图形?(3)将一个圆锥的侧面展是一个怎样的图形呢?请将上面的展开图都尝试着画在下面。

(二)导学部分:将你准备的一个正方体盒子沿棱剪开展成一个平面图形,将你展开后的图形画在下面。

与你小组的同学比较一下,画的一样吗?二、合作、探究、展示:(1)与你小组同学的展开图比较后,你觉得正方体的展开图唯一吗?请尽可能发挥小组集体的智慧,把正方体的展开图尽可能多的画在下面,它们共有多少种情况呢?(注意不要重复哦)(2)相信你已经画出了正方体展开图的所有情况,小组讨论一下,有没有好的记忆方法能准确而快速记住所有情况呢,请把讨论好的方法记录在下面。

(3)记住所有情况后来检验你学习的成果吧。

1、下面每个图片都是6个大小相同的正方形组成的,其中不是正方体展开图的是( )2、如图正方体的每一个面分别标有数字1、2、3、4、5、6,则可推出“?”处的数字是___三 课堂小结:四 布置作业:五 反思:六.预习指导:认真阅读书本P123-124 A B C D4 5 1 CA B 2 3 1? 53。

北师大版五年级数学下册《长方体(一):展开与折叠》说课课件

北师大版五年级数学下册《长方体(一):展开与折叠》说课课件

引导学生感悟: ①正方体展开图各小图形的特点(正方体的六个面大小都相当) ②正方体展开图的不唯一的特点(剪开的方法不同,得到的展开图形 也不相同) ③正方体展开图中相对面的位置特点等(相对的面隔一个出现)
2、探索怎样的平面图形才能够折叠成一个正方体。 (出示做一做1)下面哪些图形沿虚线对折后能围成正方体? 并总结归纳出判断图形是否可以折叠成一个正方体的方法:
板块三、课后延伸,拓展探究 简单的展开与折叠让我们进一步认识了长方体和正方体,其实这样的 方法还可以研究其它的立体图形。相信同学们随着课后的不断研究一 定会有了不起的发现。 在这节课的最后做这样一个延伸,主要是渗透一种转化的思想,及研 究方法的指导,体现学科的价值。
七、说板书设计
根据一年级的年龄特点,本课板书内容简单明了,重难点突 出。
板块二、探究新知 1、探索正方体展开图形的特征。 学生通过自己剪一剪,比一比,说一说,归纳与总结正方体展开图形 的相关知识: (1)揭示展开图的概念: 像这样由正方体展开后得到的平面图形就叫做正方体的展开图。
(2)探究正方体展开的特征: 观察黑板上的长方体和正方体的展开图,有什么特点? 沿正方体的7条棱剪开,可以把正方体展开成一个平面图形。
在以后的教学中,我们要不断地去探索、去实践,争取逐步提高自己的 教学水平。
我的说课完毕,谢谢各位老师!
展开与折叠 正方体展开后有 11 种不同的展开图。
长方体相对的面相等。
总之,在整个教学过程中,我始终立足让学生在玩中学会, 在动手中提高技能,学生学得轻松愉快。我将继续努力,让 我的数学课堂教学更高效,更精彩。
八、教学反思
这节课的教学是进一步发展学生的空间观念。通过反思我找到了一 些不足: (1)学生通过各种途径对展开图有了一些了解,但仍不能把平面图形 与立体图形很好地结合起来。

5[1].3展开与折叠(一)(七上)

5[1].3展开与折叠(一)(七上)

5.3展开与折叠(一)盐城市马沟中学数学教研组教学目标:1 学生通过动手实验,发挥讨论等方法,认识多面体与它们展开图的关系。

2 能正确判断展开图是哪个几何体的展开图。

3 经历和体验图形的变化过程,发展空间概念,养成研究性学习的良好习惯。

教学重点:将几何体展开成展开图,利用模型将展开图折叠成几何体。

教学难点:不用模型,展开想象,由展开图怎样叠成几何体。

展开图中,多个面在几何体中的对应位置的判断。

教学过程:一、创设情境(1)展示一个制作精巧的长方体纸盒给学生看,并提问:这个正方体纸盒漂亮不漂亮?(2)展示一个同样制作的长方体纸盒的平面展开图给学生看并用手慢慢地折叠成长方体纸盒,提问:折叠成的正方体纸盒与前面的正方体纸盒是否一样?人们是如何将平的硬纸板做成如此漂亮的纸盒的呢?二、探索新知自学课本P159做一做,完成下列活动。

1 将圆柱形纸筒的侧面沿虚线展开,得到什么平面图形?2 将圆锥形冰淇淋纸筒的侧面沿虚线展开,得到什么平面图形?3投影p159/图5-12 沿图5—12中的红线将无盖的正方体纸盒剪开,得到什么平面图形?试画出它的示意图。

三、议一议(1)同一种正方体纸盒沿不同顺序先后剪开棱展开的平面图形是否相同?(2)一个正方体纸盒展开成平面图形,要剪开几条棱?练一练(1)如图,哪一个图形是棱锥的侧面展开图?(2(3)如图是一个正方体的展开图。

(每个面都标有字母)问:面A面B面C的对面各是哪个面?(4)将如图所示的长方体纸盒沿棱剪开成一个平面图形。

五、课堂小结1 通过实践操作得到了圆柱、圆锥等几何体的侧面展开图。

2通过大量的动手实践、相互合作,得到了正方体的11种形状的平面展开图,培养了学生空间想象能力。

六、作业课本P164/1、2、3、4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课堂重点】
1.请写出下列图形中,各个几何体的展开图是什么几何体的展开图.
2.用纸板做几个正方形模型并把它们沿棱展开成平面图形.
(1)你可以得到下图所示的图形吗?
(2)你还可以得到哪些形状不同的图形?请你尽可能的画出所有可能的图形,并在黑板上进行展示.
3.阅读教材P128做一做和数学实验室,完成“练一练”.
§5.3展开与折叠(1)---[教案]
【课前预习】
1.三棱锥的展开图是由个形组成的.
2.圆椎的展开图是由一个和一个形组成的图形.
3.圆柱的展开图是由一个和两个形组成的图形.
4.长方体的展开图是由个形组成的图形.
5.正方体的展开图是由个形组成的图形.
6.在如图所示的图形中,是三棱柱的侧面展开图的是()
展开图,原来的长方体中,与字母J重合的点是哪几个?动手试一试.
4.本节课学习的主要内容是什么?你是否已经理解并初步学会?
【课后巩固】
1.下面这些图形经过折叠可以围成一个棱柱吗?先想一想,然后动手折一折.
2.下列图形是正方体的展开图形的是()
A B C D
3.一个无上盖的正方体纸盒,底面标有字母A,沿图中的粗线剪开,在右图中补上四个正方形,使其成为它的展开图.
4.下面两图形分别是哪种多面体的展开图?
相关文档
最新文档