平行线与三角形(含答案)教学文稿

合集下载

八年级数学上册平行线与三角形内角和的综合应用(习题及答案)(人教版)

八年级数学上册平行线与三角形内角和的综合应用(习题及答案)(人教版)


在△ ACD中,∠ 1=30°,∠ ACB=85°
∴∠ EDP=180°- ∠1- ∠ACB
=180°- 30°- 85°
=65°
( __________________________)_
∵PE⊥ AD
( __________________________)_
∴∠ EPD=90°
( __________________________)_
证自明的“基本事实” ,可以当做已知的大前提来进行使用.而其中的三条,
是我们在几何证明中不经意间多次用到的,下面对它们来进行简单的解释.
当我们证明时,会遇到如下的推理:
∵a=b,b=c
∴a=c
在这个推理过程中,我们很容易就理解它的正确性,但往往不知道它的依据
是什么.其实,它的依据就是欧几里得公理体系中 5 条公理中的第一条:“(1)
∴∠ A+∠ C=90°(等量代换)
这里推理的依据就是第一条公理, 我们把它简记为 “等量代换”.“等量代换”
第5页 共7页
A
D
B
C
第3页 共7页
6. 已知:如图, AB∥CD,∠ BAE=∠DCE=45°. 求证:∠ E=90°.
A
B
1 E
Байду номын сангаас
2
C
D
7. 已知:如图, EF⊥BC, DE⊥AB,∠ B=∠ADE. 求证: AD∥EF. A
E
B
F
D
C
第4页 共7页
思考小结
1. 在证明过程中: (1)由平行可以想 ________相等、 __________相等、 ________互补;
=180°- 30°- 85°

数学北师大版八年级上册 第七章 平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)

数学北师大版八年级上册 第七章 平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)

数学北师大版八年级上册第七章平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)第七章平行线的证明7.5 三角形内角和定理第2 课时一、教学目标1.掌握三角形内角和定理的两个推理,并能运用这些定理解决简单的问题.2.经历探索与证明的过程,进一步发展推理能力.3.在一题多解、一题多变中,积累解决几何问题的经验,提升解决问题的能力.二、教学重点及难点重点:了解并掌握三角形的外角的定义.难点:掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.三、教学用具多媒体课件,三角板、直尺。

四、相关资源《三角形外角》动画,《三角形其他外角》动画.五、教学过程【新知导入】△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.请试着画出△ABC的其他外角.设计意图:外角概念探究意义不大,所以直接明晰这一概念,通过在图中标注其他外角,深化学生对外角概念的理解,同时,在图中标注其他外角的过程也为发现有关外角的结论做了铺垫.【合作探究】图中,∠ACD与其他角有什么关系?请证明你的结论.通过学生讨论,发现:定理三角形的一个外角等于和它不相邻的两个内角的和.定理三角形的一个外角大于任何一个和它不相邻的内角.已知:△ABC.求证:∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.证明:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠A+∠B=180°-∠ACB(等式的性质),∵∠ACD+∠ACB=180°(平角的定义)∴∠ACD=180°-∠ACB(等式的性质)∴∠ACD=∠A+∠B(等量代换)∴∠ACD>∠A,∠ACD>∠B.在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.设计意图:希望发现有关外角的两个定理.可以对学生进行适当的引导,关系既可以是不等关系,也可以是等量关系.【典例精析】例1 已知,如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)设计意图:例题的图形较复杂,可以给出分析过程,鼓励学生先自行解决,同时对有困难的学生给予必要的指导.“想一想”关注解决问题方法的多样化,通过多种解法,开拓学生思维.例2 如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP,交AC于D,∵∠BPC是△PDC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠PDC是△ABD的外角(外角定义),∴∠PDC>∠A(三角形的一个外角大于任何一个和它不相邻的内角).∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.设计意图:让学生复习“三角形的一个外角大于任何一个和它不相邻的内角”,同时体会某些不等关系的递推和论证过程.鼓励学生寻求多种解法,如还可以连接AP,并延长AP交BC于点D ,这时∠BPC 和∠A分别被分成了两个小角,用“三角形的一个外角大于任何一个和它不相邻的内角”可以证明.【课堂练习】1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和. ()×(2)三角形的外角和等于它的内角和的2倍. ()√(3)三角形的一个外角等于两个内角的和. ()×(4)三角形的一个外角等于与它不相邻的两个内角的和.()√(5)三角形的一个外角大于任何一个内角. ()×(6)三角形的一个内角小于任何一个与它不相邻的外角.()√2.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )CA.直角三角形B.锐角三角形C.钝角三角形D.无法确定3.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )BA.120°B.115°C.110°D.105°4.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F等于()A.26°B.63°C.37°D.60°5.如图,如果∠1=100°,∠2=145°,那么∠3等于( )A.110°B.160°C.137°D.115°解析:方法总结:三角形的外角等于与它不相邻的两个内角的和,而不是等于任意两个内角的和.6.如图,求证:(1)∠BDC>∠A.(2)∠BDC=∠B+∠C+∠A.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC.(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)设计意图:巩固三角形外角定理.六、课堂小结今天这节课你学到了什么知识?1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过对三角形外角及性质的学习,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.七、板书设计7.5 三角形内角和定理(2)1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角。

沪教版 九年级数学 暑假同步讲义 第2讲 三角形边的平行线(一)(解析版)

沪教版 九年级数学 暑假同步讲义  第2讲 三角形边的平行线(一)(解析版)

三角形一边的平行线是九年级数学上学期第一章第二节的内容,本讲主要讲解三角形一边平行线性质定理及推论,重点是掌握该定理及其推论,分清该定理及其推论之间的区别和联系,难点是理解该定理和推论的推导过程中所蕴含的分类讨论思想和转化思想,并认识“A ”字型和“X ”字形这两个基本图形,为后面学习相似三角形奠定基础.1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 如图,已知ABC ∆,直线//l BC ,且与AB 、AC 所在直线交于点D 和点E ,那么AD AEDB EC=.三角形一边的平行线(一)内容分析知识结构模块一 三角形一边的平行线性质定理知识精讲- 2 -【例1】如图,在ABC ∆中,15AB =,10AC =,//DE BC ,6BD =,求CE . 【答案】4.【解析】BD CEAB AC =,代入可得:=4CE . 【总结】考查三角形一边平行线的性质定理.【例2】阳光通过窗口照在教室内,在地面上留下2.7米宽的亮区(如图).已知亮区一边到窗下的墙角距离8.7CE =米,窗口 1.8AB =米,求窗口底边离地面的高BC .【难度】★ 【答案】5.8m .【解析】射入的光线平行,则有AB DEAC CE=,代入可求得: 5.8AC m =,4BC AC AB m =-=. 【总结】考查三角形一边平行线性质定理的应用, 在路灯、太阳光线中经常用到.【例3】在ABC ∆中,点D 、E 分别在AB 、AC 的反向延长线上,//DE BC ,若:2:3AD AB =,12EC =厘米,则AC =.【答案】7.2cm .【解析】由//DE BC ,可得23AE AD AC AB ==,故53EC AC =,代入求得7.2AC cm =. 【总结】考查三角形一边平行线的性质定理和比例合比性的综合应用.例题解析【例4】如图在ABC ∆中,CD 平分ACB ∠,//DE BC ,5AC =厘米,3:5ADAB=,求DE 的长.【答案】2cm . 【解析】//DE BC ,35AE AD AC AB ∴==. 由5AC cm =,代入可求得:32AE cm CE cm ==,. 又//DE BC ,EDC DCB ∴∠=∠. 又CD 平分ACB ∠, ECD DCB ∴∠=∠. ECD EDC ∴∠=∠, 2DE CE cm ∴==.【总结】本题中涉及一个基本图形,平行线与角平分线一起会产生等腰三角形,同时应用三角形一边平行线的性质定理.【例5】如图,已知在ABC ∆中,//DE BC ,//EF AB ,2AE CE =,6AB =,9BC =,求四边形BDEF 的周长.【答案】16.【解析】2AE CE =,2133AE CE AC AC ∴==,. 又//DE BC ,//EF AB ,2133AD AE EF CE AB AC AB AC ∴====,, 四边形BDEF 为平行四边形. 代入可求得:62DE EF ==,, ()2=16BDEF C DE EF ∴=+四边形.【总结】考查三角形一边平行线性质定理的综合应用.- 4 -【例6】如图,在ABC ∆中,10AB =,8AC =,点D 在直线AB 上,过点D 作//DE BC 交直线AC 与点E .如果4BD =,求AE 的长.【答案】245或565.【解析】(1)D 在线段AB 上时,6AD AB BD =-=,由//DE BC ,可得:AD AE AB AC =,代入可得:245AE =; (2)D 在线段AB 延长线上时,14AD AB BD =+=, 由//DE BC ,可得:AD AE AB AC =,代入可得:565AE =; (3)D 在线段AB 反向延长线上的情况不存在.【总结】题目中的点是在直线或者射线上时,要注意仔细看题,考虑多解情况的出现.【例7】如图,在ABC ∆中,AB AC >,AD BC ⊥于点D ,点F 是BC 中点,过点F 作BC的垂线交AB 于点E ,:3:2BD DC =,则:BE EA =.【答案】5:1.【解析】由:3:2BD DC =,BF FC =,即得:32BF FD BF FD +=-,可得:51BF FD =. 又AD BC ⊥,EF BC ⊥, EF ∴//AD ,::5:1BE EA BF FD ∴==.【总结】考查三角形一边平行线性质定理的综合应用.【例8】如图,已知////AB CD EF ,14OA =,16AC =,8CE =,12BD =,求OB 、DF 的长.【答案】212OB =,6DF =.【解析】由////AB CD EF ,OA OBAC BD∴=. 代入可得:141221162OB ⨯==.同时根据比例的合比性,可得:OA AC OB BD AC BD ++=,即OC ODAC BD=, 又根据平行,可得:OC OD CE DF =, AC BDCE DF ∴=.代入求得:812616DF ⨯==. 【总结】考查三角形一边平行线定理的变形应用,实际上,任意两条直线被三条平行线所截得的线段对应成比例.【例9】如图,已知ABC ∆是边长为2的等边三角形,//DE BC ,:3:4ECD BCD S S ∆∆=,求EC 的长.【答案】12.【解析】∵ECD 和BCD 为等高三角形, 故34ECD BCDS DE BCS==, 由//DE BC ,2BC =,ABC ∆为等边三角形, 可知ADE 也为等边三角形,∴32DE =,∴31222EC AC AE =-=-=. 【总结】平行于等边三角形一边截得的三角形也是等边三角形.- 6 -【例10】如图,P 为ABCD 对角线BD 上任意一点.求证:PQ PI PR PS =.【答案】略.【解析】证明:四边形ABCD 为平行四边形, ////AB CD AD BC ∴,, ////RB DI SD BQ ∴,.根据三角形一边平行线的性质定理,则有PI PD PSPR PB PQ==, PQ PI PR PS ∴⋅=⋅.【总结】初步认识相似三角形中的“X 字型,一个图形中存在往往不只一个,可用来进行等比例转化.【例11】如图,在平行四边形ABCD 中,CD 的延长线上有一点E ,BE 交AC 于点F ,交 AD 于点G .求证:2BF FG EF =.【答案】略.【解析】证明:四边形ABCD 为平行四边形, ////AB CD AD BC ∴,, ////AB CE AG BC ∴,.根据三角形一边平行线的性质定理,则有:EF CF BFBF AF FG==, ∴2BF FG EF =.【总结】初步认识相似三角形中的“X 字型,一个图形中存在往往不只一个,可用来进行等比例转化.【例12】如图,点C 在线段AB 上,AMC ∆和CBN ∆都是等边三角形.求证:(1)MD AMDC CN=;(2)MD EB ME DC =.【答案】略.【解析】证明:(1)AMC ∆和CBN ∆是等边三角形,60ACM NCB AMC ∴∠=∠=∠=︒.∵点C 在线段AB 上,18060MCN ACM NCB AMC ∴∠=︒-∠-∠=︒=∠.//AM CN ∴,∴MD AMDC CN=. (2)同(1)易证得//CM BN ,则有ME MCEB NB =.AMC ∆和CBN ∆是等边三角形,MC AM NB CN ∴==,,MD MEDC EB∴=, ∴MD EB ME DC =. 【总结】初步认识相似三角形中的“X 字型,一个图形中存在往往不只一个,可用来进行等比例转化.1、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.如图,点D 、E 分别在ABC ∆的边AB 、AC 上,//DE BC ,那么DE AD AEBC AB AC==.2、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍.模块二:三角形一边的平行线性质定理推论知识精讲- 8 -【例15】如图,D 、E 分别是ABC ∆的边AB 、AC 上的点,且//DE BC . (1)如果2DE =,6BC =,3AD =,求AB 的长;(2)如果2DE =,6BC =,8BD =,求AD 、AB 的长;(3)如果35AD BD =,求DEBC的值. 【答案】(1)9;(2)412AD AB ==,;(3)38.【解析】(1)∵//DE BC ,13AD DE AB BC ==,9AB =; (2)∵//DE BC ,∴13AD DE AD BD BC ==+,∴4AD =,∴12AB AD BD =+=; (3)∵//DE BC ,∴33358DE AD BC AB ===+. 【总结】考查三角形一边平行线的性质定理.【例16】如图,BE 、CF 是ABC ∆的中线,交于点G .求证:12GE GF GB GC ==. 【答案】略.【解析】证明:过点F 作//FD BE 交AC 于点D . F 是AB 中点,D ∴是AE 中点,故12DF AD BE AE ==, 又E 是AC 中点,//FD EG ,12GF DE GC CE ∴==,23EG CE FD CD ==,即()2132EG EG BG =+,整理得:12GE GF GB GC ==. 【总结】考查三角形重心性质的证明,通过一个中点作对边的平行线即可.【例17】已知小智的身高是 1.6CD =米,他在路灯下的影长2DE =米,小智与路灯灯杆的底部B 的距离为3DB =米,则路灯灯泡A 距地面的高度AB =米.【答案】4.例题解析Da NbQx c P M x NaQc b P M c NxQa b PM c N bQa x PM 【解析】∵//AB CD ,∴22235CD DE AB BE ===+,∴4AB m =. 【总结】考查三角形一边平行线定理的实际应用.【例18】如图,一根直立于水平地面的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针 反向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影子为AC (假 定AC AB >),影子的最大值为m ,最小值为n ,有下列结论:① m AC >;②m=AC ;③n AB =;④影子的长度先增大后减小.其中正确的序号是.【答案】①③④. 【解析】木杆绕点A 逆时针旋转时,当AB 与BC 光线垂直 时,m 最大,则m AC >,①成立,②不成立;最小值为AB 与AC 重合,故③成立;由上可知,影子长度先 增大后减小,故④成立.【总结】找准临界值,注意进行思维分析.【例19】已知:MN // PQ ,a b ≠,c x ≠,则满足关系式bcx a=的图形是( )A .B .C .D .【答案】C【解析】交叉相乘,满足ax bc =的是C 选项. 【总结】考查三角形一边平行线性质的简单应用.【例20】如图,ABC ∆中,//DE BC ,3AE =,4DE =,2DF =,5CF =,求EC 的长.【答案】92EC =. 【解析】//DE BC ,25DE DF AE BC CF AC ∴===, 即3235EC =+,求得:92EC =. 【总结】相似三角形中“A 字型和“X 字型的综合应用,可得到相等比例关系式.- 10 -【例21】如图,在平行四边形ABCD 中,点E 在边DC 上,若:1:2DE EC =,则:BF BE =.【答案】3:5.【解析】:1:2DE EC =,可知23CE CE CD AB ==,由//CE AB ,可知32BF AB EF CE ==,故:3:5BF BE =.【总结】初步认识相似三角形中的“X 字型.【例22】如图,在ABC ∆中,6BC =,G 是ABC ∆的重心,过G 作边BC 的平行线交AC 于 点H ,求GH 的长. 【答案】2.【解析】连结AG 并延长交BC 于点D ,根据重心的定义, 可知D 为BC 中点,则132DC BC ==,根据重心的性质,又//GH DC ,可得:23GH AG DC AD ==,求得2GH =. 【总结】考查三角形重心的性质.【例23】如图,已知////AB CD EF .AB m =,CD n =,求EF 的长.(用m 、n 的代数式表示).【答案】mnm n+.【解析】由////AB CD EF ,则有EF CF EF BFAB BC CD BC==,, 即1EF EF m n +=,得mnEF m n =+.【总结】考查相似三角形中“X 字型的综合应用,得到比例关系.D【例24】如图,E 为平行四边形ABCD 的对角线AC 上一点,13AE EC =,BE 的延长线交CD的延长线于点G ,交AD 于点F ,求:BF FG 的值.【答案】1:2.【解析】由//AF BC ,可得13AF AE BC EC ==,即13AF AD =, 故12AF FD =,由//AB DG ,可得:::1:2BF FG AF FD ==.【总结】考查相似三角形中“X 字型的综合应用,得到比例关系.【例25】如图,12//l l ,:2:5AF FB =,:4:1BC CD =,求:AE EC 的值. 【答案】2:1.【解析】由12//l l ,得:25AG AF BD FB ==,又:4:1BC CD =, 可得21AG CD =,故::2:1AE EC AG CD ==. 【总结】考查相似三角形中“X 字型的综合应用,得到比例关系.【例26】如图,在梯形ABCD 中,//AD BC ,对角线AC 、BD 交于点O ,点E 在AB 上,且//EO BC ,已知3AD =,6BC =.求EO 的长.【答案】2.【解析】由//AD BC ,可得:3162AO AD CO BC ===, 故13AO AC =,由//EO BC ,13EO AO BC AC ==,求得2EO =.【总结】相似三角形中“A 字型和“X 字型的综合应用,可得到相等比例关系式.- 12 -MFEDCBA 【例27】如图,在梯形ABCD 中,//AD BC ,3AD =,5BC =,E 、F 是两腰上的点,且//EF AD ,:1:2AE EB =,求EF 的长.【答案】113.【解析】过点A 作//AH DC 交BC 于H ,交EF 于G ,则有32CH FG AD BH ====,,又//EG BH ,可得:13EG AE BH AB ==,解得:23EG =,故113EF EG GF =+=.【总结】两条直线被三条平行线所截得的线段长对应成比例.【例28】如图,在ABC ∆中,D 是BC 边上的一点,:3:1BD DC =,G 为AD 的中点,联结BG 并延长AC 交于E ,求:EG GB 的值.【答案】1:7.【解析】过点D 作//DF BE 交AC 于F .此时则有14DF CF DC BE CE BC ===,又G 为AD 中点, 根据平行可得:12GE DF =,故18GE BE =, 即18EG EG GB =+,可得:1:7EG GB =.【总结】构造平行线,构造比例线段是解决这类问题的根本.【例29】已知点D 是ABC ∆的BC 边上的一点,13CD BC =,E 是AD 的中点,BE 的延长 线交AC 于F ,求:AF AC 的值. 【答案】2:5.【解析】过点D 作//DM BF 交AC 于点M .∵13CD BC =,∴13CM CD CF BC ==, ∴12CM MF =.GHF又E 为AD 中点,//DM BF , ∴F 为AM 中点,即AF FM =,∴:2:5AF FC =.【总结】考查三角形一边平行线的性质定理,通过构造平行线等比例转化即可得出答案.【习题1】如图,在ABC ∆,//DE BC ,DE 与边AB 、AC 分别交于点D 、E . (1)已知6AD =,8BD =,4AE =,求CE 、AC 的长;(2)已知:2:5AE AC =,10AB =,求AD 的长.【难度】★【答案】(1)162833AE CE ==,;(2)4. 【解析】(1)∵//DE BC ,∴AE AD CE DB =,∴163CE =; (2)∵//DE BC ,:2:5AE AC =,∴25AD AE AB AC ==,∴4AD =. 【总结】考查三角形一边平行线的性质.随堂检测- 14 -【习题2】如图,//EF AB ,//DE BC ,下列各式正确的是()(A )AD BF BD CF = (B )AE CE ED BC =(C )AE BD EC AD = (D )AD AB ED BC =【难度】★ 【答案】A【解析】根据三角形边平行线的性质进行比例线段转化可 知A 选项正确;B 、C 、D 错误.【总结】考查三角形一边平行线的性质的应用.【习题3】如图,菱形ADEF 内接于ABC ∆,16AB =,14BC =,12AC =,求BE 的长. 【答案】8.【解析】根据三角形一边平行线的性质,DE BE EF CEAC BC AB BC==,, 即有1DE EF AC AB +=,可解得菱形边长487DE AD ==,故647BD AB AD =-=,BE BDBC BA=,∴8BE =.【总结】考查三角形一边平行线的性质的综合应用.【习题4】如图,P 是ABC ∆的中线AD 上一点,//PE AB ,//PF AC .求证:BE CF =.【答案】略.【解析】证明://PE AB ,//PF AC ,BE AP CF AP BD DA DC DA ∴==,, BE CF BD DC ∴=, 又BD CD =,BE CF ∴=.【总结】考查三角形一边平行线的性质的综合应用,用固定线段的比值作为中间量.【习题5】如图,在ABC ∆中,//DE BC ,且:2:3AD AB =,求:EO EB 的值.GMDCBA【答案】2:5.【解析】由//DE BC ,可得23DE AD BC AB ==,则23EO DE BO BC ==,根据比例的合比性,可得:2:5EO EB =.【总结】找准图形中的“A 字型和“X 字型进行比例线段的转化构造.【习题6】在ABC ∆中,AB AC =,如果中线BM 与高AD 相交于点G ,求AGAD .【答案】23.【解析】AB AC AD BC =⊥,,BD CD ∴=.即D 为BC 中点,M 为AC 中点,G ∴为ABC ∆重心,23AG AD ∴=. 【总结】考查重心的意义和性质,先证明再利用性质.【习题7】如图ABC ∆,点D 、E 分别在BC 、AC 上,BE 平分ABC ∠,//DE BA .如果24CE =, 26AE =,45AB =,求DE 和CD 的长.【答案】1085DE =,129665CD =. 【解析】根据三角形一边平行线的性质,可得DE CEAB AC=, ∴452410824265AB CE DE AC ⋅⨯===+.由BE 平分ABC ∠,则有ABE DBE ∠=∠,由//DE BA ,可得:DEB ABE ∠=∠,即DEB DBE ∠=∠,故1085BD DE ==,进而可得:CD CE BD AE =,∴129665BD CE CD AE ⋅==. 【总结】考查三角形一边平行线的性质定理的应用,同时考查平行线与角平分线一起出现会产生等腰三角形的基本图形.- 16 -【作业1】已知线段a 、m 、n ,且ax mn =,求作x ,作法正确的是()(A ) (B ) (C ) (D )【难度】★ 【答案】C【解析】考查三角形一边平行线的性质定理,变形即为a nm x=,可知C 选项满足题意. 【总结】考查三角形一边平行线的性质定理,进行简单的变形应用,可知线段错位相乘满足题意的即为所求选项.【作业2】如图,ABC ∆中,AB AC BE EC =,53AB AC =,//DE AC ,求:AB BD 的值. 【答案】8:5.【解析】由AB AC BE EC =,53AB AC =,可得53BE EC =,根据比 例的合比性质,可得58BE BC =,由//DE AC ,可得::8:5AB BD BC BE ==.【总结】考查三角形一边平行线性质的综合应用.【作业3】如图,////AB EF CD ,2AB =,8CD =,:1:5AE EC =,求EF 的长度.课后作业NEFMDCB A EGFMDA 【答案】3EF =.【解析】过点B 作//BN AC 交EF 于点M ,交CD 于点N . ∵////AB EF CD ,∴四边形AEMB 、ACNB 、ECNM 都为平行四边形,∴2CN EM AB ===,且有FM BMDN BN =.:1:5AE EC =,16BM AE BN AC ∴==. 16FM BM ND BN ∴==/ ∵6ND CD CN =-=, ∴1FM =,3EF EM FM ∴=+=.【总结】三条平行线被两条直线所截,将其中一条直线平移,放到同一个三角形中解答.【作业4】平行四边形ABCD ,E 是AB 的中点,在直线AD 上截取2AF FD =,EF 交AC- 18 -EG FMDCBA于G ,求AGGC 的值. 【答案】25或23.【解析】(1)当点F 在AD 上时,如图. 过点E 作//EM BC 交AC 于点M , 由E 为AB 中点,则M 为AC 中点, 四边形ABCD 为平行四边形,//AD BC AD BC ∴=,.又2AF FD =, 223AF AF AF AD BC EM ∴===. 由//AF EM , 43AG AF GM EM ∴==,42105AG AG GC GM AM ∴===+. (2)当点F 在AD 延长线上时,如图, 过点E 作//EM BC 交AC 于点M , 由E 为AB 中点,则M 为AC 中点, 四边形ABCD 为平行四边形,//AD BC AD BC ∴=,.又2AF FD =, 22AF AF AF AD BC EM ∴===. 由//AF EM , 4AG AF GM EM ∴==4263AG AG GC GM AM ∴===+. 【总结】注意题目中的关键词语,在直线上,由此要进行分类讨论,根据三角形一边平行线的性质构造“A 字型、“X 字型即可.【作业5】如图,////AB EF DC ,已知20AB =,80CD =,求EF 的长.【答案】16【解析】由////AB EF DC ,可得:BF EF BC CD =,CF EFBC AB=,则有1EF EF AB CD+=,代入计算得16EF =. 【总结】考查三角形一边平行线性质的综合应用,利用比例线段之间的关系构造等式求解.【作业6】如图,在ABC ∆中,D 是边BC 上一点,//DF AB ,//DE CA .(1)求证:AE CF EB FA =; (2)如果2CF =,5AC =,6AB =,求AE 、DE 的长.【答案】(1)略;(2)1235AE DE ==,.【解析】(1)证明://DE CA ,AE CD EB DB ∴=, 又//DF AB , CD CF DB FA ∴=,AE CF EB FA∴=. (2)解:由(1)可得AE CF EB FA=, 根据比例的合比性质,得:AE CFAB AC=, 代入可解得:621255AE ⨯==, 由//DE CA ,//DF AB , 可知四边形AEDF 为平行四边形,即得:3DE AF AC CF ==-=.【总结】考查三角形一边平行线性质的综合应用,进行比例线段转化.。

初中数学中考二轮复习重难突破专题07 平行线与三角形(含答案)

初中数学中考二轮复习重难突破专题07 平行线与三角形(含答案)

专题07 平行线与三角形重点分析在中考中,直线与线段主要以选择题和填空题形式考查;角及角平分线主要在选择题中考查;平行线常与角度结合考查,以选择题和填空题形式为主。

难点解读难点一:直线和线段难点二:角及角平分线1.角的度量及计算2.余角、补角、角平分线难点三:相交线1.三线八角性质:对顶角相等如图,∠1与∠3,∠与∠性质:邻补角之和等于如图,∠1与∠4,∠2.垂线难点4 平行线难点5命题真题演练1.如图,将直线向上平移到的位置,若,则的度数为( )A. 130°B. 50°C. 45°D. 35°【答案】B【解析】先求出的对顶角,在利用两直线平行同旁内角互补,即可求出的度数.【详解】如图:故选:B.【点拨】本题考查了对顶角的性质,平行线的性质,熟练掌握两直线平行,同位角相等,内错角相等,同旁内角互补是解题关键.2.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐,第二次拐的,第三次拐的,这时的道路恰好和第一次拐弯之前的道路平行,则是()A. B. C. D.【答案】D【解析】过点B作直线BD与第一次拐弯的道路平行,由题意可得,进而可得,然后问题可求解.【详解】解:过点B作直线BD与第一次拐弯的道路平行,如图所示:∵第三次拐的,这时的道路恰好和第一次拐弯之前的道路平行,∴直线BD与第三次拐弯的道路也平行,∵,∴,,∵,∴,∴;故选D.【点拨】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键.3.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有( )个.A. 1B. 2C. 3D. 4【答案】B【解析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.【点拨】:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A 为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.4.如图,下列条件不能判断的是()A. B. C. D.【答案】C【解析】根据平行线的判定进行判断求解.【详解】解:A. ,根据同旁内角互补,两直线平行,可判定,故此选项不符合题意;B. ,根据内错角相等,两直线平行可判定,故此选项不符合题意;C. ,根据内错角相等,两直线平行可判定,但不能判断,故此选项符合题意;D. ,根据同位角相等,两直线平行可判定,故此选项不符合题意;故选:C.【点拨】本题考查平行线的判定,掌握平行线的判定方法正确推理论证是解题关键.5.如图,是等边三角形,两个锐角都是的三角尺的一条直角边在上,则的度数为()A. B. C. D.【答案】D【解析】根据等边三角形的性质和三角形的内角和即可得到结论.【详解】∠1=∠3=180°-∠2-∠B=180°-45°-60°=75°,故选:D.【点拨】本题考查了等边三角形的性质,三角形的内角和,正确的识别图形是解题的关键.6.将三角板与直尺按如图所示的方式叠放在一起.在图中标记的角中,与∠1互余的角共有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】由平行线的性质可得∠4=∠5;再由对顶角相等可得∠5=∠6,∠1=∠2,又因∠2+∠5=90°,即可得∠1的余角有:∠6,∠5,∠4.【详解】∵直尺的两边平行,∴∠4=∠5;∵∠5=∠6,∠1=∠2,∠2+∠5=90°,∴∠1的余角有:∠6,∠5,∠4.故选C.【点拨】本题考查了平行线的性质、对顶角的性质及余角的性质,熟练运用相关性质是解决问题的关键.7.如图,是四边形的对角线.若,,则等于()A. B. C. D.【答案】C【解析】先根据内错角相等,两直线平行判定AB∥CD,再利用两直线平行,同旁内角互补计算即可.【详解】解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠ADC=100°,∴∠A=180°﹣100°=80°,故选:C.【点拨】本题考查了平行线的判定和性质,熟练掌握平行线的判定定理和性质是解题的关键.8.如图,直线a∥b,点B在a上,且AB⊥BC,若∠1=35°,那么∠2等于()A. 45°B. 50°C. 55°D. 60°【答案】C【解析】【分析】先根据直线平行的性质得到∠BAC=∠1=35°,再由三角形内角和定理求出,再根据对顶角的性质即可得到答案.【详解】解:∵直线a∥b,∴∠BAC=∠1=35°(两直线平行,内错角相等),又∵AB⊥BC,∴∠ABC=90°,∴(三角形内角和定理),∴(对顶角相等),故选:C.【点拨】本题主要考查了直线平行的性质、三角形内角和定理、对顶角的性质,掌握对顶角相等以及两直线平行内错角相等是解题的关键.9.如图,AB∥CD,CB平分∠ECD,若∠B=26°,则∠1的度数是 .【答案】52°.【分析】根据平行线的性质得出∠B=∠BCD=26°,根据角平分线定义求出∠ECD=2∠BCD=52°,再根据平行线的性质即可得解.【解答】解:∵AB∥CD,∠B=26°,∴∠BCD=∠B=26°,∵CB平分∠ECD,∴∠ECD=2∠BCD=52°,∵AB∥CD,∴∠1=∠ECD=52°,故答案为:52°.10.如图,直线m经过点B且平行于AC,点P为直线m上的一动点,连接PC,PA,随着点P在直线m上移动,则下列说法中一定正确的是()A. 与全等B. 与的周长相等C. 与的面积相等D. 四边形ACBP是平行四边形【答案】C【解析】由全等三角形和平行四边形的判定,以及同底等高三角形的面积相等,可以得出正确的选项.【详解】解:选项A,因为点A,B,C是定点,而点P是直线m上的动点,所以与不一定全等,故A错误;选项B,的周长是定值,而的周长随着点P位置的变化而变化,所以B错误;选项C,由于与都可以看作是以AC为底边的三角形,且直线m平行于AC,可由平行线间的距离处处相等知道与属于同底等高的三角形,故二者面积相等,所以选项C正确;选项D,由于P是动点,点A,B,C,是定点,所以BP不总是等于AC,而平行四边形的对边应该相等,所以选项D错误.故选:C.【点拨】本题是考查全等三角形和平行四边形的判定,以及同底等高三角形的面积相等的,属于中等难度的题目.。

八年级平行线、三角形内角和答案

八年级平行线、三角形内角和答案

B EAC F平行线、三角形内角和定理一、基本知识1.平行线性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

平行线判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

3.三角形内角和定理:三角形三个内角的和等于180°。

直角三角形两锐角互余;四边形的内角和等于360°。

三角形的一个外角等于和它不相邻的两个内角的和;三角形的外角大于和它不相邻的任何一个内角。

二、训练题1.下列说话正确的是( B )A 、互补的两个角一定是邻补角B 、同一平面内,b // a, c // a,则b//cC 、同一平面内,,,.a c b c a b ⊥⊥⊥则D 相等的角一定是对顶角。

2.如图1,∠1=∠2,则有( A )A 、 EB//CF,B 、 AB//CF,C 、 EB//CD,D 、 AB//CD,3.如图2,已知∠1=80°, m//n, 则∠4=( A ) A 、100°, B 、70° C 、80°, D 、60°,4.如图3,AB//EF,BC//DE, ∠B=40°,则∠E=( C )A 、90°,B 、120°C 、140°,D 、360°,5.如图4,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是( A ) A 、∠1=∠2, B 、∠3=∠4 C 、∠D=∠DCE D ∠D+∠ACD=180°6.如图5,AB//CD//EF, ∠ABE=38°,∠ECD=100°,则∠BEC=( A ) A 、42°, B 、32° C 、62°, D 、38°,7.如图6,AE//CD, DE 平分∠ADC ,∠EAD=50°则∠DEA= 65° 。

三角形一边的平行线(解析版)

三角形一边的平行线(解析版)

三角形一边的平行线【知识梳理】1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 如图,已知ABC ∆,直线//l BC ,且与AB 、AC 所在直线交于点D 和点E ,那么AD AEDB EC=.2、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例. 如图,点D 、E 分别在ABC ∆的边AB 、AC 上, //DE BC ,那么DE AD AE BC AB AC ==.3、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍. 4、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在ABC ∆中,直线l 与AB 、AC 所在直线交于点D 和点E ,如果AD AEDB EC=那么l //BC .6、平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例. 如图,直线1l //2l //3l ,直线m 与直线n 被直线1l 、2l 、3l 所截,那么DF EGFB GC=.7、平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上截得的线段也相等.【考点剖析】 一.三角形的重心(共13小题)1.(2023•青浦区一模)三角形的重心是( ) A .三角形三条角平分线的交点 B .三角形三条中线的交点C .三角形三条边的垂直平分线的交点D .三角形三条高的交点【分析】根据三角形的重心概念作出回答,结合选项得出结果. 【解答】解:三角形的重心是三角形三条中线的交点. 故选:B .【点评】考查了三角形的重心的概念.三角形的外心是三角形的三条垂直平分线的交点;三角形的内心是三角形的三条角平分线的交点.2.(2023•奉贤区一模)在△ABC 中,AD 是BC 边上的中线,G 是重心.如果AD =6,那么线段DG 的长是 .BCD E FG【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.【解答】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=AG=2.故答案为:2.【点评】本题考查的是三角形的重心,熟知心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.3.(2022秋•杨浦区期末)如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC 的长为.【分析】延长AG交BC于点D,根据重心的性质可知点D为BC的中点,且AG=2DG=4,则AD=6,再根据直角三角形斜边的中线等于斜边的一半即可求解.【解答】解:如图,延长AG交BC于点D.∵点G是△ABC的重心,AG=4,∴点D为BC的中点,且AG=4,∴DG=2,∴AD=AG+DG=6,∵△ABC中,∠BAC=90°,AD是斜边的中线,∴BC=2AD=12.故答案为12.【点评】本题考查了三角形重心的定义及性质,三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1.同时考查了直角三角形的性质.4.(2022秋•青浦区校级期末)如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=10,则线段GE的长为()A.B.C.D.【分析】因为点G是△ABC的重心,根据三角形的重心是三角形三条中线的交点以及重心的性质:重心到顶点的距离与重心到对边中点的距离之比是2:1,可知点D为BC的中点,,根据GE⊥AC,可得∠AEG=90°,进而证得△AEG∽△ACD,从而得到,代入数值即可求解.【解答】解:如图,连接AG并延长交BC于点D.∵点G是△ABC的重心,∴点D为BC的中点,,∵CB=10,∴,∵GE⊥AC,∴∠AEG=90°,∵∠C=90°,∴∠AEG=∠C=90°,∵∠EAG=∠CAD(公共角),∴△AEG∽△ACD,∴,∵,∴,∴,∴.故选:D.【点评】本题考查了相似三角形的判定和性质,三角形的重心的定义及其性质,熟练运用三角形重心的性质是解题的关键.5.(2021秋•松江区期末)如图,已知点G是△ABC的重心,那么S△BCG:S△ABC等于()A.1:2B.1:3C.2:3D.2:5【分析】连接AG延长交BC于点D,由G是重心可得D是BC的中点,所以S△ABD=S△ACD,S△BG=S△CDG,又由重心定理可AG=2GD,则2S△BGD=S△ABG,进而得到3S△BDG=S△ABC,即可求解.【解答】解:连接AG延长交BC于点D,∵G是△ABC的重心,∴D是BC的中点,∴S△ABD=S△ACD,S△BDG=S△CDG,∵AG=2GD,∴2S△BDG=S△ABG,∴3S△BGD=S△ABD,∴3S△BDG=S△ABC,∴S△BDG:S△ABC=1:3,故选:B.【点评】本题考查三角形的重心,熟练掌握三角形重心定理,利用等底、等高三角形面积的特点求解是解题的关键.6.(2022秋•杨浦区校级期末)如图,G是△ABC的重心,延长BG交AC于点D,延长CG交AB于点E,P、Q分别是△BCE和△BCD的重心,BC长为6,则PQ的长为.【分析】连接DE,由G是△ABC的重心,可证DE是△ABC的中位线,从而可求出DE的长.延长EP交BC 于F点,连接DF,利用三角形重心的定义和性质得到EP=2PF,DQ=2QF,再证明△FPQ∽△FED得到即可.【解答】解:连接DE,延长EP交BC于F点,连接DF,如图,∵G是△ABC的重心,∴D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴.∵P点是△BCE的重心,∴F点为BC的中点,EP=2PF,∵Q点是△BCD的重心,∴点Q在中线DF上,DQ=2QF,∵∠PFQ=∠EFD,,∴△FPQ∽△FED,∴,∴,故答案为:1.【点评】本题考查了三角形的重心,三角形的中位线,相似三角形的判定与性质.三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.7.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是.【分析】取AC中点O,连接OB、OD、BD、EF.根据含30度角的直角三角形的性质求出AC=2BC=2,利用勾股定理得出AB=,根据等边三角形的性质得出CD=AD=AC=2,∠CAD=60°,那么∠BAD=∠BAC+∠CAD=90°,利用勾股定理求出BD=.然后证明△EOF∽△BOD,得出EF=BD=.【解答】解:如图,取AC中点O,连接OB、OD、BD、EF.在Rt△ABC中,∠B=90°,∠30°,BC=1,∴AC=2BC=2,AB===,∵△ACD是等边三角形,∴CD=AD=AC=2,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=90°,∴BD===.∵点E、F分别是△ABC和△ACD的重心,∴==,又∠EOF=∠BOD,∴△EOF∽△BOD,∴===,∴EF=BD=.故答案为:.【点评】本题考查了相似三角形的判定与性质,含30度角的直角三角形的性质,等边三角形的性质,三角形重心的定义与性质,掌握重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.8.(2022秋•黄浦区月考)已知点G是△ABC的重心,那么S△ABG:S△ABC=.【分析】三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1,由此即可计算.【解答】解:延长AG交BC于D,∵点G是△ABC的重心,∴BD=CD,AG:DG=2:1,∴AG:AD=2:3,∴S△ABG:S△ABD=2:3,∵S△ABD:S△ABC=1:2,∴S△ABG:S△ABC=1:3.故答案为:1:3.【点评】本题考查三角形的重心,关键是掌握三角形重心的性质.9.(2023•金山区一模)如图,△ABC为等腰直角三角形,∠A=90°,AB=6,G1为△ABC的重心,E为线段AB上任意一动点,以CE为斜边作等腰Rt△CDE(点D在直线BC的上方),G2为Rt△CDE的重心,设G1、G2两点的距离为d,那么在点E运动过程中d的取值范围是.【分析】分别求出d的最小值和最大值,即可得到d的取值范围.【解答】解:当E与B重合时,G1与G2重合,此时d最小为0,当E与A重合时,G1G2最大,连接并延长AG1交BC于H,连接并延长DG2交AC于K,连接HK,过G2作G2T⊥AH于T,如图:∵G1为等腰直角三角形ABC的重心,∴H为BC中点,∴∠AHB=∠AHC=90°,∴△ABH和△ACH是等腰直角三角形,∴BH=CH=AH==3,∵AG1=2G1H,∴AG1=2,G1H=,∵G2是为等腰Rt△CDE的重心,∴K为AC中点,∴∠AKD=∠CKD=90°,∠AKH=∠CKH=90°,∴∠AKD+∠AKH=180°,∴D,K,H共线,∵AK=CK=DK=AC=AB=3=HK,∴G2K=DK=1,G2D=DK﹣G2K=2,∴G2H=G2K+HK=4,∵TG2∥ED,∴====,即==,∴TG2=2,TH=2,∴TG1=TH﹣G1H=,∴G1G2==,∴G1G2最大值为,∴G1G2的范围是0≤G1G2≤,故答案为:0≤d≤.【点评】本题考查三角形的重心,涉及等腰直角三角形的性质及应用,解题的关键是掌握三角形重心的性质.10.(2023•松江区一模)已知△ABC,P是边BC上一点,△P AB、△P AC的重心分别为G1、G2,那么的值为.【分析】由重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1,得到△AG1G2∽△ADE,推出△AG1G2的面积:△ADE的面积=4:9,而△ADE的面积=×△ABC的面积,即可解决问题.【解答】解:延长AG1交PB于D,延长AG2交PC于E,∵△PAB、△PAC的重心分别为G1、G2,∴AG1:AD=AG2:AE=2:3,D是PB中点,E是PC中点,∵∠G1AG2=∠DAE,∴△AG1G2∽△ADE,∴△AG1G2的面积:△ADE的面积=4:9,∵D是PB中点,E是PC中点,∴△ADE的面积=×△ABC的面积,∴的值为.故答案为:.【点评】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质,关键是掌握三角形重心的性质.11.(2022秋•徐汇区期中)已知点G是等腰直角三角形ABC的重心,AC=BC=6,那么AG的长为.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=6,∴CD=BC=3,由勾股定理得:AD==3,∴AG=×=2,故答案为:2.【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.12.(2018•宝山区校级自主招生)G为重心,DE过重心,S△ABC=1,求S△ADE的最值,并证明结论.【分析】设AD=mAB,AE=nAC,由G为△ABC重心得=3,再由当==时,有最大值,则mn有最小值,而无论D、E任何移动,mn,即可求出S△ADE的最值.【解答】解:S△ADE的最大值为,最小值为.证明:假设△ABC面积为S1,△ADE面积为S2,设AD=mAB,AE=nAC,∵G为△ABC重心,∴=3,∴S2=AD•AE•sinA=mAB•nAC•sinA=mnS1,当==时,有最大值,则mn有最小值,而无论D、E任何移动,mn,∴S1≤S2≤S1,∴S△ADE的最大值为,最小值为.【点评】本题主要考查了三角形重心的性质,解决此题的关键是根据G为△ABC重心得到=3.13.(2019秋•嘉定区校级月考)如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,且EF+BC=7.2cm,求BC的长.【分析】如果连接AG并延长,交BC于点P,由三角形的重心的性质可知AG=2GP,则AG:AP=2:3.又EF∥BC,根据相似三角形的判定可知△AGF∽△APC,得出AF:AC=2:3,最后由EF∥BC,得出△AEF∽△ABC,从而求出EF:BC=AF:AC=2:3,结合EF+BC=7.2cm来求BC的长度.【解答】解:如图,连接AG并延长,交BC于点P.∵G为△ABC的重心,∴AG=2GP,∴AG:AP=2:3,∵EF过点G且EF∥BC,∴△AGF∽△APC,∴AF:AC=AG:AP=2:3.又∵EF∥BC,∴△AEF∽△ABC,∴==.又EF+BC=7.2cm,∴BC=4.32cm.【点评】本题主要考查了三角形的重心的性质,相似三角形的判定及性质.三角形三边的中线相交于一点,这点叫做三角形的重心.重心到顶点的距离等于它到对边中点距离的两倍.平行于三角形一边的直线截其它两边,所得三角形与原三角形相似.相似三角形的三边对应成比例.二.平行线分线段成比例(共1914.(2022秋•徐汇区期末)在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=3,BC=10,要使DE∥AC,那么BE必须等于.【分析】此题主要考查了平行线分线段成比例定理的逆定理,根据题意得出要使DE∥AC,必须即可得出BE的长.【解答】解:∵在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=3,BC=10,∴要使DE∥AC,∴,∴,解得:BE=6.故答案为:6.【点评】此题主要考查了平行线分线段成比例定理的逆定理,根据题意得出要使DE∥AC,必须是解决问题的关键.15.(2022秋•闵行区期末)如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:1,BF=10,那么DF等于()A.B.C.D.【分析】由AB∥CD∥EF,可得出=,代入AC=3CE,BF=10,即可求出DF的长.【解答】解:∵AB∥CD∥EF,∴=,即=,∴DF=.故选:C.【点评】本题考查了平行线分线段成比例,牢记“三条平行线截两条直线,所得的对应线段成比例”是解题的关键.16.(2023•宝山区一模)在△ABC中,点D、E分别在边AB、AC上,如果AD:BD=1:3,那么下列条件中能判断DE∥BC的是()A.=B.=C.=D.【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,进而可得出结论.【解答】解:∵AD:BD=1:3,∴,∴当时,,∴DE∥BC,故A选项能够判断DE∥BC;而C,B,D选项不能判断DE∥BC.故选:A.【点评】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.17.(2022秋•嘉定区校级期末)如果点H、G分别在△DEF中的边DE和DF上,那么不能判定HG∥EF 的比例式是()A.DH:EH=DG:GF B.HG:EF=DH:DEC.EH:DE=GF:DF D.DE:DF=DH:DG【分析】根据平行线分线段成比例定理判断即可.【解答】解:A、当DH:EH=DG:GF,即=时,HG∥EF,本选项不符合题意;B、当HG:EF=DH:DE∥EF,本选项符合题意;C、当EH:DE=GF:DF,即=时,HG∥EF,本选项不符合题意;D、当DE:DF=DH:DG,即=时,HG∥EF,本选项不符合题意;故选:B.【点评】本题考查的是平行线分线段成比例定理成比例定理,灵活运用定理、找准对应关系是解题的关键.18.(2023•徐汇区一模)如图,a∥b∥c,若,则下面结论错误的是()A.B.C.D.【分析】已知a∥b∥c,根据平行线分线段成比例定理,对各项进行分析即可.【解答】解:由,得==,故A不符合题意;∵a∥b∥c,∴==,故B不符合题意;根据已知条件得不出=,故C符合题意;由=,得==,故D不符合题意;故选:C.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.19.(2021秋•嘉定区期末)如图,已知AB∥CD∥EF,AC:AE=3:5,那么下列结论正确的是()A.BD:DF=2:3B.AB:CD=2:3C.CD:EF=3:5D.DF:BF=2:5【分析】根据平行线分线段成比例定理判断即可.【解答】解:∵AB∥CD∥EF,∴BD:DF=AC:CE=3:2,A选项错误,不符合题意;AB:CD的值无法确定,B选项错误,不符合题意;CD:EF的值无法确定,C选项错误,不符合题意;DF:BF=CE:AE=2:5,D选项正确,符合题意;故选:D.【点评】本题考查的是平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例,灵活运用定理、找准对应关系是解题的关键.20.(2023•长宁区一模)如图,AD∥BE∥CF,已知AB=5,DE=6,AC=15,那么EF的长等于.【分析】由AD∥BE∥CF,可得=,即=,可解得DF=18,从而EF=DF﹣DE=12.【解答】解:如图:∵AD∥BE∥CF,∴=,∵AB=5,DE=6,AC=15,∴=,解得DF=18,∴EF=DF﹣DE=18﹣6=12,故答案为:12.【点评】本题考查平行线分线段成比例,解题的关键是掌握平行线分线段成比例定理,列出比列式.21.(2023•松江区一模)如图,已知直线AD∥BE∥CF,如果=,DE=3,那么线段EF的长是.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AD∥BE∥CF,∴=,∵DE=3,∴=,∴EF=,故答案为:.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.22.(2022秋•松江区月考)如图,在△ABC中,点D在AB上,点E在AC上,且DE∥BC,AD=3,AB =4,AC=6,求EC.【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【解答】解:∵DE∥BC,∴=,即=,解得:AE=,∴EC=AC﹣AE=6﹣=.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.(2022秋•松江区月考)如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.【分析】(1)由平行可得=,可求得AC,且EC=AC﹣AE,可求得EC;(2)由平行可知==,可得出结论.【解答】(1)解:∵DE∥BC,∴=,又=,AE=3,∴=,解得AC=9,∴EC=AC﹣AE=9﹣3=6;(2)证明:∵DE∥BC,EF∥CG,∴==,∴AD•AG=AF•AB.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段所得线段对应成比例是解题的关键.24.(2023•崇明区一模)四边形ABCD中,点F在边AD上,BF的延长线交CD的延长线于E点,下列式子中能判断AD∥BC的式子是()A.=B.=C.=D.=【分析】根据各个选项中的条件和图形,利用相似三角形的判定和性质、平行线的判定,可以判断哪个选项符合题意.【解答】解:当时,无法判断AD∥BC,故选项A不符合题意;当=时,∠AFB=∠DFE,则△AFB∽△DFE,故∠ABF=∠DEF,AB∥CD,但无法判断AD∥BC,故选项B不符合题意;当时,无法判断AD∥BC,故选项C不符合题意;当时,∠FED=∠BEC,则△FED∽△BEC,故∠EFD=∠EBC,可以判断判断AD∥BC,故选项D符合题意;故选:D.【点评】本题考查平行线分线段成比例、平行线的判定、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.(2022秋•杨浦区校级期末)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=24,那么BC的长等于()A.4B.C.D.8【分析】根据平行线分线段成比例得到,即可求出BC.【解答】解:∵AB∥CD∥EF,∴,∵BE=24,∴,解得:.故选:C.【点评】本题考查了平行线分线段成比例;熟练掌握三条平行线截两条直线,所得的对应线段成比例是本题的关键.26.(2022秋•浦东新区期末)如图,DF∥AC,DE∥BC,下列各式中正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理逐个判定即可.【解答】解:A.∵DE∥BC,∴=,∴=,故本选项符合题意;B.∵DF∥AC,∴=,故本选项不符合题意;C.∵DE∥BC,∴=,∴=,即=,故本选项不符合题意;D.∵DE∥BC,DF∥AC,∴,,∴=,故本选项不符合题意;故选:A.【点评】本题考查了平行线分线段成比例定理和比例的性质,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.27.(2022秋•青浦区校级期末)如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,AB=6,BC=3,DF=12,则DE=.【分析】根据平行线分线段成比例,即可进行解答.【解答】解:∵l1∥l2∥l3,∴,即,∵DF=12,∴DE+DE=12,解得:DE=8.故答案为:8.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.掌握平行线分线段成比例是解题关键.28.(2022•宝山区二模)已知:如图,点D、E、F分别在△ABC的边AB、AC、BC上,DF∥AC,BD=2AD,AE=2EC.(1)如果AB=2AC,求证:四边形ADFE是菱形;(2)如果AB=AC,且BC=1,联结DE,求DE的长.【分析】(1)根据菱形的判定方法解答即可;(2)根据相似三角形的判定和性质解答即可.【解答】(1)证明:∵BD=2AD,AE=2EC,∴=,∵DF∥AC,∴=,∴=,∴EF∥AB,又∵DF∥AC,∴四边形ADFE是平行四边形,∵AB=2AC,AE=AC,∴AE=AB,∴AD=AE,∵四边形ADFE是平行四边形,∴四边形ADFE是菱形;(2)如图,在△ADE和△ACB中,∠A是公共角,===,===,∴△ADE∽△ACB,∵BC=1,∴DE=.【点评】本题主要考查了菱形的判定和相似三角形的判定和性质,熟练掌握这些判定定理和性质定理是解答本题的关键.29.(2021秋•杨浦区校级月考)如图,点D为△ABC中内部一点,点E、F、G分别为线段AB、AC、AD 上一点,且EG∥BD,GF∥DC.(1)求证:EF∥BC;(2)当,求的值.【分析】(1)先根据相似比的性质得出=,=,故可得出=,由此即可得出结论;(2)先根据EF∥BC得出∠AEF=∠ABC,再由DG∥BD得出∠AEG=∠ABD,故可得出∠GEF=∠DBC,同理可得,∠GEF=∠DBC,故可得出△EGF∽△BDC根据相似三角形面积的比等于相似比的平方即可得出结论.【解答】(1)证明:∵EG∥BD,∴=,∵GF∥DC,∴=,∴=,∴EF∥BC;(2)解:∵EF∥BC,∴∠AEF=∠ABC,∵EG∥BD,∴∠AEG=∠ABD,∴∠AEF﹣∠AEG=∠ABC﹣∠AED,即∠GEF=∠DBC,同理可得,∠GEF=∠DBC,∴△EGF∽△BDC,∵,∴==,∴=()2=.【点评】熟知相似三角形对应边的比等于相似比,面积的比等于相似比的平方是解答此题的关键.30.(2021秋•宝山区校级月考)如图,已知直线l1、l2、l3分别截直线l4于点A、B、C,截直线l5于点D、E、F,且l1∥l2∥l3.(1)如果AB=4,BC=8,EF=12,求DE的长.(2)如果DE:EF=2:3,AB=6,求AC的长.【分析】(1)由平行线分线段成比例定理得出比例式,即可得出DE的长;(2)由平行线分线段成比例定理得出比例式,求出BC的长,即可得出AC的长.【解答】解:(1)∵l1∥l2∥l3.∴==,∴DE=EF=6;(2)∵l1∥l2∥l3.∴=,∴BC=AB=×6=9,∴AC=AB+BC=6+9=15.【点评】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,并能进行推理计算是解决问题的关键.31.(2022秋•奉贤区期中)如图,已知直线l1∥l2∥l3,直线AC和DF被l1、l2、l3所截.若AB=3cm,BC =5cm,EF=4cm.(1)求DE、DF的长;(2)如果AD=40cm,CF=80cm,求BE的长.【分析】(1)利用平行线分线段成比例定理求解;(2)过点A作AK∥DF交BE于点J,交CF于点K,则AD=JE=FK=40cm.求出BJ,可得结论.【解答】解:(1)∵l1∥l2∥l3,∴=,∴=,∴DE=(cm),∴DF=DE+EF=4+=(cm).(2)如图,过点A作AK∥DF交BE于点J,交CF于点K,则AD=JE=FK=40cm.∴CK=CF﹣FK=40cm,∵BJ∥CK,∴=,∴=,∴BJ=15cm,∴BE=BJ+JE=15+40=55cm.【点评】本题考查平行线分线段成比例定理,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.32.(2022秋•浦东新区校级月考)如图,已知点A、C、E和点B、F、D分别是∠O两边上的点,且AB∥ED,BC∥EF,AF、BC交于点M,CD、EF交于点N.(1)求证:AF∥CD;(2)若OA:AC:CE=3:2AM=1,求线段DN的长.【分析】(1)根据平行线分线段成比例定理,由AB∥DE得到OA•OD=OE•OB,由BC∥EF得到OC•OF=OE •OB,所以OA•OD=OC•OF,即=,于是可判断AF∥CD;(2)先利用BC∥EF得到==,则可设OB=5x,BF=4x,再由AF∥CD得到==,==,所以FD=6x,接着由FN∥BC得到==,于是可设DN=3a,则CN=2a,然后证明四边形MFNC为平行四边形得到MF=CN=2a,最后利用=得到=,求出a从而得到DN的长.【解答】(1)证明:∵AB∥DE,∴=,即OA•OD=OE•OB,∵BC∥EF,∴=,即OC•OF=OE•OB,∴OA•OD=OC•OF,即=,∴AF∥CD;(2)解:∵OA:AC:CE=3:2:4,∴OC:CE=5:4,∵BC∥EF,∴==,设OB=5x,则BF=4x,∵AF∥CD,∴==,==∴FD=OF=×9x=6x,∵FN∥BC,∴===,设DN=3a,则CN=2a,∵FN∥CM,MF∥CN,∴四边形MFNC为平行四边形,∴MF=CN=2a,∵=,即=,解得a=1,∴DN=3a=3.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.【过关检测】一、单选题A.4【答案】C【分析】根据平行线分线段成比例得到35BC ADBE AF==,即可求出BC.【详解】解:∵AB CD EF∥∥,∴35 BC ADBE AF==,∵24 BE=,∴3 245 BC=,解得:725 BC=.故选:C【点睛】本题考查了平行线分线段成比例;熟练掌握三条平行线截两条直线,所得的对应线段成比例是本题的关键.九年级校考期中)在ABC中,分别在ABC的边【答案】A【分析】根据平行线分线段成比例定理对各个选项进行判断即可.【详解】解:A、AD DEAB BC=,不能判定DE BC∥,故A符合题意;B、∵AD AE AB AC=,∴DE BC∥,故B不符合题意;C、∵AED C∠=∠,∴DE BC∥,故C不符合题意;D、∵AD AE BD EC=,∴DE BC∥,故D不符合题意.故选:A.【点睛】本题主要考查了平行线分线段成比例定理,平行线的判定,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.九年级单元测试)在ABC中,点【答案】B【分析】根据题目的已知条件画出图形,然后利用平行线分线段成比例解答即可.【详解】如图:∵DE∥AC,AE:EB=3:2,∴32 AE CDEB BD==∴23BD CD =∵DF AB ∥, ∴23AF BD FC CD == 故选:B【点睛】本题考查了平行线分线段成比例,熟练掌握平行线分线段成比例这个基本事实是解题的关键. 在ABC 的边 【答案】A【分析】根据平行线分线段成比例可得47AE AD AC AB ==,则可以推出当47AF AE AD AC ==,即37DF AD =时,EF CD ∥.【详解】解:DE BC ∥,43AD DB =,∴44437AE AD AD AC AB AD DB ====++,∴当47AF AE AD AC ==时,EF CD ∥,此时74377DF AD AF AD AD −−===,故A 选项符合题意; B ,C ,D 选项均不能得出EF CD ∥.故选A .【点睛】本题考查平行线分线段成比例,解题的关键是掌握“如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边”.5.(2023·上海浦东新·校考一模)如图,点D 、E 分别在AB 、AC 上,以下能推得DE BC ∥的条件是( )A .::AD AB DE BC =B .::AD DB DE BC = C .::AD DB AE EC =D .::AE AC AD DB =【答案】C 【分析】平行于三角形一边的直线截其他两边或延长线,所得的对应线段成比例.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.【详解】解:设DE BC ∥,那么AD AB AE AC AD DB AE EC DB AB EC AC ===::,::,::,选项A 、B 、D 、不符合平行线分段成比例定理.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.∵AD DB AE EC =::,∴DE BC ∥.故选:C .【点睛】此题主要考查平行线分线段成比例,解答此题的关键的是明确哪些对应线段成比例.学生初学,容易出错.九年级校考期中)在ABC 中,点【答案】B【分析】利用如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边可对各选项进行判断即可.【详解】当AD AE DB EC =或AD AE AB AC =时, DE BC ∥, 当AD AE DB EC =时,可得23AE EC =,当AD AE AB AC =时,可得25AE AC =, 即23AE EC =或25AE AC =.所以B 选项是正确的,故选:B .【点睛】本题考查了平行线分线段成比例定理,熟练掌握和灵活运用相关知识是解题的关键.二、填空题 7.(2022秋·上海嘉定·九年级校考期中)在ABC 中,点D 、E 分别在线段AB 、AC 的延长线上,DE 平行于BC ,1AB =,3BD =,2AC =,那么AE =___________.【答案】8【分析】根据平行线分线段陈比例定理求解即可.【详解】∵DE AB ∥ ∴AB AC AD AE = ∵1AB =,3BD =,2AC =,∴124AE =∴8AE =故答案为:8.【点睛】此题考查了平行线分线段陈比例定理,解题的关键是掌握平行线分线段陈比例定理.8.(2022春·上海普陀·九年级校考期中)如图,ABCD Y 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么:AFE FEDC S S 四边形的值为____.【答案】15/0.2【分析】证明12AF EF AE CF BF BC ===,推出24BCF ABF AEF S S S ==,设AEF S m =,则2ABF S m =,4CBF S m =,求出四边形FEDC 的面积,可得结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,∴AF EF AE CF BF BC ==, ∵ E 是边AD 的中点,∴1122AE DE AD BC ===,∴12AF EF AE CF BF BC ===, ∴24BCF ABF AEF S S S ==,设AEF S m =,则2ABF S m =,4S m , ∴6ACB ADC S S m ==, ∴65FECD S m m m =−=四边形, 1::55AFE FECD S S m m ==四边形; 故答案为:15.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是掌握平行线分线段成比例定理,属于中考常考题型.9.(2022秋·上海黄浦·九年级统考期中)如图,AD 、BC 相交于点O ,点E 、F 分别在BC 、AD 上,AB CD EF ∥∥,如果6CE =,4EO =,5BO =,6AF =,那么AD = ___________.【答案】10【分析】利用平行线分线段成比例定理得到EO FO BO AO =,EO FO CE DF =,求得4893FO AF ==,4DF =即可解决问题.【详解】解:∵AB CD EF ∥∥,EO FO BO AO =,EO FO CE DF =,∵4EO =,5BO =,∴45FO AO =, ∵6AF =,∴4893FO AF ==,∵6CE =,∴8436DF =,∴4DF =,∴6410AD AF DF =+=+=.故答案为:10.【点睛】本题考查平行线分线段成比例定理,解题的关键是灵活运用所学知识解决问题.10.(2022秋·上海奉贤·九年级校联考期中)如图,四边形ABCD 中,AD BC EF ∥∥,如果3810AE AB CD ===,,,则CF 的长是________.【答案】254【分析】根据平行线分线段成比例得出AE DF AB CD =,求出154DF =,即可得出答案. 【详解】∵AD BC EF ∥∥, ∴AE DF AB CD =, ∵3810AE AB CD ===,,, ∴3810DF =, 解得:154DF =, ∴15251044CF CD DF =−=−=, 故答案为:254.【点睛】本题考查平行线分线段成比例,正确得出比例线段是解题的关键. 11.(2022秋·上海宝山·九年级统考期中)在ABC 中,点D 、E 分别在直线AB 、AC 上,如果DE BC ∥,1AB =,2AC =,3AD =,那么CE =________.【答案】4【分析】根据平行线分线段陈比例定理求解即可.【详解】解:作如下图:∵DE BC ∥,∴AB AC AD AE =, ∵1AB =,2AC =,3AD =,∴123AE =,∴6AE =,∴624CE AE AC =−=−=,故答案为:4.【点睛】此题考查了平行线分线段陈比例定理,解题的关键是掌握平行线分线段陈比例定理.。

平行线等分线段定理三角形梯形的中位线(含答案)

平行线等分线段定理三角形梯形的中位线(含答案)

平行线等分线段定理,三角形、梯形的中位线重点与难点:三角形、梯形中位线的综合运用 一、知识点(1)平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截取的线段也相等。

推论1:经过梯形一腰与底平行的直线,必平分另一腰。

推论2:经过三角形一边的中点与另一边平行的直线平分第三边。

(2)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

(3)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。

二、例题:例1、下列图形是不是中心对称图形?若是,请指出对称中心。

(1)线段;(2)直线;(3)平行四边形;(4)圆解: (1)线段是中心对称图形,对称中心是线段的中点;(2)直线是中心对称图形,对称中心是直线上的任意一点;(3)平行四边形(当然也就包括了矩形、菱形、正方形)是中心对称图形,对称中心是两条对角线的交点;(4)圆是中心对称图形,对称中心是圆心。

例2、判断下列说法是否正确:(1)矩形的对边关于对角线交点对称。

( ) (2)圆上任意两点关于圆心对称。

( )(3)两个全等三角形必关于某一点中心对称。

( ) (4)成中心对称的两个图形中,对应线段平行且相等。

( ) 解:(1)(4)正确(2)(3)错误例3、在下列图形中既是轴对称图菜,又是中心对称图形的是( )①任意平行四边形;②矩形;③菱形;④正方形;⑤正三角形;⑥等腰直角三角形 解:①②③例4、下列图形是中心对称图形而不是轴对称图形的是( ) ①平行四边形;②一条线段;③一个角;④圆 解:①*例5、在△ABC 中,∠A≠90°,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、F 分别在AB 、BC 、CA 上,这样的四边形可以作( )个D C FEBDCF B A3DCEB A21DCF B A解:如图:因为四边形ADEF 是中心对称图形, 所以它一定是平行四边形; 因为四边形ADEF 是轴对称图形, 所以它的对角线互相垂直。

初中六年级数学教案平行线与三角形

初中六年级数学教案平行线与三角形

初中六年级数学教案平行线与三角形教案:平行线与三角形【教学目标】1. 理解平行线的概念,认识平行线的性质。

2. 掌握平行线与三角形的相关性质。

3. 运用所学知识解决与平行线与三角形相关的问题。

【教学准备】教师准备:教学课件、黑板、彩色粉笔等。

学生准备:数学课本、练习册。

【教学过程】一、导入(5分钟)教师利用实物或图片引导学生回顾平行线的概念,并带入今天的课题。

二、讲解平行线的性质(15分钟)1. 定义教师通过示意图和语言解释平行线的定义,并引导学生回答平行线的特点:在同一个平面内,不相交且共面的两条直线叫做平行线。

2. 平行线的判定定理教师针对平行线之间的判定条件进行讲解,包括同位角相等定理、内错角相等定理等,并通过具体例子演示。

3. 平行线的性质定理教师介绍平行线的性质,如平行线的平行线仍然平行、平行线截割同位角相等等,并结合图示进行解释。

三、讲解平行线与三角形的性质(20分钟)1. 两条平行线与横截线教师引导学生观察平行线与横截线之间的关系,并引入同位角、内错角的概念。

通过实例讲解平行线与横截线的相关性质:同位角相等、内错角相等。

2. 平行线与三角形的性质教师介绍平行线与三角形的性质,包括平行线切割三角形、平行线平分三角形等,结合图示进行解释和演练。

四、练习与讨论(15分钟)教师发布一些练习题供学生独立完成,并组织学生互相讨论解题思路和方法。

教师可以选取一些学生的解题过程进行讲解,引导学生思考和发现问题。

五、拓展应用(15分钟)教师出示一些生活中与平行线与三角形相关的问题,并引导学生应用所学知识,结合实际进行解答和讨论。

教师可以引导学生自己设计一道与平行线与三角形相关的问题并上台展示,并与全班进行互动。

六、总结归纳(5分钟)教师带领学生一起回顾今天的学习内容,总结平行线与三角形的相关性质和应用。

【课堂作业】完成课后练习册的相关练习题,巩固所学知识。

【板书设计】主题:平行线与三角形内容:- 平行线的定义- 平行线的判定定理- 平行线的性质定理- 平行线与三角形性质:1. 平行线切割三角形2. 平行线平分三角形【教学反思】通过本节课的教学,学生能够理解平行线的概念和基本性质,并能运用所学知识解决与平行线与三角形相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线与三角形(含答案)直线与三角形一、相关知识点复习:(一)平行线1.定义:在同一平面内,不相交的两条直线叫做平行线。

2.判定:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角相等,两直线平行。

(4)垂直于同一直线的两直线平行。

3.性质:(1)经过直线外一点,有且只有一条直线与这条直线平行。

(2)如果两条直线都与第三条直线平行,那么这两条直线平行。

(3)两直线平行,同位角相等。

(4)两直线平行,内错角相等。

(5)两直线平行,同旁内角互补。

(二)三角形4.一般三角形的性质(1)角与角的关系:三个内角的和等于180°;一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角。

(2)边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。

(3)边与角的大小对应关系:在一个三角形中,等边对等角;等角对等边。

(4)三角形的主要线段的性质(见下表):5.几种特殊三角形的特殊性质(1)等腰三角形的特殊性质:①等腰三角形的两个底角相等;②等腰三角形顶角的平分线、底边上的中线和底边上的高是同一条线段,这条线段所在的直线是等腰三角形的对称轴。

(2)等边三角形的特殊性质:①等边三角形每个内角都等于60°;②等边三角形外心、内心合一。

(3)直角三角形的特殊性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③勾股定理:直角三角形斜边的平方等于两直角边的平方和仅供学习与交流,如有侵权请联系网站删除谢谢2(其逆命题也成立);④直角三角形中,30°的角所对的直角边等于斜边的一半;⑤直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

6.三角形的面积(1)一般三角形:S△ =21a h(h是a边上的高)(2)直角三角形:S△ =21a b =21c h(a、b是直角边,c是斜边,h是斜边上的高)(3)等边三角形: S△ =43a2(a是边长)(4)等底等高的三角形面积相等;等底的三角形面积的比等于它们的相应的高的比;等高的三角形的面积的比等于它们的相应的底的比。

7.相似三角形(1)相似三角形的判别方法:①如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;②如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似;③如果一个三角形的三边和另一个三角形的三边对应成比例,那么这两个三角形相似。

(2)相似三角形的性质:①相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比;②相似三角形的周长比等于相似比;③相似三角形的面积比等于相似比的平方。

8.全等三角形两个能够完全重合的三角形叫全等三角形,全等三角形的对应角相等,对应边相等,其他的对应线段也相等。

判定两个三角形全等的公理或定理:①一般三角形有SAS、ASA、AAS、SSS;②直角三角形还有HL二、巩固练习:一、选择题:1.如图,若AB∥CD,∠C= 60º,则∠A+∠E=()A.20º B.30º C.40º D.60º2.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠43.如图,AD⊥BC,DE∥AB,则∠B和∠1的关系是()A. 相等B. 互补C. 互余D. 不能确定4.如图,下列判断正确的是()A.∠1和∠5是同位角; B.∠2和∠6是同位角;C.∠3和∠5是内错角; D.∠3和∠6是内错角.5.下列命题正确的是()A.两直线与第三条直线相交,同位角相等;B.两直线与第三条直线相交,内错角相等;C.两直线平行,内错角相等; D.两直线平行,同旁内角相等。

6.如图,若AB∥CD,则()A.∠1 = ∠4 B.∠3 = ∠5C.∠4 = ∠5 D.∠3 = ∠47.如图,l1∥l2,则α= ()A.50° B.80°第6题第7题仅供学习与交流,如有侵权请联系网站删除谢谢3仅供学习与交流,如有侵权请联系网站删除 谢谢 4DAB CEC .85°D .95°8.下列长度的三条线段能组成三角形的是( ) A.3cm ,4cm ,8cm B.5cm ,6cm ,11cm C.5cm ,6cm ,10cm D.3cm ,8cm ,12cm9.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A.150° B.80° C.50°或80° D.70°10.如图,点D 、E 、F 是线段BC 的四等分点,点A 在BC 外,连接AB 、AD 、AE 、 AF 、AC ,若AB = AC ,则图中的全等三角形共有( )对。

A. 2 B. 3 C. 4 D. 511.三角形的三边分别为 a 、b 、c ,下列哪个三角形是直角三角形?( ) A. a = 3,b = 2,c = 4 B. a = 15,b = 12,c = 9 C. a = 9,b = 8,c = 11 D. a = 7,b = 7,c = 412.如图,△AED ∽ △ABC ,AD = 4cm ,AE = 3cm ,AC = 8cm ,那么这两个三角形的相似比是( )A .43B .21C .83D .213.下列结论中,不正确的是( )A .有一个锐角相等的两个直角三角形相似;B .有一个锐角相等的两个等腰三角形相似;C .各有一个角等于120°的两个等腰三角形相似;D .各有一个角等于60°的两个等腰三角形相似。

二、填空题:1.如图,直线a ∥b ,若∠1 = 50°,则∠2 = 。

2.如图,AB∥CD ,∠1 = 40°,则∠2 = 。

3.如图,DE∥BC ,BE 平分∠ABC ,若∠ADE = 80°,则∠1 = . 4.如图, l 1∥l 2,∠1 = 105°,∠2 = 140°,则∠α = .5.△ABC 中,BC = 12cm ,BC 边上的高AD = 6cm ,则△ABC 的面积为 。

6.如果一个三角形的三边长分别为x ,2,3,那么x 的取值范围是 。

7.在△ABC 中,AB = AC ,∠A = 80°,则∠B = ,∠C = 。

8.在△ABC 中,∠C = 90°,∠A = 30°,BC = 4cm ,则AB = 。

9.已知直角三角形两直角边分别为6和8,则斜边上的中线长是 。

10.等腰直角三角形的斜边为2,则它的面积是 。

11.在Rt△ABC 中,其中两条边的长分别是3和4,则这个三角形的面积等于 。

12.已知等腰三角形的一边长为6,另一边长为10,则它的周长为 。

13.等腰三角形底边上的高等于腰长的一半,则它的顶角度数为 。

14.如图,A 、B 两点位于一个池塘的两端,冬冬想用绳子测量A 、B 两点 间的距离,但绳子不够长,一位同学帮他想了一个办法:先在地上取 一个可以直接到达A 、B 的点C ,找到AC ,BC 的中点D 、E ,并且测得DE 的长为15m ,则A 、B 两点间的距离为__________. 15.如图,在△ABC 和△DEF 中,AB=DE ,∠B=∠E .要使△ABC≌△DEF ,需要补充的是一个..条件: 。

16.太阳光下,某建筑物在地面上的影长为36m ,同时量得高为1.2m 的测杆影长为2m ,那么该建筑物的高为 。

三、解答题:仅供学习与交流,如有侵权请联系网站删除 谢谢51.如图,已知△ABC 中,AB = AC ,AE = AF ,D 是BC 的中点. 求证: ∠1 = ∠22.如图,已知D 是BC 的中点,BE⊥AE 于E ,CF⊥AE 于F. 求证:BE = CF3.如图,CE 平分∠ACB 且CE⊥BD ,∠DAB =∠DBA ,AC = 18,△CDB 的周长是28。

求BD 的长。

4.已知:如图,点D 、E 在△ABC 的边BC 上,AD =AE ,BD =EC , 求证:AB =AC练习答案: 一、选择题1、D2、B3、C4、A5、C6、C7、C8、C9、C 10、C 11、B 12、B 13、B 二、填空题14、130° 15、140° 16、40° 17、65° 18、36cm 2 19、1<x<5 20、50°、50° 21、8cm 22、5 23、124、6或 25、22或26 26、120° 27、30m 28、BC=EF 或∠A=∠D 或∠C=∠F 29、21.6m 三、证明题30、BE=CF 、∠B=∠C 、BD=DC →△BED ≌△CFD →∠1=∠2 31、△BED ≌△CFD →BE=CF32、∠A=∠DBA →AD=BD →CD+BD=AC=18、△CDB 的周长是28→BC=10 33、AD=AE →∠ADE=∠AED →∠ADB=∠AEC →△ABD ≌△AEC →AB=AC34、解:如图,根据题意,有AB ∥CD ,PM ⊥CD 于N 点,交AB 于M 点,且AB=20m ,CD=50m , PM=25m ,AB ∥CD →△PAB ∽△PCD →→→PN=62.5→MN=37.5AEDCB 372NM DCBAPPM PN =ABCD25PN =2050。

相关文档
最新文档