2020年中考试题分类汇编——相交线平行线三角形
各地2020年中考数学试卷分类汇编相交线与平行线(含解析)

相交线与平行线一.选择题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,AD∥B C,∠C=30°,∠AD B:∠BDC=1:2,则∠DBC 的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠A DC=150°,∠ADB=∠D BC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠A DC=150°,∠ADB=∠DBC,∵∠A DB:∠BD C=1:2,∴∠A DB=13×150°=50°,∴∠D BC 的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.2. (2018·湖北随州·3分)如图,在平行线l1.l2 之间放置一块直角三角板,三角板的锐角顶点A,B 分别在直线l1.l2 上,若∠l=65°,则∠2 的度数是()A.25° B.35° C.45° D.65°【分析】过点C 作CD∥a,再由平行线的性质即可得出结论.【解答】解:如图,过点C 作CD∥a,则∠1=∠AC D.∵a∥b,∴CD∥b,∴∠2=∠D CB.∵∠A CD+∠DCB=90°,∴∠1+∠2=90°,...又∵∠1=65°,∴∠2=25°.故选:A.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.3. (2018·湖北襄阳·3 分)如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2 的度数为()A.55° B.50° C.45° D.40°【分析】利用平行线的性质求出∠3即可解决问题;【解答】解:∵∠1=∠3=50°,∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故选:D.【点评】本题考查平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.4. (2018·湖南郴州·3 分)如图,直线a,b 被直线c 所截,下列条件中,不能判定a∥b ()A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠3【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【解答】解:由∠2=∠4 或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.5. (2018·湖南怀化·4 分)如图,直线a∥b,∠1=60°,则∠2=()A.30° B.60° C.45° D.120°【分析】根据两直线平行,同位角相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故选:B.【点评】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.关键.6.(2018•江苏宿迁•3分)如图,点D 在△ABC的边AB 的延长线上,DE∥BC,若∠A=35°,∠C =24°,则∠D的度数是()A. 24°B. 59°C. 60°D. 69°【答案】B【分析】根据三角形外角性质得∠D BC=∠A+∠C,再由平行线性质得∠D=∠D BC.【详解】∵∠A=35°,∠C=24°,∴∠D BC=∠A+∠C=35°+24°=59°,又∵D E∥B C,∴∠D=∠D BC=59°,故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.7.(2018•江苏淮安•3 分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35° B.45° C.55° D.65°【分析】求出∠3 即可解决问题;【解答】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.【点评】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的9.(2018•山东东营市•3分)下列图形中,根据AB∥CD,能得到∠1=∠2 的是()A. B.C D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意; B.如图,根据A B∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥B D,能得到∠1=∠2,故本选项不符合题意;D.根据AB 平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10. (2018•达州•3分)如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°【分析】根据平行线的性质和三角形的外角性质解答即可.【解答】解:∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3﹣∠4=80°﹣45°=35°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.11. (2018•乌鲁木齐•4 分)如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于 180°列式计算即可得解.【解答】解:∵直尺对边互相平行,∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.故选:C.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.12. (2018•杭州•3分).若线段AM,AN 分别是△ABC 边上的高线和中线,则()A. B. C. D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN 分别是△ABC边上的高线和中线,当BC 边上的中线和高重合时,则AM=AN当BC 边上的中线和高不重合时,则AM<AN∴AM≤AN 故答案为:D【分析】根据垂线段最短,可得出答案。
2020年数学中考试题分类汇编(线段、角、相交线、平行线).doc

(2020年安徽省)如图,已知a∥b,∠1=70°,∠2=40°,则∠3= __________。
河北周建杰分类(2020年泰州市)5.如图,直线a、b被直线c所截,下列说法正确的是A.当∠1=∠2时,一定有a∥b B.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=180°D.当a∥b时,一定有∠1+∠2=90°第5题图以下是河南省高建国分类:(2020年巴中市)如图3,“吋”是电视机常用尺寸,1吋约为大拇指第一节的长,则7吋长相当于()A.一支粉笔的长度B.课桌的长度C.黑板的宽度D.数学课本的宽度以下是湖北孔小朋分类:9.(2020福建福州)如图,已知直线AB CD,相交于点O,OA平分EOC∠,100∠=o,则BODEOC∠的度数是()A .20oB .40oC .50oD .80o以下是江西康海芯的分类:1. (2020年郴州市)如图2,直线l 截两平行直线a 、b ,则下列式子不一定成立的是( )DA .∠1=∠5B . ∠2=∠4C . ∠3=∠5D . ∠5=∠2辽宁省 岳伟 分类2020年郴州市如图2,直线l 截两平行直线a 、b ,则下列式子不一定成立的是( ) A .∠1=∠5 B . ∠2=∠4C . ∠3=∠5D . ∠5=∠2知识点:对顶角、平行线性质应用4.(2020年湖州市)已知35α∠=o ,则α∠的余角的度数是( ) A .55o B .45o C .145o D .135o4. ( 2020年杭州市) 如图, 已知直线οο25,115,//=∠=∠A C CD AB , 则AE DO C B图254321lba图2 54321lba=∠E ( )(A) ο70 (B) ο80 (C) ο90 (D)ο1006. ( 2020年杭州市) 设一个锐角与这个角的补角的差的绝对值为α, 则( ) (A) οο900<<α (B) οο900≤<α (C) οο900<<α或οο18090<<α (D) οο1800<<α20. ( 2020年杭州市)如图, 已知βα∠∠,, 用直尺和圆规求作一个γ∠, 使得βαγ∠-∠=∠21.(只须作出正确图形, 保留作图痕迹, 不必写出作法) 作图如下, BCD ∠即为所求作的γ∠.痕迹2分, 结论2分以下是安徽省马鞍山市成功中学的汪宗兴老师的分类 1.(2020年•南宁市) 如图3,直线AB 、CD 被直线EF 所截,如果AB ∥CD ,∠1=65°,那么∠2= °10.(2020年双柏县)如图,直线a b ,被直线c 所截,(第4题)1 2c ab若a b ∥,160∠=°,则2∠= °. 答案:10.60(08年宁夏回族自治区)如图,AB∥CD, AC⊥BC,∠BAC =65°,则∠BCD= 度。
2020年中考数学必考专题15 相交线与平行线(解析版)

专题15 相交线与平行线一、相交线1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
2.对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
二、平行线1.平行线概念:在同一平面内,两条不想交的直线叫做平行线。
记做a∥b2.两条直线的位置关系:平行和相交。
3.平行线公理及其推论:(1)经过已知直线外一点,有且只有一条直线与这条直线平行;(2)如果两条直线都与第三条直线平行,那么这两条直线平行.4.平行线的判定:判定方法1:两条直线被第三条直线所截,同位角相等,两直线平行;专题知识回顾判定方法2:两条直线被第三条直线所截,内错角相等,两直线平行;判定方法3:两条直线被第三条直线所截,同旁内角互补,两直线平行.5.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
6.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
7.证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
专题典型题考法及解析【例题1】(2019•河北省)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【答案】C.【解析】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EF C.故AB∥CD(内错角相等,两直线平行).【例题2】(2019广西河池)如图,1120∠的大小是()a b,则2∠=︒,要使//A.60︒B.80︒C.100︒D.120︒【答案】D.【解析】平行线的判定如果21120a b.∠=∠=︒,那么//所以要使//∠的大小是120︒.故选:D.a b,则2【例题3】(2019广西省贵港市)如图,直线//∠=.∠=︒,则2a b,直线m与a,b均相交,若138【答案】142︒.【解析】知识点是平行线的性质如图,//Q,a b∴∠=∠,23Q,∠+∠=︒13180∴∠=︒-︒=︒.218038142一、选择题1.(2019•贵州省铜仁市)如图,如果∠1=∠3,∠2=60°,那么∠4的度数为()A.60°B.100°C.120°D.130°\【答案】C.【解答】∵∠1=∠3,∴a∥b,∴∠5=∠2=60°,∴∠4=180°﹣60°=120°,2.(2019广东深圳)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】∵AC为角平分线,∴∠1=∠2.∵l1∥AB,∴∠4=∠2,∠3=∠2,∴∠1=∠4,∠1=∠3.故A、C、D正确.∵l1∥AB,∴∠5=∠1+∠2,故B错误.故选B.3.(2019•湖北省鄂州市)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度专题典型训练题数为()A.45°B.55°C.65°D.75°【答案】B【解析】根据平行线的性质和直角的定义解答即可.如图,作EF∥AB∥CD,∴∠2=∠AEF=35°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°﹣35°=55°4.(2019•海南省)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、B C.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【答案】C【解析】根据平行线的性质解答即可.∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°5.(2019广西北部湾)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为。
2020年各地中考解析版试卷分类汇编(第1期)相交线与平行线

相交线与平行线一、选择题1.(2020·黑龙江大庆)如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3【考点】平行线的性质.【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即⇒③;当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即⇒②;当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即⇒①,故正确的有3个.故选:D.【点评】此题主要考查了命题与定理,正确掌握平行线的判定与性质是解题关键.2. (2020·湖北鄂州)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A. 50°B. 40°C. 45°D. 25°【考点】平行线的性质,垂直的性质,三角形的内角和定理.【分析】根据平行线的性质:两直线平行同位角相等,得出∠2=∠D;再根据垂线的性质和三角形的内角和定理,得出∠D=40°,从而得出∠2的度数.【解答】解:如图,∵AB∥CD,∴∠2=∠D;又∵EF⊥BD∴∠DEF=90°;∴在△DEF中,∠D=180°―∠DEF―∠1=180°―90°―50°=40°∴∠2=∠D=40°.故选B.【点评】本题解题的关键是弄清性质和定理。
平行线的性质之一:两直线平行同位角相等;垂直的性质:如果两直线互相垂直,则它们相交所组成的角为直角;三角形的内角和定理:三角形三个内角的和等于180°.3. (2020·湖北黄冈)如图,直线a∥b,∠1=55°,则∠2=A. 35°B. 45°C. 55°D. 65°【考点】平行线的性质、对顶角、邻补角.【分析】根据平行线的性质:两直线平行同位角相等,得出∠1=∠3;再根据对顶角相等,得出∠2=∠3;从而得出∠1=∠2=55°.【解答】解:如图,∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,∴∠2=55°.故选:C.4.(2020·湖北十堰)如图,AB∥EF,CD⊥EF于点D,若∠ABC=40°,则∠BCD=()A.140° B.130° C.120° D.110°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠B=∠BCD,∠ECD=90°,进而得出答案.【解答】解:过点C作EC∥AB,由题意可得:AB∥EF∥EC,故∠B=∠BCD,∠ECD=90°,则∠BCD=40°+90°=130°.故选:B.【点评】此题主要考查了平行线的判定与性质,作出正确辅助线是解题关键.5. (2020·湖北咸宁)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A. 50°B. 45°C. 40°D.30°A1D(第2题)【考点】平行线的性质,垂直的性质,三角形的内角和定理.【分析】由直线l1∥l2,根据两直线平行,内错角相等,可得∠ABC=50°;由CD⊥AB,可知∠CDB=90°,由三角形的内角和定理,可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠ABC=∠1=50°;又∵CD⊥AB,∴∠CDB=90°;在△BCD中,∠BCD=180°-∠CDB-∠ABC=180°-90°-50°=40°故选C.【点评】本题考查了平行线的性质,垂直的性质,三角形的内角和定理.解题的关键是要注意掌握两个性质一个定理的应用:①两直线平行,内错角相等;②垂直的性质:如果两直线互相垂直,则它们相交所组成的角为直角;③三角形的内角和定理:三角形三个内角的和为180°.6. (2020·新疆)如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24° B.34° C.56° D.124°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=56°,∴∠3=∠1=56°,∵直线a∥b,∴∠2=∠3=56°,故选C.【点评】本题考查了平行线的性质的应用,能根据平行线的性质得出∠2=∠3是解此题的关键,注意:两直线平行,同位角相等.7. (2020·四川成都·3分)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°【考点】平行线的性质.【分析】根据平行线性质求出∠3=∠1=50°,代入∠2+∠3=180°即可求出∠2.【解答】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选C.8. (2020·四川达州·3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;平行线的判定;直角三角形斜边上的中线.【分析】根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=8,由EF=DE﹣DF可得答案.【解答】解:∵AF⊥BF,∴∠AFB=90°,∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即,解得:DE=8,∴EF=DE﹣DF=3,故选:B.9. (2020·四川凉山州·4分)如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.10.(2020湖北襄阳,2,3分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A.50° B.40° C.30° D.20°【考点】平行线的性质;角平分线的定义;三角形的外角性质.【分析】由AD∥BC,∠B=30°利用平行线的性质即可得出∠EAD的度数,再根据角平分线的定义即可求出∠EAC的度数,最后由三角形的外角的性质即可得出∠EAC=∠B+∠C,代入数据即可得出结论.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC=∠B+∠C,∴∠C=∠EAC﹣∠B=30°.故选C.【点评】本题考查了平行线的性质、三角形外角性质以及角平分线的定义,解题的关键是求出∠EAC=60°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等或互补的角是关键.11.(2020湖北孝感,2,3分)如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A.70° B.75° C.80° D.85°【考点】平行线的性质.【分析】根据平行线的性质求出∠3的度数,根据对顶角相等得到答案.【解答】解:∵a∥b,∴∠1+∠3=180°,∴∠3=180°﹣∠1=70°,∴∠2=∠3=70°,故选:A.【点评】本题考查的是平行线的性质和对顶角的性质,掌握两直线平行,同位角相等、两直线平行,内错角相等、两直线平行,同旁内角互补是解题的关键.12.(2020·广东茂名)如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120° B.90° C.60° D.30°【考点】平行线的性质.【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=48°∴∠2=48°.故选C.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.13.(2020·广东梅州)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于A.55°B.45°C.35°D.25°答案:C考点:三角形内角和定理,两直线平行的性质定理。
2020年中考数学试题汇编——平行线与相交线.doc

2020年中考数学试题汇编——平行线与相交线(2020,龙岩)如右图,a ∥b,∠1=50°,则∠2= . 130°(2020,甘肃)如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°, 则2∠=( ) DA .30°B .20°C .25°D .35° (2020,广东)如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )C A.70° B.100° C.110° D.120°(2020,深圳)下列运算正确的是( ) DA .(x -y )2=x 2-y 2B .x 2·y 2 =(xy )4C .x 2y +xy 2 =x 3y 3D .x 6÷y 2 =x 4 (2020,珠海)分解因式22ay ax -=________________. a(x+y)(x-y) (2020,湛江)已知∠1=35º,则∠1的余角的度数是( ) A A .55º B .65º C .135º D .145º(2020,南宁)如图所示,直线a 、b 被c 、d 所截,且c a ⊥,c b ⊥,170∠=°,则2∠=_________°. 70°(2020,梧州)如图.a ∥b ,如果∠1=50°,则∠2的度数是( ) A(A)130° (B)50° (C)100° (D)120°C D B A E F1 2ad21b c(2020,桂林)如图,直线AB 、CD 被直线EF 所截, 则∠3的同旁内角是( )B A .∠1 B .∠2 C .∠4 D .∠5(2020,柳州)三条直线a b c 、、,若a c ∥,b c ∥,则a 与b 的位置关系是( ) A .a b ⊥ B.a b ∥ C.a b a b ⊥或∥ D.无法确定 (2020,玉林)如图,直线a ∥b ,c 与a 、b 均相交,则β=( ) CA. 60︒B. 100︒C. 120︒D. 150︒(2020,遵义)如图,梯子的各条横档互相平行,若∠1=ο80,则∠2的度数是( ) BA. B.ο100 C.ο110 D.ο120 .(2020,潜江)对于图中标记的各角,下列条件能够推理得到a ∥b 的是( ) DA.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°(2020长沙)如图,O 为直线AB 上一点,∠COB =26°30′,则∠1=度. 153.5(2020,承德)如图,已知直线AB ∥CD ,直线EF 与直线AB 、CD 分别交于点E 、F ,且有170,2∠=︒∠=则__________. 110︒(2020,湘潭)如图,已知AB ∥CD , o180∠=,则=∠2 o.100DA CEF1221 BA C DE F(2020,郴州)如图,直线l 1与l 2相交于点O ,1OM l ⊥,若44α∠=︒,则β∠等于( ) A .56︒ B .46︒ C .45︒ D .44︒(2020,郴州)下列图形中,由AB //CD ,能得到12∠=∠的是A B C D(2020,怀化)如图,已知直线a ∥b ,∠1=40°,则∠2= .40°(2020,抚顺)如图所示,已知a ∥b ,∠1=280,∠2=250,则∠3=______. 63°(2020,大连)如图,AB//CD ,160∠=︒,FG 平分,则∠EFD ,则2∠= ︒ 30O l 2l 1βα21D C B A 21DC B A 21D C B A D21C BAA BM NE FP Q(2020,宁夏)如图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB .若∠ECD =48°则 ∠B = .042(2020,滨州)如图,已知AB∥CD,BE 平分∠ABC,且交CD 于D 点,∠CDE=150°,则∠C 为( )A. 120° B.150° C.135° D ll0°(2020,菏泽)如图,直线PQ ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∠ECF =90º.若∠FBQ =50º, 则∠ECM =( ) A .60º B .50ºC .40ºD .30º (2020,泰安)如图l 1//l 2, l 3⊥l 4,∠1=42°,那么∠2的度数为( ) AA .48°B .42°C .38°D .21°(2020,山西)如图,直线a ∥b ,直线c 分别与a 、b 相交于点A 、B 。
中考试题分类汇编(相交线平行线三角形)含答案

中考试题分类汇编(一)——(相交线平行线三角形)一、选择题(每小题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°2、如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=3,则点P 到AB 的距离是( )A .3B .4C .5D .63、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为( ) (A )200 (B )1200 (C )200或1200 (D )3604、如图,AB ∥CD ,∠1=110°∠ECD=70°,∠E 的大小是( )A .30°B .40°C .50°D .60° 5、下列判断中错误..的是( ) A. 有两角和一边对应相等的两个三角形全等B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等6、如图,在△ABC 中,DE ∥BC ,若13AD AB =,DE =4,则BC =( )A .9B .10C . 11D .127、如图5,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A. 90°B. 135°C. 270°D. 315° 8、如图8,在△ABC 中,已知∠C =90°,AC =60 cm ,AB =100 cm ,a 、b 、c …是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC 平行,另一组对边分别在BC 上或与BC 平行. 若各矩形在AC 上的边长相等,矩形a 的一边长是72 cm ,则这样的矩形a 、b 、c …的个数是( )A. 6B. 7C. 8D. 9 9、如图,在△ABC 中,DE∥BC,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,DB=2,则DE∶BC 的值为( ) A . B . C . D .10、如图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列说法正确的个数有( )①DC ′平分∠BDE ;②BC 长为a )22(+;③△B C ′D 是等腰三角形;④△CED 的周长等于BC 的长。
2020年中考数学试题分类汇编之08几何初步(平行线相交线、命题)(试题+详细答案)

2020年中考数学试题分类汇编之08几何初步 平行线相交线一、选择题1.(2020陕西)若∠A =23°,则∠A 余角的大小是( )A .57°B .67°C .77°D .157° 2.(2020河北)如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条 3.(2020河北)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是( )A. 从点P 向北偏西45°走3km 到达lB. 公路l 的走向是南偏西45°C. 公路l 的走向是北偏东45°D. 从点P 向北走3km 后,再向西走3km 到达l4.(2020河南)如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A. 100︒B. 110︒C. 120︒D. 130︒ 5.(2020江西)如图,1265,335︒︒∠=∠=∠=,则下列结论错误的是( )6.(2020乐山)如图,E 是直线CA 上一点,40FEA ∠=︒,射线EB 平分CEF ∠,GE EF ⊥.则GEB ∠=( )A. 10︒B. 20︒C. 30D. 40︒7.(2020四川绵阳)在螳螂的示意图中,AB ∥DE,△ABC 是等腰三角形,∠ABC =124°,∠CDE=72°,则∠ACD=().A.16°B.28°C.44°D.45°8.(2020贵阳)如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A. 150︒B. 120︒C. 60︒D. 309.(2020贵州黔西南)(4分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为( )A .37°B .43°C .53°D .54°10.(2020长沙)如图,一块直角三角板的60度的顶点A 与直角顶点C 分别在平行线,FD GH 上,斜边AB 平分CAD ∠,交直线GH 于点E ,则ECB ∠的大小为( )A. 60︒B. 45︒C. 30︒D. 25︒11.(2020甘肃定西)若70α=︒,则α的补角的度数是( )A.130°B.110°C.30°D.20°12.(2020辽宁抚顺)(3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是()A.15°B.20°C.25°D.40°13.(2020吉林)(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°14.(2020内蒙古呼和浩特)(3分)命题①设△ABC的三个内角为A、B、C且α=A+B,β=C+A,γ=C+B,则α、β、γ中,最多有一个锐角;②顺次连接菱形各边中点所得的四边形是矩形;③从11个评委分别给出某选手的不同原始评分中,去掉1个最高分、1个最低分,剩下的9个评分与11个原始评分相比,中位数和方差都不发生变化.其中错误命题的个数为()A.0个B.1个C.2个D.3个15.(2020宁夏)(3分)如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB 与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°16.(3分)(2020•常德)如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为( )A .70°B .65°C .35°D .5°17.(2020贵州遵义)(4分)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .30°B .45°C .55°D .60°18.(3分)(2020•烟台)量角器测角度时摆放的位置如图所示,在△AOB 中,射线OC 交边AB 于点D ,则∠ADC 的度数为( )A .60°B .70°C .80°D .85°19.(2020东莞)如图,已知//AB CD ,CE 平分ACD ∠,且120A ∠=︒,则1∠=( )A.30°B.40°C.45°D.60°20.(2020四川自贡)(4分)如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°21.(2020四川自贡)(4分)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°22.(2020山东滨州)(3分)如图,//∠的平分线,AB CD,点P为CD上一点,PF是EPC若155∠的大小为()∠=︒,则EPDA.60︒B.70︒C.80︒D.100︒23.(2020四川眉山)(4分)一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β24.(2020山东枣庄)(3分)一副直角三角板如图放置,点C在FD的延长线上,//AB CF,∠的度数为()∠=∠=︒,则DBC90F ACBA.10︒B.15︒C.18︒D.30︒25.(2020湖南岳阳)(3分)(2020•岳阳)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C 的度数是()A.154°B.144°C.134°D.124°26.(2020湖南岳阳)(3分)(2020•岳阳)下列命题是真命题的是()A.一个角的补角一定大于这个角B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形D.旋转改变图形的形状和大小27.(3分)(2020•怀化)如图,已知直线a,b被直线c所截,且a∥b,若∠α=40°,则∠β的度数为()A.140°B.50°C.60°D.40°28.(2020山东泰安)(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于( )A .80°B .100°C .110°D .120°29.(2020浙江温州)(4分)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°30.(2020海南)(3分)如图,已知AB ∥CD ,直线AC 和BD 相交于点E ,若∠ABE =70°,∠ACD =40°,则∠AEB 等于( )A .50°B .60°C .70°D .80°二、填空题31.(2020广州)已知100A ∠=,则∠A 的补角等于 °.32.(2020杭州)(4分)如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F .若∠E =30°,∠EFC =130°,则∠A = .33.(2020湖北黄冈)已知:如图,//,75,135AB EF ABC CDF ︒︒∠=∠=,则BCD ∠=_____________度.34.(2020新疆生产建设兵团)(5分)如图,若AB ∥CD ,∠A =110°,则∠1= °.35.(2020四川南充)(4分)如图,两直线交于点O ,若∠1+∠2=76°,则∠1= 度.36.(2020吉林)(3分)如图,某单位要在河岸l 上建一个水泵房引水到C 处.他们的做法是:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 .37.(2020江苏泰州)(3分)如图,将分别含有30︒、45︒角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65︒,则图中角α的度数为.38.(2020云南)(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.三、解答题39.(2020湖北武汉)如图,直线EF分别与直线AB,CD交于点E,F.EM平分BEF∠,FN平分CFE∠,且EM∥FN.求证:AB∥CD.2020年中考数学试题分类汇编之08几何初步平行线相交线四、选择题1.(2020陕西)若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°【分析】根据∠A的余角是90°﹣∠A,代入求出即可.【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B.2.(2020河北)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A. 0条B. 1条C. 2条D. 无数条【答案】D【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.3.(2020河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误..的是()A. 从点P 向北偏西45°走3km 到达lB. 公路l 的走向是南偏西45°C. 公路l 的走向是北偏东45°D. 从点P 向北走3km 后,再向西走3km 到达l【答案】A【详解】解:如图所示,过P 点作AB 的垂线PH ,选项A :∥BP=AP=6km ,且∥BPA=90°,∥∥PAB 为等腰直角三角形,∥PAB=∥PBA=45°, 又PH∥AB ,∥∥PAH 为等腰直角三角形,=PA ,故选项A 错误; 选项B :站在公路上向西南方向看,公路l 的走向是南偏西45°,故选项B 正确; 选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确; 选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为∥PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .4.(2020河南)如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A. 100︒B. 110︒C. 120︒D. 130︒【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .5.(2020江西)如图,1265,335︒︒∠=∠=∠=,则下列结论错误的是()A .//AB CD B .30B ︒∠=C .2C EFC ∠+∠=∠D .CG FG >【解析】由∥1=∥2=65°,可得内错角相等,两直线平行,故A 选项正确,∥3和∥BFE 互为对顶角,∥∥BFE=35°,∥1为∥BEF 的外角,∥∥1=∥BFE+∥B ,可得∥B=30°,故B 选项正确.∥EFC 为∥CFG 的外角,∥∥EFC=∥C+∥CGF ,故C 选项错误.因为在∥CGF 中,∥CFG >∥C ,∥CG >FG ,故D 选项正确,所以本题答案为C6.(2020乐山)如图,E 是直线CA 上一点,40FEA ∠=︒,射线EB 平分CEF ∠,GE EF ⊥.则GEB ∠=( )A. 10︒B. 20︒C. 30D. 40︒【答案】B 7.(2020四川绵阳)在螳螂的示意图中,AB ∥DE,△ABC 是等腰三角形,∠ABC =124°,∠CDE=72°,则∠ACD=().A.16°B.28°C.44°D.45°【解析】延长CD 交AB 于点F 。
2020中考角、相交线与平行线专题测试题及答案

(角、相交线与平行线)(试卷满分150 分,考试时间120分钟)一、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角的关系是()。
A.相等B.互补C.相等或互补D.相等且互补2.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4 : 3 ,则∠BOC等于()。
A.10°B.40°C.70°D.10°或70°3.一个角等于它的补角的5 倍,那么这个角的补角的余角是()。
A.30°B.60°C.45°D.以上答案都不对4.用一副三角板可以作出大于0°而小于180°的角的个数()。
A.5个B.10个C.11个D.以上都不对5.已知三条直线a,b,c,下列命题中错误的是()A.如果a∥b,b∥c,那么a∥cB.如果a⊥b,b⊥c,那么a⊥cC.如果a⊥b,b⊥c,那么a∥cD.如果a⊥b,a∥c,那么b⊥c6.如果两条平行线被第三条直线所截得的8 个角中,有一个角的度数已知,则()。
A.只能求出其余3 个角的度数5个角的度数C.只能求出其余6 个角的度数B.能求出其余D.能求出其余7个角的度数7.若两条平行线被第三条直线所截,则下列说法错误的是()。
A.一对同位角的平分线互相平行B.一对内错角的平分线互相平行C.一对同旁内角的平分线互相垂直D.一对同旁内角的平分线互相平行8.下列说法,其中正确的是()。
A.两条直线被第三条直线所截,内错角相等;B.不相交的两条直线就是平行线;C.点到直线的垂线段,叫做点到直线的距离;D.同位角相等,两直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考试题分类汇编——相交线平行线三角形一、选择题1、(河北省)如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()CA.50°B.60°C.140°D.160°2、(2007浙江义乌)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()AA.3B.4C.5D.62、(2007重庆)已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为()C(A)200(B)1200(C)200或1200(D)3603、(2007浙江义乌)如图,AB∥CD,∠1=110°∠ECD=70°,∠E的大小是()BA.30°B.40°C.50°D.60°5、(2007天津)下列判断中错误的是()BA. 有两角和一边对应相等的两个三角形全等B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等4、(2007甘肃陇南)如图,在△ABC中,DE∥BC,若,DE=4,则BC=()DA.9B.10C.11D.125(2007四川资阳)如图5,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()CA. 90°B. 135°C. 270°D. 315°6、(2007四川资阳)如图8,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行. 若各矩形在AC上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c的个数是()DA. 6B. 7C. 8D. 97、(2007浙江临安)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则DE∶BC的值为()AA.B.C.D.8、(2007福建晋江)如图,将一个等腰直角三角形按图示方式依次翻折,若DE=,则下列说法正确的个数有()C①DC′平分∠BDE;②BC长为;③△B C′D是等腰三角形;④△CED的周长等于BC的长。
A.1个;B.2个;C.3个;D.4个。
9、(2007山东日照)某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A.小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC上找一点D,连接AD作为分割线;方法二:在腰AC上找一点D,连接BD作为分割线;方法三:在腰AB上找一点D,作DE∥BC,交AC于点E,DE作为分割线;方法四:以顶点A为圆心,AD为半径作弧,交AB于点D,交AC于点E,弧DE作为分割线.这些分割方法中分割线最短的是()A(A)方法一(B)方法二(C)方法三(D)方法四二、填空题1.(2007广西南宁)如图1,直线被直线所截,若,,则.602、(2007云南双柏)等腰三角形的两边长分别为4和9,则第三边长为.93、(2007浙江义乌)如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC=___▲___cm.124、(2007福建福州)如图5,点分别在线段上,相交于点,要使,需添加一个条件是(只要写一个条件).解:,,,(任选一个即可)5、(2007四川德阳)如图,已知等腰的面积为,点分别是边的中点,则梯形的面积为______.66、(2007浙江杭州)一个等腰三角形的一个外角等于,则这个三角形的三个角应该为。
7、(2007天津)如图,中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD= ___。
38、(2007辽宁大连)如图5,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,全竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22米,则旗杆的高为_____________m.129、(2007湖南岳阳)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=_________(答案:60°)10、(2007浙江金华)如图,在由24个边长都为1的小正三角形的网格中,点是正六边形的一个顶点,以点为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长.11、(2007湖南怀化)如图:分别是的中点,,,分别是,,的中点这样延续下去.已知的周长是,的周长是,的周长是的周长是,则.12、(2007四川资阳)如图4,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=_____________ . 2476099.三、解答题1、(2007浙江温州)已知:如图,.2、(2007重庆)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE。
求证:(1)△ABC≌△DEF;(2)GF=GC。
证明:(1)∵BF=CE∴BF+FC=CE+FC,即BC=EF又∵AB⊥BE,DE⊥BE∴∠B=∠E=900又∵AB=DE∴△ABC≌△DEF(2)∵△ABC≌△DEF∴∠ACB=∠DFE∴GF=GC3、(2007浙江金华)如图,在同一直线上,在与中,,,.(1)求证:;(2)你还可以得到的结论是(写出一个即可,不再添加其它线段,不再标注或使用其它字母).(1)证明:,,在和中(2)答案不惟一,如:,,等.4、(2007甘肃陇南)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE= DF,并说明理由.解:需添加条件是.理由是:解:需添加的条件是:BD=CD,或BE=CF.2分添加BD=CD的理由:如图,∵AB=AC,∴∠B=∠C.…4分又∵DE⊥AB,DF⊥AC,∴∠BDE=∠CDF.6分∴△BDE≌△CDF (ASA).∴DE= DF.………8分添加BE=CF的理由:如图,∵AB=AC,∴∠B=∠C.………………4分∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD.…………6分又∵BE=CF,∴△BDE≌△CDF (ASA).∴DE= DF.5、(2007湖南怀化)如图,,,,求证:证明:即:又,6、(2007南充)如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?请说明你判断的理由.解:AD是△ABC的中线.理由如下:在Rt△BDE和Rt△CDF中,∵BE=CF,∠BDE=∠CDF,∴Rt△BDE≌Rt△CDF.∴BD=CD.故AD是△ABC的中线.7、(2007浙江杭州)如图,已知的中垂线交于点,交于点,有下面4个结论:①射线是的角平分线;②是等腰三角形;③∽;④≌。
(1)判断其中正确的结论是哪几个?(2)从你认为是正确的结论中选一个加以证明。
(1)正确的结论是①、②、③;(2)证明略。
8、(2007四川乐山)如图(11),在等边中,点分别在边上,且,与交于点。
(1)求证:;(2)求的度数.(1)证明:是等边三角形,,又,····· 4分.······ 5分(2)解由(1),得······· 6分······ 9分9、(2007重庆)已知,如图:△ABC是等腰直角三角形,∠ABC=900,AB=10,D为△ABC 外一点,边结AD、BD,过D作DH⊥AB,垂足为H,交AC于E。
(1)若△ABD是等边三角形,求DE的长;(2)若BD=AB,且,求DE的长。
解:(1)∵△ABD是等边三角形,AB=10,∴∠ADB=600,AD=AB=10∵DH⊥AB ∴AH=AB=5,∴DH=∵△ABC是等腰直角三角形∴∠CAB=450∴∠AEH=450 ∴EH=AH=5,∴DE=DH-EH=(2)∵DH⊥AB且,∴可设BH=,则DH=,DB=∵BD=AB=10 ∴解得:∴DH=8,BH=6,AH=4又∵EH=AH=4,∴DE=DH-EH=410、(2007四川乐山)如图(13),在矩形中,,.直角尺的直角顶点在上滑动时(点与不重合),一直角边经过点,另一直角边交于点.我们知道,结论“”成立.(1)当时,求的长;(2)是否存在这样的点,使的周长等于周长的倍?若存在,求出的长;若不存在,请说明理由.我选做的是_____________________.解(1)在中,由,得,由知,.(2)假设存在满足条件的点,设,则由知,,解得,此时,符合题意.11、(2007山东青岛)已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B 时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;(3)设PQ的长为x(cm),试确定y与x之间的关系式.解:⑴根据题意:AP=t cm,BQ=t cm.△ABC中,AB=BC=3cm,∠B=60°,∴BP=(3-t ) cm.△PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°.当∠BQP=90°时,BQ=BP.即t=(3-t ),t=1 (秒).当∠BPQ=90°时,BP=BQ.3-t=t,t=2 (秒).答:当t=1秒或t=2秒时,△PBQ是直角三角形.⑵过P作PM⊥BC于M .Rt△BPM中,sin∠B=,∴PM=PB·sin∠B=(3-t ).∴S△PBQ=BQ·PM=· t ·(3-t ).∴y=S△ABC-S△PBQ=×32×-· t ·(3-t )=.∴y与t的关系式为:y=.假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的,则S四边形APQC=S△ABC .∴=××32×.∴t 2-3 t+3=0.∵(-3) 2-4×1×3<0,∴方程无解.∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的.……8′⑶在Rt△PQM中,MQ==.MQ 2+PM 2=PQ 2.∴x2=[(1-t ) ]2+[(3-t ) ]2===3t2-9t+9.∴t2-3t=.∵y=,∴y===.∴y与x的关系式为:y=.12、(2007甘肃白银等)如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.在图(1)中,点P是边BC的中点,此时h3=0,可得结论:.在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)(2)证明图(2)所得结论;(3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60o,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:;图(4)与图(6)中的等式有何关系?解:(1)图②—⑤中的关系依次是:h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h.(2)图②中,h1+h2+h3=h.证法一:∵h1=BP sin60o,h2=PC sin60o,h3=0,∴h1+h2+h3=BP sin60o+PC sin60o=BC sin60o=AC sin60o=h.证法二:连结AP,则SΔAPB+SΔAPC=SΔABC.∴.又h3=0,AB=AC=BC,∴h1+h2+h3==h.(3)证明:图④中,h1+h2+h3=h.过点P作RS∥BC与边AB、AC相交于R、S.在△AR S中,由图②中结论知:h1+h2+0=h-h3.∴h1+h2+h3=h.说明:(2)与(3)问,通过作辅助线,利用证全等三角形的方法类似给分.(4)h1+h3+h4= .让R、S延BR、CS延长线向上平移,当n=0时,图⑥变为图④,上面的等式就是图④中的等式,所以上面结论是图④中结论的推广。