K2.04-z变换性质- z域尺度特性、微分
信号与系统的分析方法有时域,变换域两种

§2-3 Z反变换
一.定义:
已知X(z)及其收敛域,反过来求序列x(n) 的变换称作Z反变换。
记作:x(n) Z [ X ( z )]
1
z变换公式:
正:X ( z )
n
x ( n) z n ,
R x z Rx
1 反:x(n) X ( z ) z n 1dz, c ( Rx , Rx ) 2j c
j Im[ z ]
z 收敛域: a
0
a
z
Re[ z ]
*收敛域一定在模最大的极点所在的圆外。
[例2-3]求序列 x(n) b u(n 1) 变换及收敛域。
n
x ( n)
n
b nu (n 1) z n
b 1 z (b 1 z ) 2 (b 1 z ) n
§2-1 引言
信号与系统的分析方法有时域、变换域两种。 一.时域分析法 1.连续时间信号与系统: 信号的时域运算,时域分解,经典时域 分析法,近代时域分析法,卷积积分。 2.离散时间信号与系统: 序列的变换与运算,卷积和,差分方程 的求解。
二.变换域分析法
1.连续时间信号与系统: 信号与系统的频域分析、复频域 分析。
2.离散时间信号与系统: Z变换,DFT(FFT)。 Z变换可将差分方程转化为代数方程。
§2-2 Z变换的定义及收敛域
一.Z变换定义: 序列的Z变换定义如下:
X ( z ) Z [ x(n)]
n
x ( n) z
n
*实际上,将x(n)展为z-1的幂级数。
ze ze
jT ST
[例2-5]利用部分分式法,求X ( z) 1 (1 2 z 1 ) (1 0.5z 1 ) , 的z反变换。 解:
积分的z变换

积分的z变换积分的z变换是一种在信号处理和控制系统中常用的数学工具。
它可以将离散时间信号转换为z域中的复变量函数,从而方便地进行分析和处理。
本文将介绍积分的z变换的基本概念、性质和应用。
一、基本概念积分的z变换是z变换的一种特殊形式,其数学定义为:X(z) = Z{x[n]} = ∑(n=-∞ to ∞) x[n]z^(-n)其中,x[n]是离散时间信号,X(z)是其z变换。
二、性质积分的z变换具有以下几个重要的性质:1. 线性性质:对于任意常数a和b,有Z{a*x[n] + b*y[n]} = a*X(z) + b*Y(z)。
2. 位移性质:对于信号x[n-k],有Z{x[n-k]} = z^(-k)*X(z)。
3. 改变尺度性质:对于信号x[kn],有Z{x[kn]} = X(z^k)。
4. 差分性质:对于差分信号x[n] - x[n-1],有Z{x[n] - x[n-1]} = (1 - z^(-1))*X(z)。
三、应用积分的z变换在信号处理和控制系统中具有广泛的应用,以下是一些常见的应用场景:1. 系统分析:通过对信号进行积分的z变换,可以得到系统的频率响应和稳定性等特性。
这对于系统的设计和优化非常重要。
2. 信号滤波:积分的z变换可以用于滤波器的设计和实现。
通过对信号进行变换,可以滤除不需要的频率成分,从而实现信号的去噪和增强。
3. 时域分析:通过对信号进行积分的z变换,可以将离散时间信号转换为复变量函数,从而方便地进行时域分析,如求解差分方程和研究系统的稳定性。
4. 控制系统设计:积分的z变换可以帮助设计和分析控制系统。
通过将系统的传输函数进行z变换,可以得到系统的离散时间模型,从而进行控制算法的设计和系统性能的评估。
5. 信号重构:通过积分的z变换,可以将离散时间信号从z域中反变换回时域,从而实现信号的重构和恢复。
积分的z变换是一种重要的数学工具,在信号处理和控制系统中具有广泛的应用。
第8章z变换、离散时间系统的z变换分析概论

(n) 1
收敛域 为Z平面
2. 单位阶跃序列u(n)
u(n)
1 0
(n 0) (n 0)
Z[u(n)]
u( n)z - n
n0
z-n
n0
1 1 z-1
z z 1
收敛域 为 z >1
3. 斜变序列
间接求 解方法
已知 两边对(z -1)求导
两边乘(z -1)
∴
同理,两边再求导,得 …
即
其中 反变换为
分子,当j≥2,从最后一项(n-j+2)一直递增乘到n
例 s = 2,
例题 解
求x(n) = ?
∴
∴ 见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性
若 x(n) ←→ X(z) y(n) ←→ Y(z)
z变换 X(z)
z = e jω 有条件
序列的傅里叶变换X(e jω)
利用z变换求解离散系统的响应 利用离散系统函数H(z)分析系统 分析序列的频率特性 分析离散系统的频率响应特性
二、 抽样信号xs(t)的拉氏变换→z变换
理想抽样:
单边x(t) = x(t)u(t)
抽样间隔
对上式取双边拉氏变换,得到
∴ z = e ( + jΩ)T = e T + jΩT = e T e jΩT 令 |z| = e T , ΩT = ω,则有z = |z| e jω 其中:Ω模拟角频率, ω数字频率, T抽样间隔
二、 典型序列的z变换
1. 单位样值序列δ(n)
(n)
1 0
(n 0) (n 0)
§6.2 z变换性质

k =∞
∑a
∞
k
f (k)z
k
z = ∑ f (k) a k =∞
∞
k
z = F( ) a
←→
z z a
例2:cos(βk)ε(k) ←→? : β cos(βk)ε(k)=0.5(ej βk+ β e-j βk)ε(k) ←→
0.5z z e
▲
j β
+
0.5z z e
■
j β
第 6页
四,卷积定理
∞
m
= ∑ f (k m)z k + z m F(z)
k =0
m1
特例: 为因果序列, 特例:若f(k)为因果序列,则f(k – m) ←→ z-mF(z) 为因果序列
▲ ■ 第 4页
例1:求周期为N的有始周期性单位序列 :求周期为 的有始周期性单位序列
m=0
∑δ (k mN)
∞ mN
∞
变换. 的z变换. 变换 解
f (M) = lim z mF(z)
z→∞
▲
■
第 13 页
终值定理: 终值定理:
终值定理适用于右边序列, 终值定理适用于右边序列,用于由象函数直接求得序 列的终值,而不必求得原序列. 列的终值,而不必求得原序列. 如果序列在k<M时,f(k)=0,它与象函数的关系为 时 如果序列在 , f(k) ←→ F(z) ,α<z< ∞且0≤α ≤α<1 ≤α 则序列的终值
若 f1(k) ←→F1(z) α1<z<β1, β f2(k) ←→ F2(z) α2<z<β2 β 则 f1(k)*f2(k) ←→ F1(z)F2(z)
对单边z变换,要求 f1(k), f2(k)为因果 序列
z变换的基本知识

z变换基本知识1z变换定义连续系统一般使用微分方程、拉普拉斯变换的传递函数和频率特性等概念进行研究。
一个连续信号f(t)的拉普拉斯变换F(s)是复变量s的有理分式函数;而微分方程通过拉普拉斯变换后也可以转换为s的代数方程,从而可以大大简化微分方程的求解;从传递函数可以很容易地得到系统的频率特征。
因此,拉普拉斯变换作为基本工具将连续系统研究中的各种方法联系在一起。
计算机控制系统中的采样信号也可以进行拉普拉斯变换,从中找到了简化运算的方法,引入了z变换。
连续信号f(t)通过采样周期为T的理想采样开关采样后,采样信号f*(t)的表达式为OOf*(t)=1,f(kT)、(t-kT)=f(0)、(t)f(T)、(t-T)•f(2T)、(t-2T)k Of(3T)5(t-3T)+|||(1)对式(1)作拉普拉斯变换F*(s)=L[f*(t)]=f(0)f(T)e^f(2T)e'sT f(3T)e4T lMod=£f(kT)e3r(2)k0从式(2)可以看出,F*(s)是s的超越函数,含有较为复杂的非线性关系,因此仅用拉普拉斯变换这一数学工具,无法使问题简化。
为此,引入了另一个复变量“z”,令z=e sT(3)代入式(2)并令F*(x)i=F(z),得s平lnzF(z)=F(0)+f(T)z,+f(2T)zN+|||=:ff(kT)z-(4)k 0式(4)定义为采样信号£*("的2变换,它是变量z 的幕级数形式,从而有利于问题的简化求解。
通常以F(z)=L[f*(t)]表示。
由以上推导可知,z 变换实际上是拉普拉斯变换的特殊形式,它是对采样信 号作z=e sT 的变量置换。
f*(t)的z 变换的符号写法有多种,如Z[f*(t)],Z[f(t)],Z[f(k)],Z[F*(s)],F(z)等,不管括号内写的是连续信号、离散信号还是拉普拉斯变换式,具概念都应该理解为对采样脉冲序列进行z 变 换。
第二节Z变换的性质

收敛域不变:∣Z∣>a Z k F ( Z ) ,Z f ( k ) a 例4:已知 (a为实数)的单边Z变换为 Z a
a
k 2 k 2 求: f1 (k ) a , f 2 (k ) a 的单边Z变换 2 解:F1 ( Z ) Z 2 F ( Z ) f (2) f (1) Z 1 a Z , Z a
例2:求单边余弦cos(βk)ε(k)和单边正弦sin (βk)ε(k)的Z变换 1 1 解: cos(k ) (e jk e jk ), sin(k ) (e jk e jk )
2 2j Z [cos(k ) (k )] 1 1 Z [e jk (k )] Z [e jk (k )] 2 2
五:序列乘k(Z域微分) 注意:f(k)为离散的,而Z域为连续的; 若: f (k ) F (Z ), Z 则:kf (k ) Z d F ( Z )
dZ k m f (k ) [ Z d m ] F (Z ) dZ
例9:求序列 k 2 (k ), k (k 1) (k ), k (k 1) (k )的Z变换 2 Z 2 d Z Z ( Z 1) 2 ( k ) , Z 1 k (k ) Z [ ] ,Z 2 解:(1) Z 1 dZ ( Z 1) ( Z 1)3 (2)利用左移特性:
ba (k 1)a k (k ), a b
当a=b=1时,则 (k ) (k ) (k 1) (k ) 又因为: (k )
Z Z , a k (k ) Z 1 Z a Z Z Z 2 (k 1) (k ) (k ) (k ) ( ) , Z 1 Z 1 Z 1 Z 1 Z 2 (k 1)a k (k ) a k (k ) a k (k ) ( ) ,Z a Z a
第六节 Z 变 换

Z xn 1 z X ( z) x(1)
1
Z xn 2 z X ( z) z x(1) x(2)
2 1
三、频移性质(Z域尺度变换):
If x ( n ) X(z )
j0 n
ROC : R
then 1. e
x n X e
j0z k源自 z 1 j 0 j 0
1 e z e z cosk 0 k j 0 j 0 e z 1 e z 1 2 z z cos 0 2 z 2 z cos 0 1
2
z z cos 0 k cosk 0 k 2 z z 2 cos 0 1
2
a 1 b 1 z a b z a b a z b
1 k 1 k 1 x ( k ) * h( k ) a b k a b
七、序列除(k+m)(Z域积分)
If f ( n) F ( z )
z 2. F2 z 2 . z z 3 1
f 2 k ?
2 2 2
解:
1 z z z 1. F1 z 1 2 2 z 1 z 1
cos 0;
2
k f1 k k cos 2
k
z 2. F2 z 2 z z 3 1
3 2
z 1
解:
F ( z) 2 6 8 13 2 z z z z 1 z 0.5
k
f (k ) 2 k 1 6 k (8 130.5 ) k
数字信号处理(第三版)第2章习题答案

第2章 时域离散信号和系统的频域分析
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
X e (e j ) FT[xr (n)]
Hale Waihona Puke 1 1 ej2 1 e j2 1 (1 cos 2)
24
4
2
因为 所以
Xe
(e j
)
1 2
[X
(e j
)
X
(e j
)]
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0 0≤ω≤π
第2章 时域离散信号和系统的频域分析
当0≤ω≤π时,
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
例如, 已知序列x(n)的傅里叶变换为
X
(e
j
)
1
1 ae
j
a 1
1 求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到 X (z) 1 az 1
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
第2章 时域离散信号和系统的频域分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z变换性质- z域尺度特性、微分
2、序列乘k(z域微分)
设
f (k) F(z), | z |
则
kf (k ) (z) d F (z)
dz
k 2 f (k) (z) d [(z) d F(z)] dz dz
k m f (k) (z) d ((z) d ((z) d F (z))) , | z | 04
z变换性质- z域尺度特性、微分
主要内容:
z变换的z域尺度特性、微分的性质
基本要求:
熟练运用z变换的性质
1
z变换性质- z域尺度特性、微分 K2.04 z变换的性质-z域尺度特性、微分 1、z域尺度变换:序列乘 ak , a 0
设 f (k) F(z), | z | ,且有常数a 则 ak f (k) F ( z ), | a | | z || a |
例3:求 ak (k 1) 的 z 变换。
解:
ak1 (k 1) z1z 1 , | z | a
za za
a k 1 (k
1)
1 z1 a
,
| z | 1 a
利用齐次性,k域和z域同时乘以 a 得:
ak (k
1)
a z1 a
,
| z | 1 a
5
z变换性质- z域尺度特性、微分 例4:求 f(k)= kε(k) 的z变换F(z)。
6
<解法1>
(k) z
z 1
k (k)
z
d dz
z
z 1
z
(z 1) z (z 1)2
(z
z 1)2
,
| z | 1
<解法2>
f (k 1) (k 1) (k 1) (k 1) (k) f (k) (k)
两边取z变换: zF (z) zf (0) F (z) z
z 1
kf (k) F (z) z (z 1)2
dzdz dz
m次
3
z变换性质- z域尺度特性、微分
例1: ak (k) ?
解:
(k) z
z 1
z
ak (k) a z
z 1 z a a
例2:cos( k) (k) ?
解:
cos( k) (k)
1 (e jk 2
e jk )
0.5z z e j
0.5z z e j
4
z变换性质- z域尺度特性、微分