椭圆及其标准方程说课稿公开课
说课:椭圆及其标准方程 公开课一等奖课件PPT

三、探究意识
3、课外探究
(1)如图4,将圆上所有的点的纵坐标压缩为原来 的一半,横坐标不变,所得的曲线是什么曲线?压
缩为原来的,1
3
,1
4
,1
5
…,1(n
n
N, n
2)呢?
(探究工具,手段不限)
(2)如果已知圆的方程为 x2 y2 16 ,你能分别
求出按(1)压缩后所得的曲线的方程吗?
二、过程意识
2、引导探究,构建新知-----标准方程的建立 在实际生活中,椭圆形的实物无处不在,
如盘子、油罐车的横截面,还有人造卫星绕地 球运行的轨迹等等,可见椭圆与圆一样是无处 不在的,因而很有必要研究椭圆的几何性质。 我们知道研究曲线及其性质的基本方法是坐标 法。用坐标法研究曲线有两个基本环节,一是 建立坐标系,二是建立方程。
所得的方程也不同,但不同的方程对应的椭圆是
不变的,我们要通过方程来研究椭圆的几何性质,
那当然是方程的形式越简单越好。最后经过分析、
比较不难得出坐标原点选在椭圆的中心时得出的
方程形式最简单,这样的方程我们把它称为椭圆
的标准方程。其中a、b、c是确定椭圆大小、形状
的特征量,且满足:
,a b 0 a2 b2 c2
二、过程意识
5、归纳小结,内化新知 我们最后选择了坐标原点在椭圆的
中心去建系是因为得出的方程形式最简 单,由这种建系方法得到的方程叫椭圆 的标准方程。在用椭圆的标准方程解决 问题时,要注意分清不同的“型”和 “形”,要注意定义的灵活运用。
二、过程意识
设计意图:这个环节不是对这节课所学 知识的简单罗列,而是通过思想方法的 渗透以及对学生在分析、探究的过程中 出现的问题的剖析,来加深学生对所学 知识的理解,使本节课的知识得到进一 步内化。
椭圆及其标准方程说课稿[第一课时)

《椭圆及其标准方程》说课稿(第一课时)成都市龙泉二中童升(一)说教材本节课是第八章《圆锥曲线方程》的第一节课,主要学习椭圆的定义和标准方程。
它是本章也是整个解析几何部分的重要基础知识。
这一节课是在学完《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆的几何性质的基础;同时还为后面学习双曲线和抛物线作好准备。
因此本节内容起到一个承上启下的重要作用。
本课时是概念性教学,而椭圆的概念是教材的一个重点,且是《圆锥曲线》这一章重点中的重点。
这是因为:1、它的概念对学生来讲,相对于圆来说,是全新的,但它是对曲线概念的补充和深化;求椭圆的方程的过程是对求轨迹方程的步骤和方法的巩固和加深。
2、它是后继课程的一个出发点(转折点)。
前一节的圆,是学生非常熟悉的,而从椭圆开始,到双曲线、抛物线,对学生来说,都是不很熟悉的,对椭圆概念的掌握好坏,不光会影响对它本身的性质的掌握,而且直接影响对双曲线、抛物线的学习效果。
因为对双曲线、抛物线的学习过程,都可以仿照学习椭圆的过程进行。
3、后继课程中的双曲线、抛物线概念,都可以椭圆概念来类比,椭圆方程的标准形式与后继课程中的双曲线的方程的标准形式有混淆的地方,对它的特点不清,会影响对双曲线的掌握。
(二)学生现状分析、本课的背景随着普高的不断深入,大多数地初中毕业生进入高中学习,各地一、二、三流学校早已形成高、中、差分层筛选学生的模式;而一流学校毕竟是少数,较多普高学校的生源情况较差,在初中阶段就带了帐的学生学习高中数学的能力我们都非常清楚是怎样一个情况。
在此就以这样的学生作为背景来设计这堂课,使之成为一节很有必要的研究性课。
这类学生基础差、底子薄,数学运算能力,分析问题、解决问题的能力,逻辑推理能力,思维能力都比较弱,所以在设计课的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动性。
本课是学生学习了直线和圆的方程及其性质、曲线与方程的关系,学生对解析几何有一定的了解的基础上,已具有一定的观察、分析问题、解决问题的能力之后,开始学习圆锥曲线方程的第一课时。
椭圆及其标准方程说课(精)PPT课件

y
a
b
F1
c O
F2
x
❖ 2.椭圆的标准方程
例:已知点 F、1 为F2 椭圆两个焦点,P为椭圆上任意一点,
且 | F1F2,| 2c | PF1 | | PF2,|其 2中a
a ,求c 椭0 圆方程
一般步骤: (1) 建系设点
点拨:怎样建系可以
(2) 写出点的集合
使方程尽可能简 单?
(3) 写出代数方程
两焦点的距离之和等于8
活动形式:思考—解答—点评 设计意图:强化学生对所学知识的理解、消
化和灵活运用
五、教学小结
➢活动形式:提问--小结
本节课学习的主要内容是什么?
➢设计意图:培养学生的概括能力
板书设计:
椭圆的定义和标准方程
1 、椭圆的定义
例1
2 、椭圆的标准方程 例2
练习
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
<2>如果调整细绳两端点的相对位置,细绳的长度 不变,猜想你的椭圆会发生怎样的变化?
<3>同样方式的操作为什么得到不同的结果?
教学过程
二、新知探究
平面内与两个定点F1、F2的距离的和等于常数 (大于 | F1F2 )| 的点的轨迹叫做椭圆. 这两个定点 叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. 注:若 | PF1 | | PF2 || F1F2 | ,则P点的轨迹为椭圆.
讨论平方的 等价性
a2 c2 x2 a2y2 a2 a2 c2
b2x2 a2y2 a2b2
椭圆及其标准方程课件(公开课)

椭圆的参数方程是描述椭圆形状 和大小的一种数学表达方式,它 通过引入参数变量来表达椭圆上
的点。
参数方程通常采用极坐标或直角 坐标系中的参数方程形式,以便
更好地描述椭圆的几何特性。
参数方程在解决与椭圆相关的数 学问题时非常有用,因为它能够 直观地表达椭圆的形状和大小。
参数方程与普通方程的转换
参数方程和普通方程是描述椭圆的不 同方式,它们之间可以进行相互转换 。
普通方程转换为参数方程则需要引入 参数变量,将其表达为参数方程的形 式。
参数方程转换为普通方程需要消去参 数变量,将其转化为标准的椭圆方程 形式。
参数方程的应用
01
在几何学中,参数方程 被广泛应用于描述和分 析椭圆的形状和性质。
02
在物理学中,参数方程 可以用于描述物体的运 动轨迹,例如行星的运 动轨迹等。
03
在工程学中,参数方程 可以用于设计各种机械 零件和机构,例如轴承 、齿轮等。
04
在经济学中,参数方程 可以用于描述市场供需 关系和价格变动等。
05
椭圆的扩展知识
椭圆的扩展定义
椭圆是平面内与两个定点$F_1$和$F_2$的距离之和等于常 数且大于$F_1$和$F_2$之间距离的点的轨迹。
扩展定义中的两个定点称为椭圆的焦点,而常数等于 $F_1$和$F_2$之间的距离时,轨迹为线段。
光学仪器
椭球面镜是许多光学仪器 的重要元件,如显微镜和 望远镜。
02
椭圆的标准方程
椭圆的标准方程推导
椭圆的标准方程推导基于平面几何和 代数知识,通过设定椭圆上的点满足 的条件,经过一系列的推导和简化, 最终得到标准方程。
推导过程中涉及了椭圆的定义、性质 和参数设定等,有助于深入理解椭圆 的几何特征和代数表达。
椭圆及其标准方程说课稿

学情分析
在学习本课前,学生已学习了直线与圆 的方程,对曲线和方程的概念有了一些了 解与运用的经验,用坐标法研究几何问题 也有了初步的认识。但由于学生学习解析 几何时间还不长,学习程度也较浅,学生 对坐标法解决几何问题掌握得还不够,另 外,学生对含有两个根式之和(差)等式 化简的运算生疏。
考情分析
将其中一个根式移到右边得,
,两边同时平方, ,整理得, ,再次两边同时平方得, ,整理得 ,
以线段F1F2所在的直线为x轴,F1F2的中垂线为y轴建系 如图,则F1(-c,0) F2(c,0)。设M(x,y)为椭圆上任一点,
y
M(x,y) F1(-c,0) O
移项平方?
(1)
F2 (c,0)x
方案三
能力目标:
学生通过直接动手画椭圆,分组讨论探究椭圆定义,推导 椭圆的标准方程,从而提高学生实际动手,合作学习以及运用 知识解决实际问题的能力.
情,激发学生学习数学的兴趣,培养学生勇于探索, 勇于创新的精神.
教学重难点
重点: 椭圆的定义及椭圆的标准方程; 难点: 椭圆标准方程的建立和推导;
F1
课下同学自己完成推导过程
环节3: 归纳类比
标准方程
x2 y2 + 2 = 1 a > b > 0 2 a b
y P
x2 y2 + 2 = 1 a > b > 0 2 b a y
F2
不 同 点
图
形
F1
O
P
x
F2
x
O
F1
焦点坐标 相 同 点 定 义
F1 -c , 0 ,F2 c , 0
轴
上的椭圆,求m. 3.预习椭圆的标准第二个课时,轨迹方程, 完成课后作业.
《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。
《椭圆及其标准方程》说课教案

《椭圆及其标准方程》说课教案一. 教材分析(一)教材所处的地位和作用本节课选自人教版高中数学教材第二册(上)第八章圆锥曲线方程第一节(两课时)第一课时。
椭圆及其标准方程是圆锥曲线方程的重要内容之一,本节课既是对前面直线和圆的方程的延展,也是为学习双曲线和抛物线作了铺垫。
因此掌握好椭圆及其标准方程,意义非常重要,因此说本节课不但是本章的重点,也是高考的重点难点与热点,既是曲线与方程的具体体现,同时也对双曲线和抛物线的学习起着一定的带动作用.。
(二)教材分析处理本课是学生学习了直线和圆的方程及其性质、曲线与方程的关系的基础上,学生对解析几何有一定的了解的基础上,已具有一定的观察、分析问题、解决问题的能力之后,开始学习圆锥曲线方程的第一课时.掌握椭圆的研究方法和研究步骤,既培养了学生的观察、分析、发现、概括、探索等能力,又为后续学习双曲线、抛物线甚至整个解析几何打下坚实的基础。
二.学生状况:由于学生的各方面差异,学生的自学效果差异很大,课堂上,要对各个知识点逐一夯实,达到使每一个学生知识掌握扎实准确,做到唤求知、促求成;学生对教材知识的理解和挖掘不到位,课堂上,要给予引导、点拨和讲解,使学生既有自己自学知识的成功体验,又有课上交流加深理解的学习乐趣,做到以教师教法的改变促进学生学法的改变三.教育教学目标考虑上述原因, 根据教学大纲,教材的具体内容以及学生的实际情况,确立本节课的教学目标1.知识与技能:①掌握椭圆的定义、焦点、焦距的概念,能由椭圆定义推导椭圆的标准方程.②通过椭圆标准方程的推导,培养学生的运算能力、归纳总结能力.2.过程与方法:采用从已有知识出发,教师引导,学生主动探索得出椭圆的定义,用坐标法推导椭圆的标准方程,并总结特点相互比较的教学过程.采用探索发现,直观演示的教学方法.渗透化归与转化思想,运动变化的观点.3.情感态度价值观:①通过建系推导方程使学生体会数学中的对称美和简洁美.②形成学生向书本学习,向同学学习,向老师学习的学习习惯和学习方式四、教学重点,难点的确立及依据教学重点:椭圆的定义及其标准方程确立依据:为了培养学生的归纳推理,分析和解决问题的能力,增大学生的思维量教学难点:椭圆标准方程的推导确立依据:定义中蕴含着分类讨论的思想,对于带根式的方程化简是学生感到较困难的,根据学生的实际状况,将其定为本节课的难点.五.教法说明:本课教学采取师生研讨的教学方法(课上学生、师生之间交流学习,共同探讨),力争体现先进的教学理念,将传统手段(让学生画椭圆等)与先进的计算机多媒体技术整合在一起,取长补短,展现知识的发生发展过程,让学生始终处在问题的探索和研究状态之中,让学生在主动获取知识的同时,培养学生的学习数学的兴趣;培养学生数形结合等数学思想方法;培养学生的动手能力、运算能力、探索能力和数学交流能力。
《椭圆及其标准方程》说课稿(定稿)

《椭圆及其标准方程》说课稿尊敬的各位评委、老师:大家好!今天我说课内容是《椭圆及其标准方程》。
我借助于“翻转课堂"的教学理念:通过将知识的学习前移,课堂上学生有更充分的时间进行研究和讨论,从而增强学生的自主学习、合作探究的能力.下面我将从教材分析,学情分析,教学方法、学法指导,教学过程和设计说明这六个方面,来阐述我对本节课的理解。
一.教材分析1.地位和作用本节课位于人教A版高中数学教科书选修2—1,第二章第二节.教学安排了2课时,本节课是第一课时。
“椭圆及其标准方程"是继学习圆以后运用“曲线和方程"理论解决具体的二次曲线的又一实例。
从知识上讲,它是解析法的进一步运用,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础;起着承上启下的作用,它是学好本章内容的关键。
鉴于此,我制定了本节课的教学目标如下:2。
教学目标①知识与技能目标:理解椭圆的定义,掌握椭圆的标准方程及其推导,并学会初步应用。
②过程与方法目标:亲历知识的建构过程,培养学生分析、探究、抽象、概括等逻辑思维能力,加强用解析法解决圆锥曲线问题的能力;③情感态度与价值观:在自主探究过程中,培养学生勇于探索的精神;在合作探究中培养学生合作的意识。
3。
教学重、难点本节课的重点是掌握椭圆的定义及其标准方程;标准方程的推导与化简是本节课的难点;要突破这一难点,关键是引导学生正确选择去根式的策略。
二.学情分析学生已经学习了直线和圆的方程,初步掌握了用解析法求曲线方程的基本步骤,对曲线与方程的概念有一定的了解,这为进一步学习椭圆及其标准方程奠定了基础。
但是,在本节课的学习中,椭圆定义的归纳概括,方程的推导化简对学生是一个考验。
三.教法分析通过对学情的分析,制定教法。
在椭圆定义形成环节采用数学实验教学法;在标准方程过程中采用合作探究教学法;并通过多媒体辅助教学,提高课堂效率.四.学法分析本节课以问题为载体,以学生活动为主线,让学生在实验中分析,在类比中发现,在思考中概括,在探究中获取新知,帮助学生逐步形成自主探究、合作交流的学习方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆及其标准方程(第一课时)(说课稿)尊敬的各位评委、各位老师:大家好!我说课的题目是人教A版普通高中课程选修2-1第二章第二节第一小节《椭圆及其标准方程》。
下面我就教材分析、教学目标、教学程序、教法与学法、板书设计、教学评价这六个方面进行阐述。
一、教材分析1、教材的地位及作用《椭圆及其标准方程》是继学习圆以后运用"曲线和方程"理论解决具体的二次曲线的又一实例,也是圆锥曲线这一章的一节入门课。
从知识上说,它是对前面所学的运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础。
因此,这节课有承前启后的作用,是本章和本节的重点。
另外,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想。
而这种思想,将贯穿于整个高中阶段的数学学习。
2、教学目标及确立的依据根据上述对教材内容的分析和课标要求,教学目标制定如下:(1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。
(2)、能力目标:通过对椭圆的认识及其方程的推导,培养学生的分析、探究、抽象、概括等逻辑思维能力,加强用坐标法解决圆锥曲线问题的能力。
(3)、情感目标:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。
教学目标确立的依据:知识的学习和能力的培养是同步的,本课在教学中要学生同桌合作画椭圆,通过画去探究椭圆的条件、归纳椭圆的定义,符合新课程所追求的"以知识为载体、注重学生的能力、良好的意志品质及合作学习的精神培养"的一个重要教学理念。
3、教学重点、难点教学重点:椭圆的定义及椭圆的标准方程教学难点:椭圆标准方程的建立和推导。
在学习本课《椭圆及其标准方程》前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。
但由于学生学习解析几何时间还不长、学习程度也较浅,加上受高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会遇到困难。
如:学生对含有两个根式之和等式化简的运算还比较生疏,因此去根式的策略选择不当等是导致"标准方程的推导"成为学习难点的直接原因。
根据以上对教材及学情的分析,确定椭圆的定义及其标准方程为本课的教学重点;椭圆标准方程的推导为本课的难点。
4、教材处理根据新大纲的要求,结合本节课的内容特点,我把本节内容分2个课时进行教学。
第一课时,主要研究椭圆的定义、标准方程的推导。
第二课时,运用椭圆的定义求曲线的轨迹方程。
二、教学程序教学程序设计:认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用→本课小结→课后作业教学环节教师活动学生活动设计意图认识椭圆1、图片展示:身边的椭圆并提出本节课就是研究椭圆的方程。
观察图片(1)从实际问题引入,使学生了解数学来源于实际,激发学生探求实际问题的兴趣。
(2)、借助多媒体生动、直观的演示使学生更形象地了解后面要学的内容。
画椭圆2、画椭圆:教师用课件动态演示椭圆的形成过程,同时指点归纳椭圆定义时可类比圆的定义且注意定义中常量与变量的关系,即哪些量发生了变化,哪些量没有变?(1)拿出课前准备的硬纸板、细绳、铅笔,类比圆的画法,同桌一起合作画椭圆,再一起讨论归纳出椭圆的定义。
(2)学生回答:"两定点间的距离没变,绳子的长度没变,点在运动。
" (1)以活动为载体给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性。
(2)通过画椭圆,让学生经历知识的形成过程,同时也让学生成为学习的主人,给他们提供一个自主探索学习的机会。
归纳椭圆的定义3、椭圆的定义及有关概念(1)、引导学生归纳定义时要注意:a.强调椭圆是个平面图形b.引导学生观察变量(动点)与常量(绳长和两定点之间的距离大小关系)c.条件:常数大于|F1F2| (也可通过三角形两边之和大于第三边来理解,但要忽略动点在长轴两端点的情况)定义:在平面内,到两定点F1,F2的距离之和等于常数2a(2a>∣F1F2 |)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距,记∣F1F2 |=2c.(2)、椭圆定义的进一步认识。
问题:为什么要满足2a>2c呢?(1)当2a=2c时,轨迹是什么?(2)当2a<2c时,轨迹又是什么?结论:(1)、当2a>|F1F2|时,轨迹是椭圆;(2)、当2a=|F1F2|时,轨迹是线段;(3)、当2a<|F1F2|时,轨迹不存在。
学生认真听讲并仔细观察课件演示,深刻理解椭圆定义中的条件。
(1)学生自己通过观察、讨论,归纳概括出椭圆的定义,这样培养了学生抽象思维、归纳概括的能力。
(2)让学生了解归纳概念的严密性;(3)通过动画演示,让学生深刻地理解椭圆定义中含有的内在条件,突破了重点。
推导椭圆的方程4、椭圆标准方程的推导(教师引导)设问1:利用坐标法求曲线方程的一般方法是什么?设问2:本题中可以怎样建立直角坐标系?(教师引导):根据建系的一般原则是使点的坐标、几何量的表达式尽可能简单化,并使得到的方程具有"对称美""简洁美"的特点,因此可以类比利用圆的对称性建系,我们也可以利用椭圆的对称性建系,得到如下两个方案:方案1:(如图1)以F1、F2所在的直线为轴,F1F2的垂直平分线为y轴建立直角坐标系;方案2:(如图2)以F1、F2所在的直线为轴,F1F2的垂直平分线为x轴建立直角坐标系。
图1 图2方程:和注意:(1)区别焦点在不同坐标轴上的椭圆标准方程;(2)了解中b的几何意义;(3)说明方程与曲线的等价关系说明:①(由中可判断出);②利用对称性交换x、y即可得到焦点在y上的椭圆的标准方程,不是重新推导。
强调:椭圆两种形式的标准方程是一个问题的两种解法而非两种情况,其形式完全由焦点位置决定。
(1)学生回答:建系、设点、列式、化简;(2)启发学生按照方案1建系、设点(使焦点及长轴两个端点的坐标不出现分数形式,方便计算),再根据椭圆的定义,写出动点M 满足的集合,即:P={M |│MF1│+│MF2│| =2a}在设点的基础上将上述关系式用坐标表示出来。
(1)引导学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间;(2)训练学生的观察能力、运算能力和推理能力;(3)让学生感受椭圆方程、图形的对称美和谐美并且方便记忆。
(4)按照曲线方程的定义说明所得的方程是椭圆的方程,让学生有所体会即可。
问题点拨5、方程推导中的化简:问题1:推导椭圆的方程中:如何化简?问题2:化简后得到的方程为何要令?教师引导设问:①化简含有根号的式子时,我们通常有什么方法?②对于本式是直接平方好呢,还是恰当整理后再平方?让学生自己通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最能简化计算过程并得到结果。
①学生回答:可以两边平方。
②学生自己动手开始化简③观察b的几何意义(1)通过精心设问突破了椭圆方程推导的难点,深化了学生的探索活动;(2)令使得方程具有对称性,还明确了b的几何意义,并且让学生感受到这种做法的合理性。
椭圆方程知识讲解6、讲解知识例1:判断下列各椭圆的焦点位置,并说出焦点坐标、焦距。
(1)(2)(3)(4)例2:已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程。
(课本第34页的例1)教师再问:还有其他的解法吗?(待定系数法)学生口答例1,例2听讲并做适当的笔记(1)、为了让学生掌握椭圆方程的焦点位置及方程中a,b,c三者之间的关系而设计了例1;(2)、例2的两个小题让学生分别掌握运用椭圆定义法、待定系数法求椭圆的标准方程。
运用定义法时要强化根式化简计算;运用待定系数法时强调"二定"即定位定量。
(3)、让学生学会利用椭圆的标准方程解决问题。
椭圆方程知识运用7、运用知识1、已知F1、F2是椭圆的两个焦点,过F1的直线交椭圆于M、N两点,则的周长为。
2、平面内两定点距离之和等于8,一个动点到这两个定点的距离之和等于10,建立适当坐标系写出动点的轨迹方程。
学生动手做这两道练习题,由于时间关系可写关键步骤(1)、第一小题培养学生运用椭圆的定义解决问题的能力。
(2)、第二小题让学生熟悉利用定义法求动点轨迹方程的过程。
(3)、通过课堂练习,使学生进一步巩固知识,运用知识。
(4)、加强学生的运算能力。
小结1、一个定义:(椭圆的定义)2、二类方程:(焦点分别在轴、轴的上的两个标准方程)3、二种方法:(坐标法及步骤、待定系数系法)学生听讲并做适当笔记(1)归纳小结有助于学生学习、记忆和应用;(2)巩固新知,形成知识网络。
作业布置1、必做题:课本36页第2、3题2、研究性题:反思画图,观察椭圆上的点到焦点的距离最大最小的点是哪个点?(1)、巩固学生本节课所学的知识并落实教学目标;(2)、巩固知识发现和弥补教学中的不足;(3)、研究性题可以提高学生学习的积极性。
三、教学方法和学法指导为了使学生更主动地参加到课堂教学中,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性,这是本节课的教学原则。
根据这样的原则及所要完成的教学目标,我采用如下的教学方法和教学手段:教学方法:我采用的是引导发现法、探索讨论法等。
1、引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义。
2、探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性。
引导发现法和探索讨论法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性。
教学手段:由于圆锥曲线对同学们来说比较陌生,还有用动点到两定点距离和为定值而形成动点的轨迹这些方法都比较抽象,因此利用多媒体课件教学,化抽象为具体,降底学生学习难度,增强动感及直观感,增大教学容量,提高教学质量。
学法指导在教学过程中,要充分调动学生的积极性和主动性,为学生提供自主学习的时间和空间。
让他们经历椭圆图形的形成过程、定义的归纳概括过程、方程的推导化简过程,主动地获取知识;而且指导学生归纳椭圆定义时要注意条件,体现概念引入的严密性。
四、板书设计五、教学评价本节课一方面因为采用了多媒体辅助教学,而且在过程设计上尽量由浅入深,循序渐进,贴近学生的认知规律,所以估计学生能够较好的理解和掌握本节课的主要内容,但是由于容量大,学生的题型训练还不充分,在课后具体的解题中,还会出现很多疑问也是在所难免的。