高中数学课件-三视图2
经典:高中数学(超全面的)-三视图课件

3.右图是由一些相同的小正方体构成的几何体的三视图,则
构成这个几何体的小正方体的个数是【 D 】
A.5
B.6
C.7
D.8
11
122 1
47
下列是一个物体的三视图,请描述出它的形 状
主视图 左视图
俯视图
48
我思我进步
(2).右图是由一些相同的小正方体构成的几何
体的三视图,则构成这个几何体的小正方体的
上部圆锥侧面积
下部圆柱侧面积
圆柱底面积
=πa· 2a+2πa·2a+πa2=(5+ 2)πa2.
84
10、
❖ (文)(2010·湖南文,13)如下图中的三个直 角三角形是一个体积20cm3的几何体的三 视图,则h=________ cm.
❖ [答案] 4
85
[解析] 该几何体是一个底面为直角三角形、一条侧 棱垂直于底面的三棱锥,如图,V=13×12×5×6×h=20, ∴h=4 cm.
(超全面) 三视 图
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
1
猜 猜 他 们 是 什 么 关 系 ?
2
看 问 题 不 能 只 看 单 方 面
3
4
几种基本几何体三视图 1.圆柱、圆锥、球的三视图
知识
回顾
·
5
1、球的三视图 2、圆柱的三视图
3、圆锥的三视 图
6
柱、锥、台、球的三视图
26
解法二:
不用摆出这个几何体,你能画出 这个几何体的主视图与侧视图吗?
21
思考方法
12
先根据俯视图确定正视图有 列,再根据数字确定每列的方块 有 个。(取最多个数)
正视图
高中数学必修2空间几何体的三视图和直观图

俯视图
圆锥的三视图
正视图 侧视图
俯视图
思考:下列两组三视图分别是什么几何体?
正视图
侧视图
正视图
侧视图
俯视图
俯视图
圆台
三棱锥
一个几何体的三视图如下,则这个几 六棱锥 何体是______
正视图
主视图
左视图
俯视图
俯视图
画法说明
1、同一张图样中,同类图线的宽度应基本一致。 2、虚线、点划线相交时,应使两小段相交。
C
3 连接AB,CD,EF,FA,并擦去辅助线x轴和y轴,
便获得正六边形ABCDEF水平放置的直观图ABCDEF
y
F
M
E D
A
B
O
x
N
C
斜二测画法的步骤:(平面图形)
(1)在已知图形中取互相垂直的x 轴和y 轴,两轴 相交于O点.画直观图时,把它画成对应的 x 轴、 轴,使 xOy=45 或135 ,它确定的平面表示水平 y 平面. (2)已知图形中平行于x轴或y轴的线段,在直观 图中分别画成平行于x′轴或y′轴的线段. (3)已知图形中平行于x 轴的线段,在直观图中保 持原长度不变;平行于y 轴的线段,长度为原来的一 半.
y
F
M
E D
A
y
F M E
N
A
B
O
x
N
B
O
D
C
x
C
3 连接AB,CD,EF,FA,并擦去辅助线x轴和y轴,
便获得正六边形ABCDEF水平放置的直观图ABCDEF
y
F
M
E D
y
A
B
O
高中数学人教B版必修二第一章1.1.5三视图课件(共30张PPT)

(2)分:把组合体分解成简单几何体. (3)画:画分解后的简单几何体的三视图. (4)拼:将各个三视图拼合成组合体的三视图.
探究一
探究二
探究三
探究四
探究五
【例 1】某几何体的主视图和左视图均如图所示,则该几何体的俯视图
不可能是( )
探究一
探究二
探究三
探究四
探究五
探究三 三视图的还原问题
1.由三视图还原几何体的三个步骤.
探究一
探究二
探究三
探究四
探究五
2.在还原过程中,下列常见几何体的三视图要熟记,以方便还原.
几何体
主视图
左视图 俯视图
正方体
长方体
圆柱
圆锥 圆台
画组合体的三视图的“四个步骤”
能将三视图还原成几何体;
探究二 简单组合体的三视图 能将三视图还原成几何体;
1.1.5 三视图
温故知新:结合图形说出平行投影的定义及性质
探究一
探究二
探究三
探究四
探究五
探究一 正投影问题
作物体的正投影,一般是按照这样的过程: 如图所示,把要作投影的物体放在投射面和观 察者中间,按观察者—物体—投射面的顺序摆 好.由观察者的眼睛假想发出一束平行的投射
线,这些投射线经过物体轮廓线上的顶点后,与
(3)画出如图所示几何体的三视图.
解:三视图如图所示.
1234
1234
(4)若某几何体的三视图如图所示,则这个几何体的直观图 可以是( )
1234
解析:由题意知,A,C 中所给几何体的主视图、俯视图不符合要求,D 中所给 几何体的左视图不符合要求. 答案:B
人教版高中数学必修二115《三视图》课件

2024/1/28
4
教材内容和目标
教学目标:通过本节 课的学习,学生应该 能够
学会绘制简单几何体 的三视图;
2024/1/28
人教版高中数学必修 二115《三视图》课 件
2024/1/28
1
contents
目录
2024/1/28
• 课程介绍与目标 • 三视图基本概念与性质 • 绘制三视图方法与步骤 • 典型例题分析与解答 • 学生实践操作与互动环节 • 课程总结与拓展延伸
2
01
课程介绍与目标
2024/1/28
3
教材内容和目标
8
02
三视图基本概念与性质
2024/1/28
9
三视图定义及作用
定义
三视图是指主视图、俯视图和左视图 三个基本视图。它们分别是从物体的 正面、上面和左侧面三个方向,向投 影面作正投影得到的视图。
作用
三视图能够全面、准确地表达物体的 形状、大小和结构,是机械设计、建 筑设计等领域中重要的技术语言。
2024/1/28
按照“长对正、高平齐、宽相等”的投影规律,绘制俯视图 和左视图(或右视图)。
2024/1/28
15
检查并修改完善三视图
检查三个视图之间是否符合投 影规律,有无漏线或多线。
2024/1/28
检查视图中的图线是否清晰、 准确,有无错误或模糊不清的 地方。
根据需要添加必要的尺寸标注 、标题栏等,使图纸更加完整 、规范。
23
互动交流,分享学习心得和体会
北师大版高中数学必修2课件1.3简单组合体的三视图课件(北师大版)

平行投影
把在一束平行光线照射下形成的投影,叫平行投影
投影线平行
投影法分类 投影法
中心投影法 平行投影法 正投影 斜投影
一、三视图相关概念
视图
正投影
从上面看
主视图
正面
主视图 高 长
左视图 宽 宽
从左面看
俯视图
从正面看
你能总结出三视图的概念吗
三视图概念:
将空间图形分别从正面,左面和上面向三个两两 垂直的平面作正投影,然后把这三个投影按一定的布
作业
1.预习下一节“三视图的还原” 2.课本P22 习题1.2 A组 1、2
4.检查。
我相信你一定能画 出这个复杂几何体 的三视图!
巩固提高
10 6 12 8
组合体的三视图
归纳总结
1.三视图 主视图——从正面看到的图 左视图——从左面看到的图
俯视图——从上面看到的图
2.画物体的三视图时,要符合如下原则: 位置: 主视图 左视图 俯视图 大小:长对正,高平齐,宽相等。
北京师范大学出版社 | 必修二
第一章 · 立体几何初步
简单组合体的三视图
横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。 ——苏轼
新课导入
中心投影
把光由一点向外散射形成的投影,叫做中心投影
投影线交于一点,随着 物体距离光源(屏幕) 的远近,形成的投影大 小不同,相似图形。
局放在一个平面内,这样构成的图形叫做空间图形的
三视图。
三视图的形成及其投影规则(1)
三视图的形成及其投影规则(2)
二、三视图的作图规则 主—俯:长对正 主—左:高平齐 左—俯:宽相等
主 视 图 左视图
俯视图
高中数学课件《三视图》

阐述制作俯视图的流程和技巧,如比例
尺、画笔选择等。
3
俯视图实例分析
呈现俯视图在实际应用中的案例和作用,
常见错误和注意事项
4
如显示尺寸、描绘结构等。
列举俯视图绘制中的常见错误和技巧, 如线条处理、标注规范等。
综合应用
三视图综合分析
分析综合三视图的相关内容,如 尺寸、比例、实物构成等。
三视图的应用案例
正视图
正视图的定义
详细解释正视图的定义、特点和 标注方式。
正视图的制作方法
介绍制作正视图的流程,包括准 备、构图、标注等步骤。
正视图实例分析
展示正视图的实际案例,解读各 个部分的特点和技巧。
常见错误和注意事项
列举一些常见的正视图错误和注 意事项,并提供纠正方法。
侧视图
侧视图的定义
详细阐述侧视图的定义、特点和手绘制作方法。
总结本课学习到的三视图知识点,反思不足之处, 并展望未来学习方向。
小结
完成本节课的考核,完成下列练习,提交至教师指定邮箱。
演示三视图在不同领域的实际应 用案例和作用,如工程制图、产 品设计等。
三视图练习题
展示三视图练习题和解答方法, 巩固学习成果。
总结及反思
三视图的重要性回顾 三视图在实际应用中的作用 学习三视图的收获和不足
概括三视图的核心知识点和应用场景,并强调其 重要性。
说明三视图在工程、设计、制造等多个领域的实 际应用作用。
侧视图实例分析
呈现侧视图在不同领域的实际应用案例,分析其 构图、标注和表现要点。
侧视图的制作方法
介绍侧视图的绘制流程和常用工具,如比例尺、 圆规等。
常见错误和注意事项
指出侧视图常见的错误和绘制技巧,如避免变形、 重点突出等。
02空间几何体的三视图(二)-2019年高考数学考点讲解(三)

重难点展示:一.多面体1、棱柱特征:(1)有两个底面相互平行;(2)其余各面每相邻两个四边形的公共边都互相平行。
性质:(1)侧棱都相等,侧面是平行四边形;(2)两个底面与平行于底面的截面是全等的多边形;(3)过不相邻的两条侧棱的截面是平行四边形。
分类:(1)按底面多边形的边数分为:三棱柱、四棱柱等;(2)按侧棱与底面的位置关系分为:⎧⎪⎧⎨⎨⎪⎩⎩斜棱柱正棱柱直棱柱一般棱柱 说明:深刻理解棱柱的特征及性质,才能准确地应对概念题,才能准确地判断棱柱中的线线、线面、面面关系。
2、棱锥特征:(1)有一个面是多边形;(2)其余各面是有一个公共顶点的三角形。
一般棱锥的截面性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们的面积比等于截得的棱锥的高与已知棱锥的高的平方比。
如果一个棱锥的底面是正多边形,并且水平放置,它的顶点又在多边形中心的铅垂线上,则这个棱锥叫做正棱锥。
正棱锥的性质:(1)各侧棱相等,各侧面都是全等的等腰三角形;(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;(3)棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形。
掌握正棱锥的概念,特别是其中的几个直角三角形,可求高、斜高、侧棱长等;另外,还要熟悉一条侧棱垂直底面的棱锥,此两点是高考中常见考点。
3、棱台特征:(1)圆棱锥的底面和与其平行的截面分别叫做棱台的下底面、上底面;(2)其他各面叫做棱台的侧面;(3)相邻两侧面的公共边叫做棱台的侧棱;(4)当棱台的底面水平放置时,铅垂线与两底面交点间的线段或距离叫做棱台的高;由正棱锥截得的棱台叫做正棱台。
正棱台的性质:(1)各侧棱相等,侧面是全等的等腰梯形;(2)两底面以及平行于底面的截面是相似多边形;(3)两底面中心两线、相应的边心距和斜高组成一个直角梯形;(4)正棱台的上下底面中心的连线是棱台的高;(5)正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高。
空间几何体的结构特征及三视图和直观图 经典课件(最新)

图 12
高中数学课件
【反思·升华】 三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、 正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反 映了物体的长度和宽度;左视图反映了物体的宽度和高度,由此得到:主俯长对正,主 左高平齐,俯左宽相等.
(1)由几何体的直观图画三视图需注意的事项:①注意正视图、侧视图和俯视图对应 的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符 合“长对正、高平齐、宽相等”的基本特征;
高中数学课件
空间几何体的结构特征及三视图和直观图 课件
高中数学课件
1.空间几何体
【最新考纲】
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生
活中简单物体的结构.
Hale Waihona Puke (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,
能识别上述三视图所表示的立体模型,会用斜二侧画法画出它们的直观图.
高中数学课件
(3)旋转体的展开图 ①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线 长; ②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周 长; ③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.
注:圆锥和圆台的侧面积公式 S 圆锥侧=21cl 和 S 圆台侧=21(c′+c)l 与三角形和梯形的面积 公式在形式上相同,可将二者联系起来记忆.
答案:D
高中数学课件
高频考点 2 空间几何体的三视图 【例 2.1】 (2018 年高考·课标全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构 件的凸出部分叫榫头,凹进部分叫卯眼,图 8 中木构件右边的小长方体是榫头.若如图 摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图 可以是( )