五年级数学上册教案第五单元简易方程

合集下载

五年级上册《简易方程》教案优秀8篇

五年级上册《简易方程》教案优秀8篇

五年级上册《简易方程》教案优秀8篇简易方程篇一教学内容教科书第105~106页的例5、例6,完成“做一做”的题目和练习二十六的第1~4题。

教学目的使学生初步学会ax±bx=c这一类简易方程的解法,培养学生分析推理能力和思维的灵活性。

教具准备画有例5图的挂图,画有7瓶红墨水、9瓶蓝墨水的挂图,小黑板或投影片。

教学过程一、复习教师用小黑板或投影片出示复习题。

解下列方程。

1.2x=24.42.2x+10=24.43.2x+2×5=24.44.2x-2×5=24.4每做完一题,指名让学生说一说解题时是怎样想的。

二、新课1.教学例5.教师用小黑板或投影片出示一道一般应用题:一个工地用汽车运土,每辆车运5吨。

一天上午运了4车,下午运了3车。

这一天一共运土多少吨?请一位学生读题后,教师出示画有例5图的挂图:指名让学生说出题里的已知条件,然后让学生在练习本上独立解答。

做完以后,指名让几位学生说解答方法。

教师根据学生的回答板书:解法一:5×4+5×3 解法二:5×(4+3)教师:如果每辆车运5.5吨该怎样解答呢?(教师将挂图上的5吨改成5.5吨。

)根据学生的回答教师接着板书:解法一:5.5×4+5.5×3 解法二:5.5×(4+3)教师:如果每辆车运x吨该怎样解答呢?(教师将挂图上的5.5吨改成x吨。

)根据学生的回答教师接着板书:解法一:x×4+x×3 解法二:(4+3)教师:省略乘号,x×4+x×3可以写成4x+3x;(4+3)可以写成(4+3)x.教师将板书改为:解法一:4x+3x 解法二:(4+3)x教师:那么,4x+3x的计算结果是多少呢?我们观察一下图上的内容,结合上面的两种解法,想一想,4x表示什么?(表示4个x.)3x表示什么?(表示3个x.)4x+3x就是(4+3)个x,也就是7x.所以,4x+3x=7x.这一天一共运土7x吨。

2024年五年级数学上册第五单元简易方程教学教案

2024年五年级数学上册第五单元简易方程教学教案

2024年五年级数学上册第五单元简易方程教学教案一、教学目标知识与技能学生能够理解简易方程的概念,并能正确书写方程。

学生能够识别方程中的未知数,并能理解方程中等号两边等量关系的意义。

学生能够利用已学数学知识解简单的方程,并检验解的合理性。

过程与方法学生能够通过观察、分析和归纳,掌握解简易方程的基本方法。

学生能够运用所学知识解决实际问题中的简易方程。

情感、态度与价值观培养学生的逻辑思维能力和数学应用的意识。

引导学生体会数学在解决实际问题中的价值和魅力。

鼓励学生积极参与数学活动,形成乐于探究的学习态度。

二、教学重点和难点教学重点:简易方程的基本概念和书写方法。

解简易方程的基本步骤和方法。

教学难点:理解方程中等号两边等量关系的含义。

掌握解方程时未知数变化的规律。

三、教学过程导入新课通过生活中的实际问题,如购物找零、年龄计算等,引出方程的概念,激发学生的学习兴趣。

回顾已学数学知识,如加减法、乘除法的基本性质,为解方程做铺垫。

探究新知引导学生观察方程的特点,总结方程的基本形式,并练习方程的书写。

通过举例和演示,讲解方程中等号两边等量关系的含义,帮助学生理解方程的本质。

讲解解方程的基本步骤和方法,如移项、合并同类项、求解未知数等。

实践应用通过一系列练习题,让学生逐步掌握解简易方程的技巧,并及时给予反馈和指导。

组织学生进行小组讨论,分享解题思路和经验,培养合作意识和交流能力。

拓展提升结合实际问题,设计具有一定难度的练习题,让学生挑战自我,提高解题能力。

引导学生探究方程在实际生活中的应用,如时间计算、成本分析等,培养学生的数学应用意识。

课堂小结总结本节课的学习内容,强调方程的重要性和应用价值。

引导学生自我评价和反思,梳理收获和不足,为今后的学习打下基础。

四、教学方法和手段教学方法采用启发式教学法,引导学生主动探究和思考。

运用小组合作学习法,培养学生的合作精神和交流能力。

注重实践教学法,通过实际问题让学生亲身体验数学的应用价值。

五年级数学上册《简易方程》教案(优秀7篇)

五年级数学上册《简易方程》教案(优秀7篇)

五年级数学上册《简易方程》教案(优秀7篇)五年级数学上册《简易方程》教案篇一【教学内容】教材第62、63页的内容,练习十四的第1~3题。

【教学目标】1.通过教学,使学生理解与掌握方程的意义和等式的基本性质。

2.培养学生观察、归纳和概括的能力。

3.培养学生仔细观察的良好习惯。

【重点难点】理解方程的意义。

【教学准备】多媒体课件,自制天平教具。

【情景导入】在下面算式的○里填上“>”、“<”或“=”。

3x6○19 7○1.8+5.22.5÷5○2x0.25 24+11○11+243.9-3○4÷5 15x8+2○120+2小结:像7=1.8+5.2,2.5÷5=2x0.25,24+11=11+24,15x8+2=120+2这样的式子叫做等式。

这节课我们就来研究有关等式的问题。

【新课讲授】1.激趣导入。

师:同学们在游乐场玩过跷跷板的游戏吗?(多媒体出示小朋友玩跷跷板的画面)如果两端的小朋友重量一样,会出现什么情况呢?这就是平衡。

2.方程的意义。

(1)认识天平。

出示简易天平、砝码。

提问:同学们知道这是什么?它是用来干什么的?怎样用天平来称物品的重量呢?师:这是一台天平,用来称量物体的重量。

在天平的左盘内放置所称的物品,右盘内放置砝码,当天平的指针在标尺中间时,表示天平平衡,也就是天平两端的重量相等,砝码上所标的重量就是所称物体的重量。

(2)实验演示,引出方程。

师:下面我来演示一下如何用天平称物品的重量。

演示实验一:称出一只空杯子重100克。

提问:天平平衡了吗?这说明一只空杯子重多少克?板书:一只空杯子=100克演示实验二:往空杯子里倒入约150毫升水(可在水中滴几滴红墨水显示)。

提问:现在天平怎样?如果水重x克,杯子和水共重多少克?你能用一个式子来表示吗?板书:100+x>100演示实验(白话文★)三:增加100克砝码。

提问:增加100克砝码,发现了什么?(杯子和水比200克重)如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?板书:100+x>200演示实验四:再增加100克砝码,天平往砝码这边倾斜。

人教版五年级上册数学第五单元《简易方程》教案

人教版五年级上册数学第五单元《简易方程》教案

人教版五年级上册数学第五单元《简易方程》教案一. 教材分析《简易方程》是人教版五年级上册数学第五单元的教学内容。

本节课主要让学生初步接触方程,理解方程的概念,学会用字母表示数,并能简单解决含有未知数的实际问题。

内容主要包括:1. 理解方程的概念,认识等式与方程的区别;2. 学会用字母表示数,并能正确列出方程;3. 能通过简单的运算解决含有未知数的实际问题。

二. 学情分析五年级的学生已经掌握了基本的运算技能,对数学问题有一定的分析能力。

但在解决实际问题时,还缺乏用数学语言表达问题和解决问题的能力。

因此,在教学过程中,需要注重培养学生的数学语言表达能力,以及解决实际问题的能力。

三. 教学目标1.让学生理解方程的概念,认识等式与方程的区别。

2.学会用字母表示数,并能正确列出方程。

3.能通过简单的运算解决含有未知数的实际问题。

4.培养学生的数学语言表达能力,提高解决实际问题的能力。

四. 教学重难点1.重点:理解方程的概念,认识等式与方程的区别;学会用字母表示数,并能正确列出方程。

2.难点:解决含有未知数的实际问题,以及方程的求解。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

通过创设情境,提出问题,引导学生独立思考,分组讨论,共同探索,从而解决问题。

六. 教学准备1.教具:黑板、粉笔、课件。

2.学具:练习本、铅笔。

七. 教学过程1.导入(5分钟)利用课件展示生活中的图片,引导学生观察并提出问题。

如:“小明买了3个苹果,小红买了2个苹果,他们一共买了多少个苹果?”让学生尝试用数学语言表达这个问题。

2.呈现(10分钟)教师通过讲解,让学生理解方程的概念,认识等式与方程的区别。

如:“等式是用等号连接的两个数或表达式,而方程则是含有未知数的等式。

”3.操练(10分钟)教师提出问题:“小明有x个苹果,小红有y个苹果,他们一共买了多少个苹果?”让学生尝试用字母表示数,并列出方程。

教师选取部分学生的答案,进行讲解和评价。

2022新课标五年级数学上册教案3篇小学数学五年级上册数学教案

2022新课标五年级数学上册教案3篇小学数学五年级上册数学教案

2022新课标五年级数学上册教案3篇小学数学五年级上册数学教案2022新课标五年级数学上册教案1教学内容:人教版第五单元简易方程第1节用字母表示数52—53页教学目标:1、经历用字母表示数的过程,初步理解用字母表示数的意义;2、能用含字母的式子表示数、数量关系或计算公式。

3、使学生经历把实际问题用含有字母的式子进行表达的抽象过程,体验用字母表示数的简明性。

4、体会用字母表示数的简洁和便利,感受符号化思想,培养学生用字母表示数的意识和兴趣。

教学重点:用字母表示数的意义及用字母表示数量关系。

教学难点:理解并掌握含有字母的乘法式子的简便写法。

教学准备:多媒体教学过程:一创设情境,生成问题生活中,我们都见过哪些字母?它们都代表什么呢? 学生自由汇报结合课件出示你们看,字母不仅和生活密切相连,简洁地表示一些特定的名称、场所或标志,而且在数学王国中也有着广泛的应用。

今天,我们就一起来研究“用字母表示数”。

(板书课题)二、探索交流,解决问题1、学习例1(1)彤彤11岁对吗?老师比刚才这位同学大30岁。

(幻灯片)现在你知道老师几岁吗?怎么算的?(2)当彤彤1岁时,2岁,6岁,18岁时老师多大? 怎样才能用一个概括的式子简明地把你们的年龄,和任何一年老师的年龄都表示出来呢?(3)你怎么想,就怎么写。

自己开动脑筋。

学生思考交流师:当a是一个具体岁数时,a+30 表示什么?(4)比较:用含有字母的式子表示老师的年龄,不仅简单明了,而且具有一般性。

a+30 随着a的变化而变化,它们之间是一一对应的。

(5)字母的取值范围:师:根据你的经验,可以是哪些数?(6)代入求值当彤彤11岁时,老师的年龄是多岁?(7)小结例1:2、自学例2(1)课件:航天知识(2)看书例2,思考问题,自主学习。

(3)课件:自学提示:1、说说省略乘号的习惯写法。

幻灯片2、6x表示什么?3、图中小朋友在月球上能举起的质量?4、例1中a与例2中x,表示的数有什么共同点和不同点?(4)课件:为什么人到月球上举重是地面的6倍。

人教版数学五年级上册《简易方程》教案(5)

人教版数学五年级上册《简易方程》教案(5)

人教版数学五年级上册《简易方程》教案(5)一、教学目标1.理解简易方程的概念和性质。

2.能够解决简单的一元一次方程问题。

3.能够灵活运用所学知识解决生活中的实际问题。

二、教学重点1.掌握简易方程的基本概念。

2.能够准确地列出并解决一元一次方程。

三、教学难点1.理解一元一次方程解的概念。

2.能够用图形法解决一元一次方程。

四、教学准备1.教学课件、教学录音。

2.板书工具、彩色粉笔。

五、教学过程1. 概念的引入•引导学生回顾前几节课学习的内容,通过实际例子引入简易方程的概念,让学生了解简易方程的含义并引起兴趣。

2. 一元一次方程的解法•教师通过具体的例子,向学生介绍一元一次方程的解法,强调解题的步骤和技巧,让学生能够熟练掌握解题方法。

3. 生活实例演练•结合生活中的实际问题,设计一些简易方程的实际应用题,让学生能够灵活运用所学知识解决问题,培养学生的思考能力和解决问题的能力。

4. 总结归纳•教师带领学生一起总结本节课的重点知识,让学生能够清晰地理解简易方程和一元一次方程的概念和解法。

六、课堂作业1.完成课后练习册上关于简易方程和一元一次方程的练习题。

2.思考一个生活中的实际问题,并尝试用一元一次方程的解法解决。

七、教学反思通过这节课的教学,学生对简易方程和一元一次方程有了更深入的了解,提高了解决问题的能力和思维逻辑能力。

在以后的教学中,需要注重激发学生的兴趣,增加实际应用题目的设计,帮助学生更好地掌握所学知识。

以上是本节课的教学内容,请老师们根据实际情况进行灵活安排,确保教学效果。

五年级上册数学《解简易方程》教学设计(通用10篇)

五年级上册数学《解简易方程》教学设计(通用10篇)

五年级上册数学《解简易方程》教学设计五年级上册数学《解简易方程》教学设计(通用10篇)作为一名辛苦耕耘的教育工作者,往往需要进行教学设计编写工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。

那么大家知道规范的教学设计是怎么写的吗?下面是小编收集整理的五年级上册数学《解简易方程》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

五年级上册数学《解简易方程》教学设计篇1教学内容:教科书第109页的例2、例3,完成第109页下面的“做一做”中的题目和练习二十七的第1~4题。

教学目的:使学生理解和初步学会ax±b=c这一类简易方程的解法,认识解方程的意义和特点。

教学重点:会ax±b=c这一类简易方程的解法,认识解方程的意义和特点。

教学难点:看图列方程,解答多步方程。

教具准备:电教平台。

教学过程:一、导入出示三个小动物,让学生围绕三个小动物提提出问题进行学习。

二、新课1.教学例2。

出示小老鼠的问题:出示例2。

先让学生自己读题,理解题意。

教师:这道题的第一个要求是“看图列方程”。

我们来共同研究一下,怎样根据图意列出方程。

我们学过方程的含义,谁能说说什么是方程呢?学生:含有未知数的等式叫做方程。

教师:那么,要列方程就是要列出什么样的式子呢?学生:列出含有未知数的等式。

教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。

)3盒彩色笔有多少支?(3x支。

)另外还有多少支?(4支。

)一共有多少支彩色笔?(40支。

)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?学生:3x+4=40。

教师:很好!谁能再说说这个方程表示的数量关系?学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。

教师:对!我们现在来讨论一下如何解这个方程。

如果方程是x+4=40,可以怎么想?根据什么解?学生:可以把原方程看作是“加数+加数=和”的运算,因此,根据“加数=和-另一个加数”来解。

五年级上册数学教案-第五单元第5课时简易方程—解方程(1) 人教版

五年级上册数学教案-第五单元第5课时简易方程—解方程(1) 人教版

五年级上册数学教案-第五单元第5课时简易方程—解方程(1)人教版一、教学目标1. 让学生理解方程的意义,掌握解方程的基本步骤和方法。

2. 培养学生运用方程解决问题的能力,提高学生的逻辑思维和数学素养。

3. 培养学生合作学习、积极参与的精神,增强学生解决实际问题的自信心。

二、教学内容1. 方程的概念及解方程的意义。

2. 解方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1。

3. 应用方程解决实际问题。

三、教学重点与难点1. 教学重点:方程的概念、解方程的基本步骤。

2. 教学难点:解方程的运算顺序及实际应用。

四、教学方法1. 讲授法:讲解方程的概念、解方程的基本步骤。

2. 演示法:通过实例演示解方程的过程。

3. 练习法:让学生独立完成练习题,巩固所学知识。

4. 合作学习法:分组讨论,共同解决实际问题。

五、教学过程1. 导入新课利用图片、故事等引入方程的概念,激发学生的学习兴趣。

2. 讲解方程的概念方程是一个等式,其中包含一个或多个未知数。

方程的两边通过等号连接,表示它们相等。

3. 讲解解方程的基本步骤(1)去分母:将方程两边同时乘以分母的最小公倍数,使方程两边不含分母。

(2)去括号:将方程两边展开,去掉括号。

(3)移项:将未知数项移到方程的一边,常数项移到另一边。

(4)合并同类项:将方程两边的同类项合并。

(5)系数化为1:将未知数的系数化为1,得到方程的解。

4. 演示解方程的过程通过实例演示解方程的步骤,让学生直观地理解解方程的方法。

5. 练习巩固让学生独立完成练习题,巩固所学知识。

6. 合作学习分组讨论,共同解决实际问题,培养学生的合作能力和解决问题的能力。

7. 课堂小结对本节课的内容进行总结,强调方程的概念和解方程的基本步骤。

8. 布置作业布置相关的练习题,让学生课后巩固所学知识。

六、教学反思本节课通过讲解、演示、练习和合作学习等方式,让学生掌握了方程的概念和解方程的基本步骤。

在教学过程中,要注意关注学生的学习反馈,及时调整教学方法,提高教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体情境中用字母表示常见的数量关系;初步学会根据字母所取的值,求含有字母的式子的值。

2.使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程。

3.使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题;培养学生根据具体情况,灵活选择算法的意识和能力。

1.关注由具体到一般的抽象概括过程。

本单元的知识大多比较抽象,教学时要充分利用学生原有的相关认识,关注由具体实例到一般意义的抽象概括过程。

学习用字母表示数量关系、方程的概念或等式的性质时,既要发挥具体实例对于抽象概括的支撑作用,又要及时引导学生超脱实例的具体性,进行必要的抽象概括。

2.用好教材资源,适当扩展联系实际的范围。

在本单元中,用字母表示数量关系和列方程解决实际问题,都是把所学知识运用于实际生活中。

教材从小学高年级学生的共性着眼,精心筛选,设计了不少生动而富有意义的现实题材,如人在地球上与月球上的举重质量的关系,标准体重与身高的关系。

教学时,应用好教材提供的资源,从本地、本校的特色出发,适当补充一些学生身边的题材,以进一步激发学生的学习热情,培养学生的数学应用意识。

3.重视良好学习习惯的培养。

在本单元的教材中,应注意、培养学生规范书写和自觉检验的习惯。

就书写习惯来说,无论是含有字母式子的书写,还是解方程的书写,都要从一开始就强化书写规范,以发挥首次感知、先入为主的强势效应,形成良好的书写习惯。

从解数学题的检验来看,解方程的检验,方法易学,操作简便,而且最容易显示检验的效果,因而是培养学生检验习惯的一个重要契机,应引起教师的重视,并加以把握。

1用字母表示数..........................................................6课时2解简易方程............................................................7课时整理和复习............................................................2课时用含有字母的式子表示数量关系。

(教材第52~53页)1.使学生在理解数量关系的基础上,会用含有字母的式子表示数量关系。

2.使学生在理解含有字母式子的具体意义的基础上,会根据字母的取值,求含有字母的式子的值。

3.培养学生的抽象思维能力和归纳概括能力。

重点:会用含有字母的式子表示数量关系。

难点:理解用含有字母的式子表示数量关系的意义。

投影片。

1.在下面的里填上适当的名称。

×时间=路程单产量×=总产量时间=×=总价2.引入。

师:你们的数学课本是多少元?买一本数学课本和一本数学课外读物一共要多少元?学生一定会问数学课外读物的价钱是多少,这时教师指出:既然不知道数学课外读物的价钱,能否用一个字母表示?现在谁能说出买一本数学课本和一本数学课外读物一共要多少元?请学生回答:+x表示的是什么?师:这个含有字母的式子也能表示数量关系,今天我们就来探讨这个问题。

板书课题:用含有字母的式子表示数量关系1.指名学生说出自己的年龄。

李铭同学报出自己11岁。

师:老师比李铭大25岁。

老师的年龄是多少?请你算一算李铭在1岁、2岁、3岁……到现在11岁时,老师各是多少岁。

教师板书如下:李铭的年龄老师的年龄1 1+25=262 2+25=273 3+25=284 4+25=29提问:求老师年龄的问题提完了吗?(没有)为什么?(因为李铭在不断地长大,李铭的岁数每增加一岁,老师的岁数也增加一岁)上面这些算式表示什么意思?[上面这些算式表示,当李铭1岁时,老师(1+25)岁;当李铭2岁时,老师(2+25)岁……当李铭11岁时,老师(11+25)岁……]虽然李铭和老师的年龄都在变,但是什么没有变?(老师比李铭大25岁)我们已经学习了用字母表示数,能不能用一个简明的式子表示老师的年龄呢?用字母a表示李铭的年龄,那么老师的年龄就是a+25。

(用其他字母表示也可以)教师继续板书:a与a+25从a+25这个式子里,你们知道些什么信息?学生同桌议论或小组讨论,然后交流汇报。

a+25既表明了老师的年龄,又表明了老师比李铭大25岁,所以,我们只要知道李铭的年龄a,就能用这个数量关系算出老师的年龄。

师:对,只要知道了李铭的年龄,就可以求出老师的年龄。

我们可以计算一下;当李铭12岁小学毕业时,老师多大?学生回答,教师板书:当a=12时,a+25=12+25=37。

师:当李铭19岁考入大学时,老师多大?学生回答,教师板书:当a=19时,a+25=19+25=44。

思考:我们学习了用含有字母的式子表示数量关系,它有什么优点?学生通过讨论,认识到用字母可以表示数量之间的关系。

出示教材第52页例1:(1)学生默读题,理解题意。

(2)学生用自己的语言叙述题意。

(3)学生自主解决。

(4)学生集体交流、订正。

2.教学教材第53页例2。

投影出示:在月球上,人能举起物体的质量是地球上的6倍。

(1)读题,引导学生按下面的过程自己推算,并填写下表。

在地球上能举起物体的质量/kg在月球上能举起物体的质量/kg11×6=622×6=1233×6=18(2)提问。

师:假如用字母x表示人在地球上能举起物体的质量,你能用含有字母的式子表示出人在月球上能举起的质量吗?(3)算一算:教材插图中的小朋友在月球上能举起的质量是多少?学生计算后交流,教师板书:6x=6×15=90(kg)(4)说一说例2中的字母分别可以表示哪些数。

注意:人的寿命是有限的,能举起的质量也是有限的,因此a、x表示的数也是有限的。

1.列式计算。

停车场有m辆车,开走8辆。

(1)当m=24时,还剩多少辆?(2)当m=32时,还剩多少辆?2.想一想,填一填。

当x=()时,8÷x=1;当x=()时,8÷x=8;当x<()时,8÷x>8;当x>()时,8÷x<8。

课堂作业新设计1.(1)16辆(2)24辆11(0除外) 1教材习题第53页做一做:61224453x用含有字母的式子表示数量关系李铭的年龄老师的年龄1 1+25=262 2+25=273 3+25=284 4+25=29︙︙a与a+25当a=12时,a+25=12+25=37当a=19时,a+25=19+25=44字母不仅可以用来表示运算定律和计算公式,可以在算式里表示一般数量,还可以用含有字母的式子表示加、减、乘、除等数量关系。

1.讨论交流式的学习,使学生充分经历了知识的发生、发展和应用的全过程。

2.重视三维目标的整合,促进学生全面发展。

用字母表示数量关系是在学生掌握了用字母表示运算定律、计算公式和常见的数量关系的基础上进行教学的。

这一内容,看似简单、浅显,其实不然,它是学习简易方程的基础,是学生学习数学的一个转折点,是思维认识上的一次飞跃。

1.适当改变例题,选取贴近学生实际生活的例子。

用含有字母的式子表示数量关系对小学生来说,是比较抽象的,学生往往不习惯将“a+25”视为一个量,常有学生认为这是一个式子,不是结果。

将教材中“小红与爸爸的年龄关系”用“学生与老师的年龄关系”取代,这样使教学素材更贴近教学实际,更容易激发他们的学习兴趣。

2.把学习的主动权交给学生,由他们自己去发现问题,解决问题。

在解决“老师比同学大25岁”这一问题时,要求学生只用一个式子简明地表示出任何一年老师的年龄,把学习任务交给学生,让学生自己去讨论这个式子该怎样表示既简单又明确,让学生在两次讨论中深刻地理解式子“a+25”的意义和优越性,并让学生在课堂上充分发挥主体作用。

3.精心设计一系列有层次、有坡度、有新意、有深度的习题,整个运用过程从学生已有的知识经验出发,运用的过程都以生活为素材,源于生活、服务于生活,帮学生解决一个个现实问题。

让学生充分理解用字母表示数的意义和优越性。

用字母表示运算定律。

(教材第54页)1.使学生学会用字母表示运算定律。

2.让学生感受用字母表示运算定律的优越性,提高对用字母表示运算定律的认识。

3.学会在含有字母的式子里乘号的简写法和略写法。

重点:会用字母表示运算定律。

难点:理解用字母表示数的意义。

投影。

师:同学们,今天我们共同研究一个有趣的数学问题,在探究前我们先完成一组练习。

1.投影出示练习题。

在下面的里填上适当的数,在○里填上适当的运算符号。

教师指名口答,并让学生说一说是根据什么运算定律做题的。

2.用字母表示运算定律。

出示教材第54页例3(1)。

请学生分别用语言叙述一下所运用的运算定律,再分别用字母表示出运算定律。

教师根据学生的回答板书。

加法交换律:两个数相加,交换加数的位置,它们的和不变。

a+b=b+a加法结合律:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

(a+b)+c=a+(b+c)乘法交换律:两个数相乘,交换因数的位置,它们的积不变。

a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

(a×b)×c=a×(b×c)乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

(a+b)×c=a×c+b×c师:比较用文字叙述和用字母表示运算定律,你有什么发现?学生小组内互说自己的想法。

启发学生明确:用字母表示运算定律比用文字叙述运算定律简明易记,便于应用。

3.提问:这里的a、b、c可以表示哪些数?(这三个字母可以分别表示我们学过的任何数)4.书写。

讲述:字母中间的乘号可以省略不写,或记作“·”,但字母中间的其他运算符号不能省略。

试一试,按这样的规定把这些用字母表示的运算定律重新书写。

学生说,教师板书:a·b=b·a或ab=ba(a·b)·c=a·(b·c)或(ab)c=a(bc)(a+b)·c=a·c+b·c或(a+b)c=ac+bc用字母表示运算定律加法交换律: a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律: a×b=b×a a·b=b·a或ab=ba乘法结合律:(a×b)×c=a×(b×c)(a·b)·c=a·(b·c)或(ab)c=a(bc)乘法分配律:(a+b)×c=a×c+b×c(a+b)·c=a·c+b·c或(a+b)c=ac+bc用字母表示运算定律简明易记,便于应用。

相关文档
最新文档