(完整版)有理数的大小比较的方法与技巧
有理数的规律题解题技巧

有理数的规律题解题技巧
解答有理数的规律题可以根据相应的规律和性质进行分析和推导,以下是一些解题技巧:
1. 分析数列规律:观察给定的数列,找出数之间的关系,例如数列的递增或递减规律,等差或等比等数列的性质。
2. 判断数的正负性:有理数包括正数、负数和零,对于给定的问题需要根据情况判断数的正负性。
3. 简化运算:根据有理数的四则运算规则,对给定的数进行运算,以得出结果。
4. 使用数轴:对于一些涉及有理数的大小关系的问题,可以使用数轴来表示和比较数的大小,从而解答问题。
5. 利用性质和定理:有理数具有很多性质和定理,例如有理数的小数表示、相反数、倒数等性质,根据问题的情况可以利用这些性质来分析和解答。
6. 利用图形解题:对于一些几何图形的问题,可以结合有理数的性质来解题,例如面积、周长等概念。
需要注意的是,在解题过程中要注意题目中的条件和要求,一步一步地进行分析和推导,避免漏解和错误推理。
有理数的计算方法与技巧

有理数的计算方法与技巧(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数的计算方法与技巧有理数运算是代数入门的重点,又是难点,是中学数学中一切运算的基础,怎样突破这一难点,除了要正确理解概念和掌握运算法则外,还必须熟练有理数运算的一些技巧和方法,一定要正确运用有理数的运算法则和运算律,从而使复杂问题变得较简单。
一、四个原则:①整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
②简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。
③口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
④分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。
二、运算技巧①归类组合:运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。
例:计算:--(-341) + -(721) 解法一:--(-341) + -(721) = (- + + (341-721) = -441=-2解法二:--(-341) + -(721) =- + 341+ -721 = (3 + 2-7 ) + (- +41+ -21)=-2 评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵活选择解题方法.②凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.例:计算:--+-+-11622344551311638. 分析:本题六个数中有两个是同分母的分数,有两个互为相反数,有两个相加和为整数,故可用“凑整”法。
有理数比较大小经典讲义

1.利用数轴进行有理数的大小比较(1)数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.(2)正数大于零,零大于负数,正数大于负数.(3)因为正数都大于0,反过来,大于0的数都是正数,所以可以用a>0表示a是正数;反之,a是正数也可以表示为a>0.同理,a<0表示a是负数;反之,a是负数也可以表示为a<0.另外可以用a≥0表示a是非负数,用a≤0表示a是非正数.谈重点利用数轴判断正数的大小(1)利用数轴比较两个正数的大小,离原点越远,表示的数就越大,离原点越近,表示的数就越小.(2)利用数轴比较两个负数的大小,离原点越近,表示的数就越大,离原点越远,表示的数就越小.【例1-1】有理数a,b在数轴上的位置如图所示,试用“=”“>”或“<”填空:a________0,b________0,a________b.解析:a在原点的左边,是负数,负数小于0;b在原点的右边,是正数,正数大于0;数b的对应点在数a的对应点的右边,数轴上右边的数总是大于左边的数.答案:<><【例1-2】 比较下列各数的大小: (1)-|-1|__________-(-1);(2)-(-3)__________0;(3)-⎝ ⎛⎭⎪⎫-16__________-⎪⎪⎪⎪⎪⎪-17; (4)-(-|-3.4|)________-(+|3.4|).解析:(1)化简-|-1|=-1,-(-1)=1,因为负数小于正数,所以-|-1|<-(-1);(2)化简-(-3)=3,因为正数都大于0,所以-(-3)>0;(3)分别化简两数,得-⎝ ⎛⎭⎪⎫-16=16,-⎪⎪⎪⎪⎪⎪-17=-17,因为正数大于负数,所以-⎝ ⎛⎭⎪⎫-16>-⎪⎪⎪⎪⎪⎪-17;(4)同时化简两数,得-(-|-3.4|)=3.4,-(+|3.4|)=-3.4,所以-(-|-3.4|)>-(+|3.4|).在比较大小时,有时可能出现含有负数的绝对值或负数的相反数的形式给出的数,这种形式给出的数不容易直接观察出大小,我们要先化简,然后再选择适当的方法进行大小比较.答案:(1)< (2)> (3)> (4)>2.两个负数的大小比较(1)利用绝对值比较两个负数的大小的法则两个负数比较大小,绝对值大的反而小,即在数轴上绝对值较大的负数一定在绝对值较小的负数的左边.例如:|-3|=3,|-5|=5,而3<5,所以-3>-5.(2)利用绝对值比较两个负数大小的步骤①分别求出两个负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”作出正确的判断.解技巧 正确比较两个分数的大小在比较两个分数大小时,一般不要改变两数原来的顺序,以免最后判断时失误.例如比较-12与-13的大小时,先求得-12的绝对值是12,-13的绝对值是13,然后比较12与13的大小得12>13,从而-12<-13,在整个解答过程中,-12与-13的顺序不变. 【例2】 比较-23与-34的大小. 分析:两个负数比较大小,要先求出它们的绝对值,再根据绝对值的大小和两个负数大小比较的法则,确定出原数的大小.两个负分数化成同分母分数之后,分子越大,分数值越小.解:因为⎪⎪⎪⎪⎪⎪-23=23=812,⎪⎪⎪⎪⎪⎪-34=34=912,而812<912,所以-23>-34. 3.有理数的大小比较几个有理数的大小比较主要有以下几条法则:(1)正数都大于零,负数都小于零,正数大于一切负数;(2)绝对值越大的正数就越大,绝对值越大的负数反而越小;(3)在数轴上表示的有理数,右边的数总比左边的数大.“数无形时少直观,形无数时难入微”,利用数形结合思想解题,可以化难为易,化繁为简.利用数轴能揭示点的位置关系与数的大小关系的联系,所以较好地体现了数形结合的思想,利用它能方便地解决多个有理数(或其绝对值、相反数等)大小比较的问题.【例3】在数轴上表示出下列各数,并把它们按从小到大的顺序用“<”号连接起来:-4,3,0,-0.5,+412,-212.分析:在数轴上表示上述数时,关键是:+412应在4的右边,-212应在-2的左边;-0.5应在原点的左边、-1的右边.本题解题时的一般步骤:①画数轴;②描点;③有序排列;④不等号连接.利用数轴比较有理数的大小时,关键是每个数的位置必须正确确定.解:如图所示,-4<-212<-0.5<0<3<+412.4.利用数轴比较含有字母的有理数的大小“数”可准确澄清“形”的模糊,“形”能直观启迪“数”的计算,利用数轴这一工具,加强数形结合的训练可沟通知识间的联系,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.含有字母的有理数的大小本来是不确定的,例如字母a可以表示任意有理数,但是只要把字母的位置确定在数轴上,它们的大小关系就能确定.【例4】有理数a,b,c在数轴上的位置如图所示,试比较a,-a,b,-b,c,-c,0的大小,并用“<”连接.分析:观察数轴知a<0,b<0,c>0;根据绝对值的意义,得|a|>|b|>|c|;根据相反数的几何意义,可以把a,-a,b,-b,c,-c,0都表示在数轴上,从而利用数轴比较大小.解:把a,-a,b,-b,c,-c,0表示在数轴上,如图所示:所以a<b<-c<0<c<-b<-a.5.有理数大小比较的拓展有理数的大小比较是初中数学的一个重要内容.有理数的大小比较常规的方法有很多,这里再介绍两种常用的方法.(1)差值比较法:设a,b是任意两数,则a-b>0?a>b;a-b<0?a<b;a-b=0?a =b.(2)商值比较法:设a,b是任意两个正数,则ab>1⇔a>b;ab=1⇔a=b;ab<1⇔a<b.【例5-1】 比较5251与2627的大小. 分析:计算5251与2627的商,再用商与1进行比较.若大于1则被除数大于除数;若小于1则被除数小于除数.解:因为5251÷2627=5251×2726=5451>1,所以5251>2627. 【例5-2】 比较13与0.3的大小. 分析:计算13与0.3的差.若大于零,则被减数大于减数;若小于零,则被减数小于减数;若等于零,则两数相等.解:因为13-0.3=1030-930=130>0,所以13>0.3.。
有理数运算常用的技巧与方法

有理数运算常用的技巧与方法(含例题和解析)有理数及其运算是整个数与代数的基础,有关式的所有运算都是建立在数的运算基础上,深刻理解有理数相关概念,掌握一定的有理数运算技能是数与代数学习的基础。
有理数的运算不同于算术数的运算,这是因为有理数的运算每一步要确定符号,有理数的运算很多是字母运算,也就是常说的符号演算。
运算能力是运算技能和推理能力的结合,这就要求我们既能正确地算出结果,又善于观察问题的结构特点,选择合理的运算路径,提高运算速度。
有理数运算常用的技巧与方法有:利用运算律;以符代数;恰当分组;裂项相消;分解相约;错位相减等。
接下来,通过6道例题的解析,我们来共同体会数感是如何帮助人们利用灵活的方法作出数学判断,为解决复杂的问题提出有用的策略的!一、由于正负数、相反数、倒数的引入,加减法可以统一为加法,乘除法可以统一为乘法,此外,我们对运算的观念得以改变。
二、一些计算题涉及的数常常个数多、数字大,若能恰当处理,则能化难为易,常用的数字处理方法有:倒序相加、考虑一般式、利用公式、字母代换等。
三、例4通过构造图形,直观形象地解释了公式,验证了定理,在一定程度上,丰富了我们解决问题的策略。
你能用其他方法求例4的值吗?四、玻利亚在《怎样解题》一书中曾说:“没有任何一个题目是彻底完成的了,总还会有事情可以做,在经过充分的研究和洞察后,我们可以对问题有更深刻的理解” 对于例5,我们可进一步思考:在1,2,…,n(n个连续非负整数)前面任意添上正号和负号,求其非负和的最小值,需讨论,有兴趣的读者不妨一试。
五、类比是一种推理方法,根据两种事物在某些特征上的相似,作出它们在其他特征上也可能相似的结论。
数学学习中,类比思想的运用有下列常见情形:1、概念的类比2、方法的类比3、结构的模型的类比4、与简单问题的类比5、低维与高维的类比6、从特殊到一般的类比与推介等。
有理数的计算方法与技巧

有理数的计算方法与技巧
1. 嘿,你知道吗,有理数计算有个超棒的方法叫凑整法!就好像搭积木一样,把能凑成整数的数字放在一块儿。
比如算 37+63,这不是很明显能凑成 100 嘛!这样计算起来多轻松呀,是不是很妙啊?
2. 还有哦,转化法也很厉害呀!把分数呀小数呀转化成容易计算的形式。
比如说不就等于四分之一嘛,这样一转换,计算就简单多啦。
就像给数字变个魔法一样,多有趣呀!
3. 哇塞,裂项相消法也绝对不能错过!当遇到那种一连串可以拆分的式子,就像拆礼物一样把它拆开。
比如算 1/2+1/6+1/12,把它们拆成
1/(12)+1/(23)+1/(34),然后一消,结果就出来啦,神奇吧!
4. 特殊值法也超好用的呀!有时候不用费劲去算复杂的式子,找个特殊值代入试试。
比如说要研究一个式子的规律,随便找个方便的数带进去,不就大概能知道啦,多快捷呀!
5. 整体代入法也非常酷哦!当式子中有相同的部分,就像发现宝藏一样把它拎出来整体代入。
比如前面算出一个值后面又用到,直接代入,多省力呀!
6. 倒推法有时候也能派上大用场呢!从结果反推回去找答案。
就好像走迷宫从出口往入口找路一样,是不是很特别啊!
7. 分类讨论法也很关键呢!根据不同情况分别去算。
好比走不同的路去寻找答案,每一条路都可能有惊喜呢!
总之,有理数的计算方法和技巧那可真是丰富多彩呀,掌握了这些,计算起来就像玩游戏一样有趣又轻松!。
方法技巧篇1 有理数

方法技巧篇一有理数一、有理数大小的比较方法(1)作差法例1 比较31与0.33的大小.(2)赋值法例2 已知a 、b 、c 都是有理数,且a >b >c ,那么下列式子正确的是( )A .ab >bcB .a +b >b +cC .a -b >b -c D.cb c a >(3)绝对值法、作商法、同分母法、同分子法例3 比较65-与75-的大小.二、有理数混合运算的运算技巧(1)转化法例1 计算:)23(6.175.11634.0)32(-⨯⨯÷⨯÷-(2)凑整法例2 计算:3155.38.3544322)213(-+-+--(3)分拆法例3 计算:2124312329615++--(4)巧用运算律例4 计算:685.3685.1)4316161(48⨯+⨯-+--⨯-(5)巧提因式法例5 计算:3005200520052003200330052003200420034008200220034004200322⨯+⨯-⨯-⨯-⨯+⨯-.(6)字母代换法例6 计算 2006×20042003-2004×20062006.(7)分组结合法例7 计算 1+2+3+4-5-6+7+8-9-10+11+12-13-14+15+…+1992-1993-1994+1995.(8)前后相约法例8 2001减去它的21,再减去剩余的31,再减去剩余的41,…,依次类推,一直减去剩余的20011,那么最后剩余的数是______.(9)数形结合法例9 在数学活动中,小明为了求n 2121212121432+++++ 的值(结果用n 表示),设计如图所示的几何图形.请你利用这个几何图形求出n21...21212121432+++++的值.(10)“借鸡生蛋”法例10 计算:641321161814121+++++*(11)拆项相消法例11 已知|ab-2|与|b-1|互为相反数,试求值:++++)1)(1(11b a ab )2009)(2009(1...)2)(2(1++++++b a b a .*(12)反序相加法例12 计算:...)54535251()434241()3231(21++++++++++)60596058 (60)2601(+++++.三、数字规律题的解法(1)数字规律探索问题例17 一个数表如下(表中下一行中的数的个数是上一行中数的个数的2倍): 第1行1 第2行2 3 第3行 4 5 6 7则第6行中的最后一个数为( )A .31B .63C .127D .255(2)数阵规律探索问题例18 把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围成的一列,从上至下依次为1、5、13、25、…,则第10个数为______.例19 把5、6、7、8、9、10、11这七个数,分别填入图中各个○内,使每条线段上的三个○内数的和相等.四、分类讨论思想例l 比较5a 与3a 的大小.例2 五个有理数a 、b 、c 、d 、e 满足abcde abcde -=||,试求++=b b a a s ||||e e d d c c ||||||++的最大值.五、数形结合思想例3 实数a 、b 在数轴上的位置如图所示,则化简代数式a b a -+||的结果是( )A.2a +bB.2aC.aD.b例4 如图,点A 、B 在数轴上对应的实数分别为m 、n ,则A 、B 间的距离是______.(用含m 、n 的式子表示)六、化归思想(1)将陌生的问题转化为熟悉的问题例5 现规定一种新运算“*”,a *b =ab -a +b ,例如3*2=3×2-3+2=5,则21*3=______.(2)将复杂的问题转化为简单的问题例6 计算:3333331094321++++++ .七、特殊化的思想方法例7 已知a 、b 是有理数,且ab<0.试比较||b a +、||b a -、||||b a +、||||||b a -的大小.八、整体思想例8 若a a -=-2|2|,求a 的取值范围.。
有理数的大小比较

有理数的大小比较有理数是数学中的一类数,它可以表示成两个整数的比值,也就是分数形式。
有理数包括正整数、零、负整数和分数。
在数学中,有理数的大小比较是一个重要的议题。
下面我们来详细探讨一下有理数大小比较的方法和技巧。
一、有理数的绝对值在有理数中,绝对值表示数字的大小,它是一个非常重要的数学概念。
对于正有理数来说,其绝对值就是该数自身。
而对于负有理数来说,其绝对值是该数的相反数。
例如,-5的绝对值是5。
对于两个不同的有理数,要判断它们的大小关系,首先可以比较它们的绝对值大小,绝对值大的数就是更大的数。
例如,|-3|比|2|大,所以-3比2小。
二、同分母有理数的大小比较同分母有理数之间很容易比较大小,因为它们的分母相同,只需要比较分子大小即可。
例如,比较1/3和2/3的大小,只需要比较1和2的大小即可发现2/3比1/3大。
同分母的有理数比较大小时,可以采取扩分的方法,将两个有理数的分母都扩大到相同的数,然后比较两数的分子大小,分子大的就是更大的数。
例如,比较2/5和7/5的大小,将它们的分母都扩大到10,得到4/10和14/10,再比较它们的分子大小,会发现14/10比4/10大,因此7/5比2/5大。
三、通分后有理数的大小比较对于分母不同的有理数,要比较它们的大小关系,就需要将它们通分,然后比较分子的大小。
如果两个有理数的分母不同,通分之后它们的大小关系就不一定了,因此我们需要将它们转化为同分母之后再进行比较。
通分的方法是将两个有理数的分母分别乘上另一个有理数的分子和分母,使它们的分母相等,然后比较两个有理数的分子的大小。
比较大小时,分子大的就是更大的数。
例如,比较2/3和3/5的大小,将它们通分,得到10/15和9/15,再比较它们的分子大小,就会发现2/3比3/5大。
四、负有理数的大小比较对于两个负有理数的大小比较可以采用以下方法:1. 绝对值比较法,即比较它们的绝对值。
2. 正数比较法,将两个负有理数分别取它们的相反数,转化为正数,然后比较它们的大小。
(完整版)初一有理数的运算法则

一、有理数的运算顺序:有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。
有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
在遇到相同类型的运算时,应从左往右运算二、有理数的运算:1)有理数加减法:1、同号相加和取相同的符号,并把绝对值相加例如:+2+3=5 (-2)+(-3)=-52、异号相加和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值例如:+2+(-3)=-1 (-2)+3=1一个数与零相加仍得这个数,两个互为相反数相加和为零3、减去一个数等于加上这个数的相反数例如:+2-(+3)=2+(-3)=-1 (-2)-(-3)=-2+3=14、异号相减可理解为同号相加例如:+2-(-3)=2+3=5 (-2)-(+3)=-2-3=-5 补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;+(4+5+6)=4+5+6 +(4-5+6)=4-5+6括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
-(4+5+6)=-4-5-6 -(4-5+6)=-4+5-6添括号法则:在“+”号后边添括号,括到括号内的各项都不变;4+5+6=4+(5+6) 4-5+6-7=(4-5+6)-7=(4-5)+6-7在“-”号后边添括号,括到括号内的各项都要变号。
4-5+6=4-(5-6) 4-5+6-7=4-(5-6+7)2)有理数乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘例如:(+2)×(+3)=6 (-2)×(-3)=6 (+2)×(-3)=-6 (-2)×(+3)=-62、任何数与零相乘都得零3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的大小比较的方法与技巧数的大小比较,是数学中经常遇到的问题,现介绍几种数的大小比较的方法和技巧.
1.作差法
比较两个数的大小,可以先求出两数的差,看差大于零、等于零或小于零,从而确定两个数的大小.即若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
例1已知A=987654321×987654324,B= 987654323×987654322,试比较A和B的大小.
解:设987654321=m,则A=m(m+3),B=(m+1)(m+2)
∵A-B=m(m+3)-(m+1)(m+2)
=m2+3m-m2-3m-2
=-2<0。
∴A<B。
2.作商法
比较两个正数的大小,可以先求出这两个数的商,看商大于1、等于1或小于1,从而确定两个数的大小.
3.倒数法
比较两个数的大小,可以先求出其倒数,视其倒数的大小,从而确定这两个数的大小.
4.变形法
比较大小,有时可以通过把这些数适当地变形,再进行比较.
分析:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.
例6比较355、444、533的大小.
解∵ 355=(35)11=24311
444=(44)11=25611
533=(53)11=12511
∴ 444>355>533
5、利用有理数大小的比较法则
有理数大小的比较法则为:正数都大于零,负数都小于零;正数大于一切负数;两个负数,绝对值大的反而小.
例7
特别需注意的一点,就是关于两个负数大小的比较,其一般步骤如下:(1)分别求出两个已知负数的绝对值;(2)比较两个绝对值的大小;(3)根据两个负数比较大小的法则得出结果.
例8
解:
6、利用数轴比较法
在数轴上表示的两个数,右边的数总比左边的数大.根据这一点可把须比较的有理数在数轴上表示出来,通过数轴判断两数的大小.
例9已知:a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.
解:∵a>0,b<0,说明表示a、b的点分别在原点的右边和左边,又由|b|<a知表示a的点到原点的距离大于表示b的点到原点的距离,则四个数在数轴上表示如图:
故-a<b<-b<a.
7、注意对字母的分类讨论法
例10比较a与2a的大小.
解:a表示的数可分为正数、零、负数三种情况:当a>0时,a<2a;
当a=0时,a=2a;
当a<0时,a>2a.。