绝对值的意义及应用(最新整理)

合集下载

《绝对值》知识简要与举例

《绝对值》知识简要与举例

《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。

绝对值和反比例函数的应用

绝对值和反比例函数的应用

绝对值和反比例函数的应用在数学中,绝对值函数和反比例函数是两个非常重要的函数。

在实际生活中,我们可以看到这两种函数被广泛应用,并起到了非常重要的作用。

本文将介绍绝对值和反比例函数的定义和性质,以及它们在实际中的应用。

一、绝对值函数绝对值函数是指以0为中心,向两边对称的函数。

它的函数表达式为:f(x) = |x|其中|x|表示x的绝对值。

绝对值函数的图像是一条以原点为中心,斜率为1的直线,也就是一条下倾斜45度的直线。

绝对值函数的应用非常广泛。

例如在测量误差方面,我们可以使用绝对值函数来计算误差。

又如在金融投资中,我们经常会遇到股票价格涨跌情况,这种上涨和下跌是在绝对值函数的作用下进行的。

二、反比例函数反比例函数是指一个函数,它与它的自变量的倒数成反比例关系。

它的函数表达式如下:f(x) = k/x其中k为常数。

反比例函数的图像是一条由原点开始的开口向右的双曲线。

反比例函数在实际生活中也非常常见。

例如,在公路上行驶的车速与所用时间的关系就是反比例关系。

又如,在制造业中,原材料用量与生产数量的关系也是反比例关系。

三、在实际生活中,绝对值和反比例函数被广泛应用。

下面我们将分别以两者为例进一步介绍它们在实际中的应用。

(一)绝对值函数的应用1、测量误差测量误差是指在测量中由于各种因素而引起的误差。

这种误差会对测量结果造成影响。

例如,在香港体温检测站,为了确保检测准确度,通常会在实际温度值的上下0.5度之间通行。

在测量误差的情况下,我们可以使用绝对值函数来计算误差。

例如,当我们的测量结果为x,实际值为y时,误差就可以表示为:E = | x - y |这就是绝对值函数的应用之一。

2、股票涨跌股票涨跌是指股票价格上涨或下跌的情况。

在金融投资中,股票价格的涨跌是非常重要的。

当股票价格上涨时,投资者可以获得收益,反之则会亏损。

在股票涨跌的情况下,我们同样可以使用绝对值函数来计算收益或亏损。

例如,当我们买入股票的价格为x,卖出股票的价格为y时,我们所获得的收益或亏损就可以表示为:G = (y - x) / x * 100%其中,x为买入价格,y为卖出价格。

1.2.4绝对值-绝对值的意义和性质(教案)

1.2.4绝对值-绝对值的意义和性质(教案)
3.重点难点解析:在讲授过程中,我会特别强调绝对值的定义和性质这两个重点。对于难点部分,比如理解负数的绝对值,我会通过数轴上的点来举例和比较,帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与绝对值相关的实际问题,比如计算温度变化、海拔高度差等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用数轴模型来演示绝对值的基本原理。
举例:解释为什么负数的绝对值是它的相反数,可以通过数轴上的点来形象说明。
(2)绝对值性质的运用:学生可能难以理解如何运用性质解决问题,需要通过具体题目进行讲解。
举例:说明如何利用绝对值的性质比较两个负数的大小。
(3)绝对值在实际问题中的应用:学生可能不知道如何将绝对值应用于实际问题,需要给出具体情境,引导学生思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值是一个数到原点的距离,它是非负的,对于任何实数a,绝对值记作|a|,其值要么是a本身(如果a是正数或0),要么是a的相反数(如果a是负数)。
2.案例分析:接下来,我们来看一个具体的案例。比如,数轴上点-3和点2的位置,我们可以通过计算绝对值来比较它们距离原点的远近,即|-3|=3,|2|=2。
举例:|-3| = 3,说明绝对值具有非负性;|-(-3)| = |3|,说明绝对值具有对称性。
(3)应用绝对值解决实际问题:如求两个数的距离、比较大小等,这是绝对值知识在实际中的运用。
举例:比较|-2|和|3|的大小,求点-2和点3在数轴上的距离。
2.教学难点
(1)绝对值定义的理解:学生容易混淆正数、负数和0的绝对值,需要通过实例帮助学生理解。
在小组讨论环节,我观察到学生们在分享成果时能够较好地表达自己的观点,这说明他们已经能够在一定程度上掌握绝对值的运用。但是,我也发现有些小组在讨论时过于依赖个别学生的意见,其他成员的参与度不高。为了提高全体学生的积极性,我考虑在下次的讨论中加入更多互动性强的活动,鼓励每个学生都参与到讨论中来。

初中数学知识点:绝对值

初中数学知识点:绝对值

初中数学知识点:绝对值在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。

绝对值用“||”来表示。

在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。

绝对值的意义:1、几何的意义:在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

2、代数的意义:非负数(正数和0,)非负数的绝对值是它本身,非正数的绝对值是它的相反数。

互为相反数的两个数的绝对值相等。

a的绝对值用“|a |”表示.读作“a的绝对值”。

实数a的绝对值永远是非负数,即|a |≥0。

互为相反数的两个数的绝对值相等,即|-a|=|a|。

若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;②绝对值等于0的数只有一个,就是0;③绝对值等于同一个正数的数有两个,这两个数互为相反数;④互为相反数的两个数的绝对值相等。

绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。

①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

(完整版)绝对值的意义及应用

(完整版)绝对值的意义及应用

绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。

对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

四. 含绝对值问题的有效处理方法1. 运用绝对值概念。

即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。

解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。

绝对值的意义及应用

绝对值的意义及应用

绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。

对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

四. 含绝对值问题的有效处理方法1. 运用绝对值概念。

即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。

解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。

绝对值全面分析

绝对值全面分析

一、绝对值的意义及其化简(1)绝对值的几何意义:一个数a 的绝对值就是数轴上表示a 的点与原点的距离。

数a 的绝对值记作a(2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(3)绝对值的性质:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩,②(0)(0)a a a a a ≥⎧=⎨-<⎩或(0)(0)a a a a a >⎧=⎨-≤⎩(4)绝对值其他的重要性质:①任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥且a a ≥- ②若a b =,则a b =或a b =- ③a b a b ⋅=⋅,a ab b=(0b ≠) ④ 222a a a ==二、绝对值的非负性(1)非负性:若有几个非负数的和为0,那么这几个非负数均为0 (2) 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c = (3) 若 a b b += ,则 0a =,0b ≥ (4) 若=1a a则0a >= - 1a a则0a < 对于任意非零实数a ,= 1a a ±(5) 若 2()a +2()b = 0 ,则0a =,0b = (6) 若 2()0a b += ,则0a =,0b =三、绝对值的化简零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.四、绝对值的几何意义(1)a 的几何意义:在数轴上,表示这个数的点离开原点的距离.(2)a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.绝对值全面分析知识讲解一、绝对值的意义【例1】 在数轴上表示数a 的点到原点的距离是13,那么a = 【变式练习】绝对值等于2的数有 个,是【变式练习】绝对值不大于7且大于4的整数有 个,是【例2】 下列说法正确的有( )①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等; ③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数. A .②④⑤⑥ B .③⑤ C .③④⑤ D .③⑤⑥【例3】 已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a二、绝对值的化简【例4】 计算:3π- = ,若23x -=,则x = 【变式练习】若220x x -+-=,则x 的取值范围是【变式练习】已知:52a b ==,,且a b <;分别求a b ,的值【例5】 如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【变式练习】已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=同步练习【变式练习】数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--【例6】 设a,b,c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-【例7】 已知a .b 互为相反数,且|a -b |=6,则|b -1|的值为( )A .2B .2或3C .4D .2或4【例8】 已知:abc ≠0,且M =abca b c++,当a ,b ,c 取不同值时,M 有 ____种不同可能. 当a 、b 、c 都是正数时,M = ______;当a 、b 、c 中有一个负数时,则M = ________; 当a 、b 、c 中有2个负数时,则M = ________; 当a 、b 、c 都是负数时,M =__________ .三、绝对值的非负性【例9】 若42a b -=-+,则 _______a b +=【例10】2+50a b --=,则 _______ab = 【变式练习】若7322102m n p ++-+-=,则23_______p n m +=+ 【例11】若()2130a b -++=,则a b +=【例12】设a,b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab =【变式练习】已知2()55a b b b +++=+,且210a b --=,那么ab =______四、零点分段法【例13】阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=- 综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥12x x ++-的最小值为两零点之间的距离,即12x -≤≤时12x x ++-=3为最小值通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-,并求出最小值五、绝对值的几何意义拓展【例14】m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离⑴ x 的几何意义是数轴上表示 的点与 之间的距离; 0-(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=, 则x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=, 则x = .⑸ 当1x =-时,则22x x -++=【例15】15x x -+- 的最小值为_______,此时x 的范围为______ 【变式练习】23x x ++- 的最小值为_______,此时x 的范围为______ 【例16】324x x ++-+的最小值是_______【变式练习】化简12m m m +-+-的值【变式练习】已知m 是实数,求2468m m m m -+-+-+-的最小值【例17】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?【变式练习】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P 点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?【习题1】若a 的绝对值是12,则a 的值是( )A .2B .-2C .12D .12±【习题2】若|x |=-x ,则x 一定是( )A .负数B .负数或零C .零D .正数【习题3】如果|x -1|=1-x ,那么( )A .x <1B .x >1C .x ≤1D .x ≥1【习题4】若|a -3|=2,则a +3的值为( )A .5B .8C .5或1D .8或4FEDCBPA 7A 6A 5A 4A 3A 2A 1课后练习【习题5】若x <2,则|x -2|+|2+x |=________________【习题6】绝对值小于6的所有整数的和与积分别是__________【习题7】如图所示,a .b 是有理数,则式子|a |+|b |+|a +b |+|b -a |化简的结果为 __________【习题9】如图,有理数x ,y 在数轴上的位置如图,化简:|y-x |-3|y +1|-|x |= ________【习题10】若3230x y -++=,则x的值是多少?【习题11】4x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若42x -=,则x = .【习题12】化简:212x x x -++-ba-11yx-121。

绝对值的性质及运用

绝对值的性质及运用

绝对值的性质及运用知识精讲绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值号.②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a的绝对值:①(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩②(0)(0)a aaa a≥⎧=⎨-<⎩③(0)(0)a aaa a>⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c++=,则0a=,0b=,0c=绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a≥,且a a≥-;(2)若a b=,则a b=或a b=-;(3)ab a b=⋅;aab b=(0)b≠;(4)222||||a a a==;a的几何意义:在数轴上,表示这个数的点离开原点的距离.a b-的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.【例题精讲】模块一、绝对值的性质绝对值【例1】到数轴原点的距离是2的点表示的数是( )A .±2B .2C .-2D .4【例2】下列说法正确的有( )①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A .②④⑤⑥B .③⑤C .③④⑤D .③⑤⑥【例3】如果a 的绝对值是2,那么a 是( )A .2B .-2C .±2D .12±【例4】若a <0,则4a +7|a |等于( )A .11aB .-11aC .-3aD .3a【例5】一个数与这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例6】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例7】若1-=x x,则x 是( ) A .正数 B .负数 C .非负数 D .非正数【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例9】已知a .b 互为相反数,且|a -b |=6,则|b -1|的值为( )A .2B .2或3C .4D .2或4【例10】a <0,ab <0,计算|b -a +1|-|a -b -5|,结果为( )A .6B .-4C .-2a +2b +6D .2a-2b-6【例11】若|x +y |=y -x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x =0,y ≥0或y =0,x ≤0【例12】已知:x <0<z ,xy >0,且|y |>|z |>|x |,那么|x +z |+|y +z |-|x -y |的值( )A .是正数B .是负数C .是零D .不能确定符号【例13】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m |>m ,则m <0;(4)若|a |>|b |,则a >b ,其中正确的有( )A .(1)(2)(3)B .(1)(2)(4)C .(1)(3)(4)D .(2)(3)(4)【例14】已知a ,b ,c 为三个有理数,它们在数轴上的对应位置如图所示,则|c -b |-|b -a |-|a -c |= _________c b a 0-11【例15】若x <-2,则|1-|1+x||=______若|a|=-a ,则|a-1|-|a-2|= ________【例16】计算111111 (23220072006)-+-++-= .【例17】已知数,,a b c 的大小关系如图所示,则下列各式:①()0b a c ++->;②0)(>+--c b a ;③1=++c c b b a a ;④0>-a bc ; ⑤b c a b c b a 2-=-++--.其中正确的有 .(请填写番号)c a 0b【巩固】已知:abc ≠0,且M =a b c a b c ++,当a ,b ,c 取不同值时,M 有 ____种不同可能. 当a 、b 、c 都是正数时,M = ______;当a 、b 、c 中有一个负数时,则M = ________;当a 、b 、c 中有2个负数时,则M = ________;当a 、b 、c 都是负数时,M =__________ .模块二 绝对值的非负性1. 非负性:若有几个非负数的和为0,那么这几个非负数均为02. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c =【例1】 若42a b -=-+,则_______a b +=【巩固】若7322102m n p ++-+-=,则23_______p n m +=+【例2】()2120a b ++-=,分别求a b ,的值模块三 零点分段法1. 零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.【例1】阅读下列材料并解决相关问题: 我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+⑵当12x -<≤时,原式()123x x =+--=⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题:(1)别求出2x +和4x -的零点值(2)化简代数式24x x ++-【巩固】化简12x x +++【巩固】化简12m m m+-+-的值【巩固】化简523x x++-.【课堂检测】1.若a的绝对值是12,则a的值是()A.2 B.-2 C.12D.12±2.若|x|=-x,则x一定是()A.负数B.负数或零C.零D.正数3.如果|x-1|=1-x,那么()A.x<1 B.x>1 C.x≤1D.x≥14.若|a-3|=2,则a+3的值为()A.5 B.8 C.5或1 D.8或45.若x<2,则|x-2|+|2+x|=_______________6.绝对值小于6的所有整数的和与积分别是__________7.如图所示,a.b是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为__________ba0-118.已知|x|=2,|y|=3,且xy<0,则x+y的值为_________9.化简代数式24x x++-【家庭作业】1.-19的绝对值是________2.如果|-a|=-a,则a的取值范围是(A.a>0 B.a≥0C.a≤0D.a<03.绝对值大于1且不大于5的整数有__________个.4.绝对值最小的有理数是_________.绝对值等于本身的数是________.5.当x __________时,|2-x|=x-2.6.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________y x-1217.若3230x y-++=,则yx的值是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值的意义及应用
绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首
先必须弄清绝对值的意义和性质。

对于数x而言,它的绝对值表示为:|x|.
一. 绝对值的实质:
正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即
也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:
一个数的绝对值就是数轴上表示这个数的点到原点的距离。

例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )
A.2a+3b-c B.3b-c C.b+c D.c-b
(第二届“希望杯”数学邀请赛初一试题)
解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.
所以原式=-a+b+a+b-b+c=b+c,故应选(C).
三. 绝对值的性质:
1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤
|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只
有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

四. 含绝对值问题的有效处理方法
1. 运用绝对值概念。

即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利
用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0,
求:(1)x+2的最大值;(2)6-x的最小值。

解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)
根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,
∴x-2≤0,即x≤2,这表示x的最大值为2
(1)当x=2时,x+2得最大值2+2=4;
(2)当x=2时,6-x得最小值6-2=4
2. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。

例3. 已知|x-2|+x与x-2+|x|互为相反数,求x的最大值.
解:由题意得(|x-2|+x)+(x-2+|x|)=0,整理得|x-2|+|x|+2x-2=0
令|x-2|=0,得x=2,令|x|=0,得x=0
以0,2为分界点,分为三段讨论:
(1)x≥2时,原方程化为x-2+x+2x-2=0,解得x=1,因不在x≥2的范围内,舍去。

(2)0≤x<2时,原方程化为2-x+x+2x-2=0,解得x=0
(3)x<0时,原方程化为2-x-x+2x-2=0,从而得x<0
综合(1)、(2)、(3)知x≤0,所以x的最大值为0
3. 整体参与运算过程.即整体配凑,借用已知条件确定绝对值里代数式的正负,再用绝对值定义去掉绝对值符号进行运算。

例4. 若|a-2|=2-a,求a的取值范围。

解:根据已知条件等式的结构特征,我们把a-2看作一个整体,那么原式变形为|a-2|=-(a-2),又由绝对值概念知a-2≤0,故a的取值范围是a≤2
4. 运用绝对值的几何意义.即通过观察图形确定绝对值里代数式的正负,再用绝对值定义去掉绝对值的符号进行运算.
例5. 求满足关系式|x-3|-|x+1|=4的x的取值范围.
解:原式可化为|x-3|-|x-(-1)|=4
它表示在数轴上点x到点3的距离与到点-1的距离的差为4
由图可知,小于等于-1的范围内的x的所有值都满足这一要求。

很容易确定a+c>0,b+c<0,a-b>0,由绝对值的概念,
原式=(a+c)-(b+c)-(a-b)=a+c-b-c-a+b=0
用数轴上的点来表示有理数,用这样的点与原点的距离来表示有理数的绝对值,这里运用了数形结合的思想。

相关文档
最新文档