绝对值应用(绝对值的几何意义)(北师版)(含答案)
阶段拔尖专训4 绝对值的常见应用

当1< x <3时,原式=( x -1)+(3- x )=2;
当 x ≤1时,原式=(1- x )+(3- x )=4-2 x .
【点拨】
要去掉两个绝对值的符号,就要同时确定两个绝对值
里的式子的正负号,可以使用零点分段法,用分类讨论的
a , b 为正, c 为负.
||
+1+(-1)+(-1)=0;
1
2
3
4
5
+
||
6
7
8
+
9
||
10
+
||
=1
阶段拔尖专训
(3)当 a , b , c 中,有一个正数,两个负数时,不妨设 a
为正, b , c 为负.
||
+
||
+
||
+
||
=1
+(-1)+(-1)+1=0;
-3
2 之间的距离;| x +3|表示 x 与
之间的距离;
1
2
3
4
5
6
7
8
9
10
阶段拔尖专训
(3)当| x -2|+| x +3|=5时, x 可取整数 2(答案不
不唯一) .(写出一个符合条件的整数 x 即可)
【点拨】
因为| x -2|+| x +3|=5表示数轴上有理数 x 所
对应的点到2和-3所对应的点的距离之和为5,所以 x 在-
思想方法来解.
1
2
3
4
5
6
7
8
9
10
七年级数学上册难点突破04绝对值试题含解析新版北师大版

专题04 绝对值【专题说明】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.【知识点总结】一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下: 两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号 正数大于负数 (0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【精典例题】一、绝对值的概念1、求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0因为1302⎛⎫-->⎪⎝⎭,所以113322⎛⎫--=⎪⎝⎭【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.2、已知一个数的绝对值等于2009,则这个数是________.【答案】2009或-2009【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法都要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.3、计算:(1)145--(2)|-4|+|3|+|0| (3)-|+(-8)|【答案与解析】运用绝对值意义先求出各个绝对值再计算结果.(1)111444555⎡⎤⎛⎫--=---=-⎪⎢⎥⎝⎭⎣⎦,(2)|-4|+|3|+|0|=4+3+0=7,(3)-|+(-8)|=-[-(-8)]=-8.【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解,一种是利用绝对值的代数意义求解,后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的代数意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.4、如果|x|=6,|y|=4,且x<y.试求x、y的值.【思路点拨】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案与解析】因为|x|=6,所以x=6或x=-6;因为|y|=4,所以y=4或y=-4;由于x<y,故x只能是-6,因此x=-6,y=±4.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x=-6,y=±4,就是x=-6,y=4或x=-6,y=-4.二、比较大小1、比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ;(4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>, 所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【点评】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.2、比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)45-与34--;(4)π-与| 3.14|--. 【思路点拨】先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】 (1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:3344--=-.这是两个负数比较大小,因为44165520-==,33154420-==,且16152020>.所以4354-<--. (4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.三、绝对值非负性的应用1、已知|2-m|+|n-3|=0,试求m-2n的值.【思路点拨】由|a|≥0即绝对值的非负性可知,|2-m|≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.2、已知a、b为有理数,且满足:12,则a=_______,b=________.【答案与解析】由,,,可得∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.四、含有字母的绝对值的化简1、把下列各式去掉绝对值的符号.(1)|a-4|(a≥4);(2)|5-b|(b>5).【答案与解析】(1)∵ a≥4,∴a-4≥0,∴ |a-4|=a-4.(2)∵ b>5,∴ 5-b<0,∴ |5-b|=-(5-b)=b-5.【总结升华】由字母的取值范围来判断绝对值里面的符号情况,再根据绝对值的意义去掉绝对值的符号.五、绝对值的实际应用1、正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.。
绝对值的几何意义课件北师大版七年级数学上册(1)

---第2讲-绝对值
日期:
科目:数学
【专题】
知识点点屋
(1) (2)
第一节 实数(含二次根式)
【分析和思考】 思考一: 解法一:∵
∴ ∴
返回目录
第一节 实数(含二次根式)
思考二:零点分段讨论法解题
思考:
返回目录
6
第一节 实数(含二次根式) 课课清 学后练
返回目录
第一节 实数(含二次根式) 课课清 学后练
返回目录
第一节 实数(含二次根式)
返回目录
【解题分析】本题 何意义解题。 第一步 找点:
绝对值的几
第二步 取x值:
☻ ☻ ☻ ☻ ☻☻ ☻
☻
-3 -2 -1 0 1 2 3
“单数取中间点,双数取中间区域”
第一节 实数(含二次根式)
解:
12
☻ ☻ ☻ ☻ ☻☻ ☻
解:
999≥ ≥998 x=999 999≥ ≥998
返回目录
1☻
2☻
☻☻☻ 3 998 999
☻ 1996
☻
第一节 实数(含二次根式) 课课清 学后练
返回目录
第一节 实数(含二次根式)
2、
返回目录
第一节 实数(含二次根式)
返回目录
绝对值最值解题总结
①绝对值非负性: ②零点分段讨论法: (局限于项数少的情况下使用) ③绝对值几何意义解题法:
分析思考一: 第一步:找点
绝对值的几何意义解题
第二步:取x值
思考?
-6
2
零点分段讨论法
返回目录
第一节 实数(含二次根式) 课课清 学后练
返回目录
第一节 实数(含二次根式)
七年级数学寒假专题-绝对值北师大版

七年级寒假专题:绝对值北师大版【本讲教育信息】一. 教学内容:寒假专题一:绝对值二. 重点、难点:绝对值是中学数学的重要概念,有理数加减法是整式和其它运算的基础,它们是教学的重点,也是难点,如何突破这个难点,降低有理数的教学难度,提高有理数教学的效率,是我们面对的不得不深入思考的问题。
在教学有理数概念时,通过分析有理数的结构,明确有理数是由符号和绝对值组成的,从而引出绝对值概念,这样把有理数的绝对值与小学学习的数统一起来,以利于知识的迁移,也为突出符号教学开了头。
数轴通过分析把一个数用数轴上的点表示,明确一个数的符号决定表示该数的点在原点的哪一边,绝对值决定表示该数的点到原点的距离。
因此,我们说,一个数的绝对值就是数轴上表示这个数的点到原点的距离,有了绝对值概念,就可以用绝对值概念定义相反数即符号相反,绝对值相等的两个数(规定0的相反数为0),这比“只有符号不同的两个数互为相反数”更明确,清楚。
有理数的减法是转化为加法来计算的,实际上有理数的加法和减法本质上没有区别,都是代数和,因此,我们可以把加减法放在一起学习。
首先在学习相反数时,符号化简,“同号得正,异号得负”化简符号后,归纳出有理数加减法法则:两个有理数相加减,化简符号后,同号相加,取相同的符号,并把绝对值相加;异号相减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数的和为零。
一个数与零相加仍得这个数。
注意,无论加减,化简符号后看成是省略了加号只剩下符号和绝对值的式子。
如-3+(+2)化简为-3+2看成是-3与+2的和,省略了加号,读作-3加+2或-3与+2的和。
再如,-3-(+2)化简为-3-2,看成是-3与-2的和,省略了加号,读作-3加-2或-3与-2的和。
这样,计算-3-2就是同号相加,取相同的符号“-”,并把绝对值(这里的绝对值直接认同小学学习过的数)相加即3+2=5,结果是-5。
计算-3+2是异号相减,取绝对值(这里的绝对值直接认同小学学习过的数)大的符号“-”并用较大的绝对值减较小的绝对值即3-2=1,结果是-1。
初中数学北师大七年级上册第二章有理数及其运算-用绝对值的几何意义求最值PPT

n
台和第
(
n
台1)机床
2
2
n 台1 机床处 2
求|x-2|+|x+1|的最小值
试一试2: 当x取何值时,下列式子有最小值? (1)|x-1|+|x-2|+|x-3|+…|x-2020| (2)|x-1|+|x-2|+|x-3|+…|x-2021|
解:(1)当1010≤x≤1011时,原式取得最小值
(2)当x=1011时,原式取得最小值
数
形
结
分合
从 特 殊
类 讨 论
到
一
般
想 解答:
当-1≤x≤2时,原式取得最小值,最小值为3
求|x-2|+|x+1|的最小值
变式1:求|x-2|+|x-1|+|x+1|的最小值
解答:
A
-4 -3 -2 -1
CB
0 12 3 4
当x=1时,原式取得最小值,最小值为3
试一试1: 求|x+2|+|x|+|x-3|的最小值
-4 -3 -2 -1
求|x-2|+|x+1|的最小值
回顾
:
a
b
|a-b|的几何意义是:
数轴上表示数a与数b两点之间的距离
|x+1|=|x - (-1)|
P
A
PA=|x+1|
x
-1
数轴上表示数x与数-1的两点之间的距离
求|x-2|+|x+1|的最小值
问题分析:
数
形
找到一点P,使P到A、B的距离之和最小
绝对值几何意义的应用探究设计(一)1

绝对值几何意义的应用探究(一)成都石室冉云一、教学内容解析《绝对值》是七年级第二章《有理数及其运算》中第3节的内容,前面所学数轴是数学中数形结合的起点,绝对值概念的生成过程中更是在渗透数形结合的思想方法;同时,本节结合绝对值概念的几何意义,运用数形结合,将绝对值相关问题转化为绝对值几何意义来解决,从而还渗透了建模、化归的数学思想。
最值问题是阶段学生学习解决的一个难点问题,大多数学生理解起来都有难度。
于是很多教师在处理这节内容时候往往避难就易,很快带过。
而要解决以上问题,关键是要将绝对值的定义即几何意义理解吃透,利用“数形结合〞解决以上问题比拟方便!而本节内容对于最值问题的思考和探索,将为后面的有关学习打下根底。
二、学生学情分析x 的几何学生在新课阶段已经学习了绝对值的几何意义,知道了x,推广到a意义,以及两点间距离公式,多数学生能够解决含有一个绝对值的最小值问题,为这节课的学习奠定了知识根底。
但是涉及到绝对值的最值问题及动点问题时,都出现了“用字母表示数〞比拟抽象,局部学生理解起来有难度。
基于学生在阶段对线段有初步感知,本节课借助数轴将绝对值最值问题转化为线段问题解题直观形象,学生容易上手容易理解。
另一方面,我学生对于平板电脑的使用已经比拟熟练,所以整堂课借助平板、互动课堂、交互式白板等现代信息学技术手段辅助教学!三、教学目标设置1.能灵活的运用绝对值的几何意义解决绝对值的有关最值问题,初步体会转化和化归的数学思想;2.初步学会思考,逐步学会探究,训练学生思维的深度及有效性,体验数学活动的探究性和创造性;3. 借助数轴解决问题,开展学生图形思维,渗透“数形结合〞思想.4. 在教师的引导下学生层层深入探究,经历建立数学模型和提炼、归纳数学结论“建构知识〞的过程.教学重点:运用绝对值几何意义借助数轴解决绝对值和最小、差最大的问题。
教学难点:探究三个以上的绝对值和的最小及两个绝对值差最大问题四、教学方法〔1〕采用探究式为主的教学方法,通过问题引导,学生合作探究、小组交流,悟方法,得结论。
北师大数学七年级上册第二章绝对值

第02讲_绝对值知识图谱绝对值知识精讲一.非负性绝对值的定义一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作绝对值的代数意义绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.即:对于一个数a,例:若,则k需要满足什么条件?k-6与6-k互为相反数,故k-6是负数,k<6绝对值的非负性绝对值具有非负性.即对于任意实数a,总有.如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若,则,,.*非负性的应用:1、若多个非负数之和为0,则它们都为0(1)若,则a、b的值为多少?绝对值是非负数,故a-3=0,b+2=0,即a=3,b=-2(2)若,则m、n的值为多少?绝对值和平方数都是非负数,故m+7=0,n-9=0,即m=-7,n=9 2、若有最大值,则c的值为多少?越小,原式值越大,,故当=0,即c=-8时,原式有最大值2二.绝对值的几何意义三点剖析一.考点:绝对值的非负性、绝对值的几何意义.绝对值的计算1、 一个数的绝对值等于它的相反数的绝对值. 即对于任意实数a ,2、乘积的绝对值等于绝对值的乘积,商的绝对值等于绝对值的商. 即对于任意实数a 、b ,,3、绝对值内的非负因数或因式可以直接提到绝对值号外面.例如:,绝对值的几何意义数轴上一个数所对应的点到原点的距离.即的 几何意义就是数轴上表示数a 的点与原点的距离. 推而广之:代数式的 几何意义就是数轴上数x 、数a 所对应的两点之间的距离. 例:表示数m 到7的距离;表示数n 到-5的距离几何含义的应用1、在数轴上到3的距离为8的数字是?,故x=11或-52、已知,求的值,x -y 的值为6或2二.重难点:绝对值的非负性、绝对值的几何意义.三.易错点:1.一个数的绝对值,一定不小于它本身,也不小于它的相反数.即对于任意有理数a ,总有a a ≥,a a ≥-.2. 一个数的绝对值等于它的相反数的绝对值.即对于任意实数a ,a a =-. 3. 乘积的绝对值等于绝对值的乘积,商的绝对值等于绝对值的商.即对于任意实数a 、b ,ab a b =,a ab b =(0)b ≠.4. 绝对值内的非负因数或因式可以直接提到绝对值号外面. 例如:22a a =,22a b a b =.非负性例题1、 ﹣2的绝对值是( )A.﹣2B.﹣12C.2D.12【答案】 C【解析】 因为|﹣2|=2例题2、 已知一个数的绝对值是4,则这个数是 . 【答案】 ±4【解析】 绝对值是4的数有两个,4或﹣4. 例题3、 设a 是实数,则|a|﹣a 的值( ) A.可以是负数 B.不可能是负数 C.必是正数 D.可以是正数也可以是负数 【答案】 B【解析】 (1)a ≥0时,|a|﹣a=a ﹣a=0; (2)a <0时,|a|﹣a=﹣a ﹣a=﹣2a >0. 故选B .例题4、 当1<a <2时,代数式|a ﹣2|+|1﹣a|的值是( ) A.﹣1 B.1 C.3 D.﹣3 【答案】 B【解析】 当1<a <2时, |a ﹣2|+|1﹣a|=2﹣a+a ﹣1=1.例题5、 已知|a+2|+|b ﹣1|=0,则(a+b )﹣(b ﹣a )=______. 【答案】 -4【解析】 ∵|a+2|+|b ﹣1|=0,∴a+2=0,b ﹣1=0,即a=﹣2,b=1, 则原式=a+b ﹣b+a=2a=﹣4.例题6、 已知245310a b c -++++=,求a 、b 、c 的值. 【答案】 2a =,5b =-,13c =-.【解析】 由绝对值的非负性知,245310a b c -=+=+=.随练1、 若|a|=﹣a ,则实数a 在数轴上的对应点一定在( ) A.原点左侧 B.原点或原点左侧 C.原点右侧 D.原点或原点右侧【答案】 B【解析】 ∵|a|=﹣a , ∴a 一定是非正数,∴实数a 在数轴上的对应点一定在原点或原点左侧.随练2、 12-的绝对值是( )A.12-B.12C.2D.2-【答案】 B【解析】 1122-=绝对值的几何意义例题1、 如果a ,b ,c ,d 为互不相等的有理数,且1a c b c d b -=-=-=,那么a d -=__________. 【答案】 3【解析】 可通过数轴画出得a d -=3例题2、 (1)x 的几何意义是数轴上表示____的点与____之间的距离;x _____0x -(选填“>”,“=”或“<”) (2)3x -的几何意义是数轴上表示____的点与表示____的点之间的距离,若31x -=,则x =__________ (3)2x +的几何意义是数轴上表示____的点与表示____的点之间的距离,若22x +=,则x =__________ (4)数轴上表示x 的点与表示1-的点之间的距离可表示为__________【答案】 (1)x ;原点;=(2)x ;3;2或4(3)x ;2-;0或4-(4)1x + 【解析】 x a -的几何意义是数轴上表示x 的点与表示a 的点之间的距离例题3、 如果对于某一给定范围内的x 值,13p x x =++-为定值,则此定值为________,此时x 的取值范围是___________【答案】 4;13x -≤≤【解析】 利用绝对值的几何意义,结合数轴解题.当13x -≤≤时,13x x ++-为定值:()314--= 随练1、 若|a ﹣b|=b ﹣a ,且|a|=3,|b|=2,则(a+b )3的值为( ) A.1或125 B.﹣1 C.﹣125 D.﹣1或﹣125 【答案】 D【解析】 ∵|a ﹣b|=b ﹣a , ∴a <b ,∴a=﹣3,b=±2.(1)a=﹣3,b=﹣2时,(a+b )3=﹣125; (2)a=﹣3,b=2时,(a+b )3=﹣1. 随练2、 探究题:(1)比较下列各式的大小:23-+______23-+,35-+-______()()35-+-,05+-______()05+-.(2)通过(1)的比较,请你分析,归纳出当a 、b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,求x 的取值范围. 【答案】 (1)>;=;=.(2)a b a b +≥+(3)0x ≤ 【解析】 (1)235-+=,231-+=,所以2323-+>-+;358-+-=,()()358-+-=,所以()()3535-+-=-+-;055+-=,()055+-=,所以()0505+-=+-.(2)通过比较(1)中的结论,不难发现a b a b +≥+(当且仅当0ab ≥时取“=”). (3)结合(2)中的结论,若55x x +=-,则应满足50x -≥,即0x ≤.随练3、 如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是( )A.M 或NB.M 或RC.N 或PD.P 或R【答案】B【解析】∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.随练4、如图,数轴上的点A、B、C分别表示数﹣3、﹣1、2.(1)A、B两点的距离AB= ,A 、C两点的距离AC= ;(2)通过观察,可以发现数轴上两点间距离与这两点表示的数的差的绝对值有一定关系,按照此关系,若点E表示的数为x,则AE= ;(3)利用数轴直接写出|x﹣1|+|x+3|的最小值= .【答案】(1)2,5;(2)|x+3|;(3)4【解析】(1)如图所示:AB=2,AC=5.故答案为:2,5;(2)根据题意可得:AE=|x+3|.故答案为:|x+3|;(3)利用数轴可得:|x﹣1|+|x+3|的最小值为:4.故答案为:4.绝对值综合知识精讲一.绝对值的化简利用代数意义去绝对值号化简含绝对值的式子,关键是去绝对值符号.先根据题设所给的条件,判断绝对值符号内的数a(或式子a)的正负(即0a>,0a<还是0a=);然后根据绝对值的代数意义去掉绝对值符号.如:计算1b-=_____________()1b<.由于1b<,所以10b-<,根据绝对值的代数意义,应有()111b b b-=--=-+.*注意:去绝对值符号时,应将绝对值符号内的数(或式子)看做一个整体,并注意去括号时符号的变化.当题目中没有明确指出未知数的取值范围时,则需要将所有情况都分类列举出来.例如,计算3x-:当3x≥时,33x x-=-;当3x<时,()333x x x-=--=-.利用零点分段法去绝对值号对于含多个绝对值的情况,我们往往用零点分段法计算化简.例如:化简12x x+--.第一个绝对值内部为1x+,当1x=-时第一个绝对值为零;第二个绝对值内部为2x-,当2x=时第二个绝对值为零.我们将1-、2称为是零点,这两个零点将整个数轴分为三部分(如图),我们对这三个部分进行分类讨论.1、当1x <-时,1x +、2x -均为负值, 于是()()12123x x x x +--=-+---=-⎡⎤⎣⎦;2、当12x -≤<时,1x +为非负值、2x -为负值, 于是()121221x x x x x +--=+---=-⎡⎤⎣⎦;3、当2x ≥时,1x +、2x -均为非负值, 于是()()12123x x x x +--=+--=.零点是我们分类的依据,因为这些零点确定了每个绝对值内部的正、负.零点分段法的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.二.绝对值的最值问题 (一)和最小x a x b -+-的几何意义是数轴上表示数x 的点到表示数a 、数b 两点的距离之和,其中数a 、数b 的对应点为数轴上的一个定点,数x 的对应点为一个动点,可以在数轴上移动.绝对值的最值问题,用零点分段法可以解决,但是会比较繁琐,而采用数形结合的方法,运用绝对值的几何意义求解,往往能取得事半功倍的效果.经过总结归纳我们发现了这样的规律: ①对于代数式:123n x a x a x a x a -+-+-++-(123n a a a a ≤≤≤≤):0 2如计算的最小值.(1)将使两个绝对值分别为时的值标在数轴上(如图),数轴被分为个区域;(2)假设代表动点的点(图中小黑球)从左到右在数轴上移动,根据绝对值的几何意义,我们可将所求表示为两条线段的和,即. (3)在个区域中分别画出线段并比较,可以发现当时,两线段和最小,为定值. *若将题目改为计算的最小值.我们使用相同的方法进行分析,发现只有当时取得最小值,而不再是在一个范围内取得最小值了.当为奇数时,在处取最小值,即在个点的中心点处;当为偶数时,在区域取最小值,即数轴被个点分成段的中心区域.②对于代数式112233n n b x a b x a b x a b x a -+-+-++-的最值问题,我们先将代数式转化为特殊形式:123n x a x a x a x a -+-+-++-(123n a a a a ≤≤≤≤),然后通过上述方法求解.如:111212222222x x x x x x x -++=-++=-+-++. (二)差最大类比绝对值之和最小值问题,计算12x x ---的最大值求差的最大值,需要被减数越大1x -,减数2x -越小,从几何意义分析即x 与1距离远,与2距离近,当x 在1、2之间时,无论如何变化,距离之差始终不超过1;当x=2时,x 与2的距离最小,为0,此时原式结果恰好为1和2之间的距离,等于1;若x 继续增大,两距离之差依然为1。
绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义【考纲说明】1、理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值;2、能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。
【趣味链接】正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。
【知识梳理】1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。
2、绝对值的性质:(1)绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;a (a >0)(2)|a|=0 (a=0) (代数意义)-a (a <0) (3)若|a|=a ,则a≥0;若|a|=-a ,则a≤0;(4)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a ,且|a|≥-a ;(5)若|a|=|b|,则a=b 或a=-b ;(几何意义)(6)|ab|=|a|·|b|;||=(b≠0);b a ||||b a (7)|a|=|a |=a ;222(8)|a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|【经典例题】【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0【例2】(2011莱芜)下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a =(-b)22【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A .2a+3b-cB .3b-cC .b+cD .c-b 【例4】(2009淮安)如果,下列成立的是()a a -=|| A . B . C . D .0>a 0<a 0≥a 0≤a 【例5】(2008扬州)在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是【例6】(2010南京)数轴上分属于原点两侧且与原点的距离相等的两点间的距离为5,那么这两个点表示的数为________.【例7】(2010泰安)已知a 是有理数,| a -2007|+| a -2008|的最小值是________.【例8】绝对值小于3.1的整数有哪些?它们的和为多少?【例9】(2012盐城)|x|=4,|y|=6,求代数式|x+y|的值.【例10】(2012宿迁)已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x 的最小值.【课堂练习】1、(2012镇江)若a >b ,且|a|<|b|,则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >02、(2008合肥)|x-2|+|x-1|+|x-3|的最小值是( )A .1B .2C .3D .43、(2009常州)绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8 B.7 C. 6 D.54、数轴上表示数和表示的两点之间的距离是__________.5-14-5、(2010曲阳)若|x-3|=3-x ,则x 的取值范围是____________ .6、(2009南通)若|a-2|=2-a ,求a 的取值范围.【课后作业】1、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+12、若a 为任意实数,则下列式子中一定成立的是( ).A .|a|>0B .|a|>a C. D. a a 1>01>+a 3、若 |x+1|+|2-x|=3,则x 的取值范围是________.4、 |x -2|-| x -5| 的最大值是_______,最小值是_______.5、绝对值大于2.1而小于4.2的整数有多少个?6、设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?7、求满足关系式|x-3|-|x+1|=4的x的取值范围.8. 已知a<-2<0<b<2,去掉下列三式的绝对值符号:【参考答案】【经典例题】1、D2、D3、C4、D5、5或-16、7、18、0,±1,±2,±3,和为09、2或102.5±10、(1)当x =2时,x+2得最大值2+2=4;(2)当x =2时,6-x 得最小值6-2=4【课堂练习】1、C2、B3、C4、95、x≤36、a≤2【课后作业】1、C2、D3、-1≤x≤24、3,-35、±3,±4,有4个6、有最小值97、x≤-1 8、,,2a -()ab -+2b a b+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:绝对值的几何意义:
①表示在数轴上,x所对应的点与_______的距离.
②表示在数轴上____________________________对应点之间的距离.
③表示____________________________对应点之间的距离.
绝对值应用(绝对值的几何意义)(北师版)一、单选题(共10道,每道10分)
1.已知,则a,b的值分别为( )
A.a=3,b=5
B.a=-3,b=5
C.a=3,b=-5
D.a=-3,b=-5
答案:B
解题思路:
试题难度:三颗星知识点:绝对值的非负性
2.若,则ab=( )
A.0
B.3
C.-3
D.±3
答案:C
解题思路:
试题难度:三颗星知识点:绝对值的非负性
3.若与互为相反数,则a+b=( )
A.-1
B.1
C.5
D.-5
答案:A
解题思路:
试题难度:三颗星知识点:绝对值的非负性
4.若x为有理数,则的最小值为( )
C.3
D.5
答案:A
解题思路:
试题难度:三颗星知识点:绝对值的几何意义
5.若x为有理数,则的最小值为( )
A.1
B.3
答案:D
解题思路:
试题难度:三颗星知识点:绝对值的几何意义
6.若x为有理数,则的最小值为( )
A.1
B.2
C.3
D.4
答案:B
解题思路:
试题难度:三颗星知识点:绝对值的几何意义
7.若x为有理数,则的最小值为( )
A.2
B.3
C.4
D.5
答案:C
解题思路:
试题难度:三颗星知识点:绝对值的几何意义
8.当x=____时,有最_____值,是_____.( )
A.0,小,6
B.0,大,6
C.0,小,0
D.0,大,0
答案:A
解题思路:
试题难度:三颗星知识点:利用绝对值的非负性求最值
9.当x=____时,有最_____值,是_____.( )
A.4,小,3
B.4,大,-3
C.4,小,-3
D.0,大,3
答案:C
解题思路:
试题难度:三颗星知识点:利用绝对值的非负性求最值
10.当x=____时,有最_____值是_____.( )
A.0,小,0
B.0,小,3
C.0,大,0
D.0,大,3
答案:D
解题思路:
试题难度:三颗星知识点:利用绝对值的非负性求最值。