概率统计作业第一章自测题

合集下载

概率论与数理统计01-第一章作业及答案

概率论与数理统计01-第一章作业及答案

习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ).(A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ).(A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销.(C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = ,本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色;(2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色;(3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数;(4) 生产产品直到有10件正品为止, 记录生产产品的总件数.解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件:(1) 仅有A 发生;(2) A , B , C 中至少有一个发生;(3) A , B , C 中恰有一个发生;(4) A , B , C 中最多有一个发生;(5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生.解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件:(1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)23A A ; (6)12A A .解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题(1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0.解 本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= ,故()()1P A P B +=. 于是()1.P B p =-3. 已知()0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .解 由公式()()()()P A B P A P B P AB =+- 知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解 由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为ABC AB ⊂,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0.由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题 在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品.(C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为023225C C C ⨯, 将两者加起即为0.7.答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C . 3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率;(3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有29C 种,两个球都是白球的取法有24C 种,一黑一白的取法有1154C C 种,由古典概率的公式知道 (1) 两球都是白球的概率是2924C C ; (2) 两球中一黑一白的概率是115429C C C ; (3) 至少有一个黑球的概率是12924C C -. 习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件.(C) AB B =. (D)()()P AB P B =.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P B A =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件.(D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}.解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则(0,1,2,3)i B i =表示“恰有i 发击中目标”. i B 为互斥的完备事件组. 于是没有击中目标概率为0()0.60.50.30.09P B =⨯⨯=,恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =⨯⨯+⨯⨯+⨯⨯=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =⨯⨯+⨯⨯+⨯⨯=,恰有三发击中目标概率为3()0.40.50.70.14P B =⨯⨯=.又已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到30()()(|)0.360.20.410.60.1410.458.i i i P A P B P A B ===⨯+⨯+⨯=∑4. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,i H 表示“取得球来至第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A == 5. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知, 123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.20.0384.=⨯+⨯+⨯=. (2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ⨯===, 222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ⨯===, 333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ⨯===. 习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件.解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()()()P AB P A P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).(3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A) (|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B 一定互斥. (D)()()()()()P A B P A P B P A P B =+- .解 因事件A 与B 独立, 故A B 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C = , 求()P A .解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+ . 由题设可知 A , B 和C 两两相互独立, ,ABC =∅ 1()()()2P A P B P C ==<, 因此有 2()()()[()],()()0,P A B P A C P B C P A P A B C P ====∅= 从而 29()3()3[()]16P A B C P A P A =-=, 于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =. 3. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率;(3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==⨯= (2) ()()0.70.20.30.80.38;P AB P AB +=⨯+⨯=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总 习 题 一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396⨯=⨯. (1) 抽得一件为正品,一件为次品的概率为95559519.10099198⨯+⨯=⨯ 3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设 A ={取到的产品是次品}, B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =∅(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004, 由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221⨯+⨯+⨯=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ⨯====. 5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====. 由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。

概率复习题自测题解答

概率复习题自测题解答

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。

解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。

解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。

解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n nn n----+--=⋅+⋅=--当n 为偶数时:1122222()112(1)nnn nn P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。

解: 21411136xS dx dy --==⎰⎰13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。

解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。

考研数学概率论与数理统计第一章测试题(含答案)

考研数学概率论与数理统计第一章测试题(含答案)

考研数学概率论与数理统计第一章测试题(含答案)一、单项选择题(每小题2分,共20分)1.对于任意二事件A 和B ,与B B A = 不等价...的是 ( ) (A)B A ⊂ (B)A B ⊂ (C)φ=B A (D)φ=B A2.设事件A 与事件B 互不相容,则 ( ) (A)0)(=B A P (B))()()(B P A P AB P = (C))(1)(B P A P -= (D)1)(=B A P3.对于任意二事件A 和B ,则以下选项必然成立的是 ( )(A)若φ≠AB ,则B A ,一定独立 (B)若φ≠AB ,则B A ,有可能独立(C)若φ=AB ,则B A ,一定独立 (D)若φ=AB ,则B A ,一定不独立4.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 ( ) (A)A 与B 互不相容 (B)A 与B 相容 (C))()()(B P A P AB P = (D))()(A P B A P =-5.设B A ,为任意两个事件,且B A ⊂,0)(>B P ,则下列选项必然成立的是 ( )(A))|()(B A P A P < (B))|()(B A P A P ≤ (C))|()(B A P A P > (D))|()(B A P A P ≥6.设B A ,为两个随机事件,且0)(>B P ,1)|(=B A P ,则必有 ( )(A))()(A P B A P > (B))()(B P B A P >(C))()(A P B A P = (D))()(B P B A P =7.已知1)(0<<B P ,且)|()|(]|)[(2121B A P B A P B A A P += ,则下列选项成立的是( ) (A))|()|(]|)[(2121B A P B A P B A A P += (B))()()(2121B A P B A P B A B AP += (C))|()|()(2121B A P B A P A A P += (D))|()()|()()(2211A B P A P A B P A P B P +=8.将一枚硬币独立地掷两次,引进事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件 ( )(A)321,,A A A 相互独立 (B)432,,A A A 相互独立(C)321,,A A A 两两独立 (D)432,,A A A 两两独立9.某人向同一目标独立重复射击,每次射击命中目标的概率为p (10<<p ),则此人第4射击恰好第2次命中目标的概率为 ( )(A)2)1(3p p - (B)2)1(6p p - (C)22)1(3p p - (D)22)1(6p p -10.设C B A ,,是三个相互独立的随机事件,且1)()(0<<<C P AC P ,则在下列给定的四对事件中不.相互独立的是 ( ) (A)B A 与C (B)AC 与C (C)B A -与C (D)AB 与C二、填空题(每小题2分,共14分)1.“C B A ,,三个事件中至少有两个发生”,这一事件可以表示为___2.若事件B A ,满足()()1>+B P A P ,则A 与B 一定____________3.在区间)1,0(中随机地取两个数,则两数之差的绝对值小于21的概率为 4.在一次试验中,事件A 发生的概率为p 。

概率论与数理统计自测题

概率论与数理统计自测题

概率论与数理统计自测题(第一章)一、选择题(毎小题3分,共15分):1. 在某学校学生中任选一名学生,设事件A 表示“选出的学生是男生”,B 表示“选出的学生是三年级学生”,C 表示“选出的学生是篮球运动员”,则ABC 的含义是( ).(A )选出的学生是三年级男生;(B )选出的学生是三年级男子篮球运动员; (C )选出的学生是男子篮球运动员; (D )选出的学生是三年级篮球运动员;2. 在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ).(A )C B C A(B )C AB (C )BC A C B A C AB(D )C B A3.甲乙两人下棋,甲胜的概率为0.6,乙胜的概率为0.4,设A 为甲胜,B 为乙胜,则甲胜乙输的概率为( ).(A )6.06.0⨯ (B )4.06.06.0⨯- (C )4.06.0- (D )0.6 4.下列正确的是( ).(A )若)()(B P A P ≥,则A B ⊆ (B )若B A ⊂,则)()(B P A P ≥(C )若)()(AB P A P =,则B A ⊆ (D )若10次试验中A 发生了2次,则2.0)(=A P 5.设A 、B 互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误的是( ).(A )0)|(=A B P (B )0)|(=B A P (C )0)(=AB P(D )1)(=B A P二、填空题(毎小题3分, 共15分):1.A 、B 、C 代表三件事,事件“A 、B 、C 至少有二个发生”可表示为 . 2.已知)()(),()()(,161)(B A P B A P B P A P AB P B A P ===,则)(A P = . 3.A 、B 二个事件互不相容,1.0)(,8.0)(==B P A P ,则=-)(B A P . 4.对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为7.0,5.0,4.0,则在三次射击中恰有一次击中目标的概率为 .5.设A 、B 、C 两两相互独立,满足21)()()(,<==Φ=C P B P A P ABC ,且已知169)(=++C B A P ,则=)(A P . 三、判断题(正确的打“√”,错误的打“⨯”,毎小题2分,共10分):1. 设A 、B 为任意两个互不相容事件,则对任何事件AC C ,和BC 也互不相容. [ ]2.概率为零的事件是不可能事件.[ ]3. 设A 、B 为任意两个事件,则)()()(AB P A P AB A P -=- . [ ]4. 设A 表示事件“男足球运动员”,则对立事件A 表示“女足球运动员” .[ ]5. 设0)(=A P ,且B 为任一事件,则A 与B 互不相容,且相互独立 .[ ] 四、(6分)从1,1,2,3,3,3,4,4,5,6这10个数中随机取6个数,求取到的最大数是4的概率.五、(6分)3人独立地去破译一个密码,他们能破译的概率分别为41,31,51若让他们共同破译的概率是多少?六、(10分)已知一批产品的次品率为4%,今有一种简化的检验方法,检验时正品被误认为是次品的概率为0.02,而次品被误认为是正品的概率为0.05,求通过这种检验认为是正品的一个产品确实是正品的概率.七、(10分)假设有3箱同种型号零件,里面分别装有50件,30件和40件,而一等品分别有20件,12件及24件.现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回),试求先取出的零件是一等品的概率;并计算两次都取出一等品的概率. 八、(10分)设21)(,31)(==B P A P . 1. 若Φ=AB ,求)(A B P ;2. 若B A ⊂,求)(A B P ;3. 若81)(=AB P ,求)(A B P . 九、(10分)一批产品10件,出厂时经两道检验,第一道检验质量,随机取2件进行测试,若合格,则进入第二道检验,否则认为这批产品不合格,不准出厂;第二道检验包装,随机取1件,若合格,则认为包装合格,准予出厂.两道检验中,1件合格品被认为不合格的概率为0.05,一件不合格品被认为合格的概率为0.01,已知这批产品中质量和包装均有2件不合格,求这批产品能出厂的概率.十、(8分)设1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ,试证事件A 与B 相互独立.概率论与数理统计自测题 (第二章)一、选择题(每小题3分, 共15分):1.设随机变量X 的分布律为),2,1(}{ ===k b k X P k λ,则().(A )10<<λ,且11--=λb (B )10<<λ,且1-=λb (C )10<<λ,且11-=-λb(D )10<<λ,且11-+=λb2.设随机变量X 的密度函数为xx Ae x f 22)(+-=,则( ).(A )πe(B )πe 1 (C )πe 1(D )πe 23.设随机变量X 的概率密度和分布函数分别是)(x f 和)(x F ,且)()(x f x f -=,则对任意实数a ,有=-)(a F ().(A ))(21a F - (B ))(21a F + (C )1)(2-a F (D ))(1a F -4.设相互独立的随机变量Y X ,具有同一分布,且都服从区间[0,1]上的均匀分布,则在区间或区域上服从均匀分布的随机变量是().(A )(Y X ,)(B )Y X +(C )Y X -(D )2X5.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某随机变量的分布函数,在下列给定的各组数值中应取( ).(A )52,53-==b a (B )32,32==b a (C )23,21=-=b a(D )23,21-==b a二、填空题(每小题3分, 共15分): 1.二维随机变量(Y X ,)的联合分布律为:则α与β应满足的条件是 ,当Y X ,相互独立时,α= .2.二维随机变量(Y X ,)的联合密度为:])()[(212122221121),(σμσμσπσ-+--=y x ey x f ,则X的边缘概率密度为 .3.连续型随机变量X 的概率密度为其它10,0,)(2<<⎩⎨⎧=x kx x f ,则常数=k .4.设)02.0,10(~2N X ,已知Φ(2.5)=0.9938,则=<≤}05.1095.9{X P . 5.设Y X ,是相互独立的随机变量,),3(~),,2(~22σσ-N Y N X ,且95.0}7654.8|12{|=≤-+Y X P ,则σ= .三、(12分)随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=4||,04||,cos )(ππx x x A x f ,试求(1)系数A ;(2)X 的分布函数;(3)X 落在⎪⎭⎫⎝⎛6,0π内的概率. 四、(12分)假设一设备开机后无故障工作的时间X 服从参数为5=θ的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h 便关机,试求设备每次开机无故障工作的时间Y 的分布函数.五、(10分)随机变量X 的概率密度为⎩⎨⎧≤>=-0,00)(,x x e x f x ;求2X Y =的概率密度.六、(12分)随机变量X 和Y 均服从区间[0,1]上的均匀分布且相互独立.七、(12分)已知随机变量Y X 与的分布律为:且已知1}0{==XY P .(1)求(Y X ,)的联合分布律;(2)Y X 与是否相互独立?为什么?八、(12分)设Y X ,是两个相互独立的随机变量,其概率密度分别为:⎩⎨⎧≤≤=其它,010,1)(x x f x ⎩⎨⎧≤>=-0,00,)(y y e y f y Y求随机变量Y X Z +=的概率密度函数.概率论与数理统计自测题(第三章)一、选择题(毎小题3分, 共6分):1. 对目标进行3次独立射击,每次射击的命中率相同,如果击中次数的方差为0.72,则每次射击的命中率等于( ).(A )0.1 ( B ) 0.2 ( C ) 0.3 ( D ) 0.42.若)()(Y X D Y X D +=-,则( ).(A )X 与Y 独立(B ))()(Y D X D = (C )0)(=+Y X D(D )X 与Y 不相关二、判断题(每小题3分, 共12分): 1.设随机变量X 的概率密度为+∞<<-∞+=x x x f ,)1(1)(2π,则)(X E =0.( ) 2.设),0(~2σN X ,则对任何实数a 均有:),(~22a a N a X ++σ.()3.设),(~2σμN X ,Y 从参数为λ的指数分布,则2222)(σμ+=+Y X E .( ) 4.设)()()(Y E X E XY E =,则X 与Y 独立.( )三、填空题(每空2分, 共22分):1则)(X E = ,)(X D = ,)(Y E = ,)(Y D = ,),cov(Y X = ,=XY ρ .2.设连续型随机变量X 概率密度为⎩⎨⎧≤≤+=其它,010,2)(x ax x f ,且31)(=X E ,则常数=a .3.设随机变量X 的数学期望5)(,.75)(==X D X E ,且05.0}|75{|≤≥-k X P ,则≥k .4.对圆的直径作近似测量,测量近似值X 均匀分布于区间],0[a 内,则圆面积的数学期望是 .5.设随机变量X 与Y 相互独立,且)1,0(~),,2,1(~N Y N X .令32++-=X Y Z ,则=)(Z D .6.设随机变量(Y X ,)在区域}||,10|),{(x y x y x D <<<=内服从均匀分布,则=++)253(Y X E .四、(10分)设随机变量(Y X ,)的概率密度为:⎪⎩⎪⎨⎧≤≤≤≤+=其它,010,20),(31),(y x y x y x f求数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X 及相关系数XY ρ.五、(10分)设有甲、乙两种投资证券,其收益分别为随机变量21,X X ,已知均值分别为21,μμ,风险分别为21,σσ,相关系数为ρ,现有资金总额为C (设为1个单位).怎样组合资金才可使风险最小?六、(10分)设随机变量X 的分布密度为⎩⎨⎧≤≤-=其它,010),1()(x x ax x f ,求)(),(,X D X E a 和})(2|)({|X D X E X P <-.七、(10分)设随机变量X 与Y 相互独立,且均服从密度为⎩⎨⎧≤>=-0)(x x e x f x,的分布,求(1)X +Y 的分布密度;(2)求)(XY E .八、(10分)设随机变量X 服从泊松分布,6)(=X E ,证明:31}93{≥<<X P .九、(10分)X 为连续型随机变量,概率密度满足:当],[b a x ∉时,0)(=x f ,证明:2)2()(,)(a b X D b X E a -≤≤≤.《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

概率论与数理统计第一章自测题及答案

概率论与数理统计第一章自测题及答案

第一章 自测题一、填空题(每小题2分,共计10分)1.概率()P A 是刻划____________________ ___的指标.2.实际推断原理的内容是 .3.设,,A B C 分别代表甲,乙,丙命中目标,则ABC 表示 .4.将红、黄、蓝3个球随机的放入4个盒子中,若每个盒子的容球数不限,则有三个盒子各放一个球的概率是 .5.设,A B 为随机事件,已知().,().().0705, 03P A P B P A B ==-=,则()P AB = ;()P B A -= .二、是非题(每小题2分,共计20分)1.( )从一批产品中随机抽取100件,发现5件次品,则该批产品的次品率为5%.2.( )若事件,A B 为对立事件,则A 与B 互斥,反之不真.3.( )对于事件,A B ,若()0P AB =,则A 与B 互斥.4.( )在古典概型的随机试验中,()0P A =当且仅当A 是不可能事件.5.( )若0()1P B <<且()(|)P A P A B =,则()(|)P A P A B =.6.( )设A 与B 是两个概率不为零的互不相容事件,则()()()P AB P A P B =.7.( )对于事件,,A B C ,若()()()()P ABC P A P B P C =,则()()()P AB P A P B =.8.( )设随机事件A 分别与随机事件B 、C 独立,则A 也与事件B C 独立.9.( )设随机事件,,A B C 相互独立,则A 与B C 相互独立.10.( )设()0P C >且()()()P AB C P A C P B C =,则()()()P AB P A P B =.三、选择题(每小题2分,共计10分)1.某学生参加两门外语考试,设事件i A ={第i 门外语考试通过} (i =1,2),则事件{两门外语考试至少有一门没通过}可以表示为( ). (A) 12A A ; (B )1212A A A A ; (C )12A A ; (D )12A A2.设事件,,A B C 满足关系式ABC A =,则关系式的意义是( ).(A )当A 发生时,B 或C 至少有一个不发生; (B )当A 发生时,B 和C 必定都不发生;(C )当B 和C 都不发生时,A 必定发生; (D )当B 或C 至少有一个不发生时,A 必定发生.3.设事件,A B 满足()1P A B =,则( ).(A )A B ⊃;(B )B A ⊃;(C )()0P B A =;(D )()()P AB P B =.4.设0()1,0()1P A P B <<<<,且()()1P A B P A B +=,则( ).(A )A 、B 互斥; (B )A 、B 独立; (C )A 、B 不独立; (D )A 与B 互逆.5.设,,A B C 是三个相互独立的事件,且0()1P C <<,则下列四对事件中,不独立的是( ).(A )A B 与C ;(B )AC 与C ;(C )A B -与C ;(D )AB 与C .四、计算1. (10分)设事件,A B 满足()0.6,()0.5,()0.2P A P B P AB ===,求(),()P A B P B A .2. (5分)已知事件,A B 满足()()P AB P AB =,且()P A p =,求()P B .3. (5分)10个运动队平均分成两组预赛,计算最强的两个队被分在同一组内的概率.4. (10分)某医院用某种新药医治流感,对病人进行试验,其中34的病人服此药,14的病人不服此药,五天后有70%的病人痊愈.已知不服药的病人五天后有10%可以自愈.(1)求该药的治愈率;(2)若某病人五天后痊愈,求他是服此药而痊愈的概率.5. (10分)甲袋中有两个白球,四个黑球,乙袋中有四个白球,两个黑球.现在掷一均匀硬币,若得正面就从甲袋中连续摸n 次球(取后放回),若得反面就从乙袋中摸n 次.若已知摸到的n 个球全是白球.求这些球是从甲袋中取出的概率.6. (10分)12个乒乓球中3个旧的,9个新的.第一次比赛时取出三个用完后放回,第二次比赛时又取出三个.求第二次取出的三个中有两个新球的概率.五、(10分)几何概型的样本空间S 与随机事件,A B 如图所示,试证,A B 相互独立.第一章 自测题参考答案一、填空题(每小题2分,共计10分)1.概率()P A 是刻划 一次试验随机事件A 发生的可能性很小 ___的指标.2.实际推断原理的内容是 一次试验小概率事件一般不会发生 .3.设,,A B C 分别代表甲,乙,丙命中目标,则ABC 表示 甲、乙、丙至少一人没命中目标 .4.将红、黄、蓝3个球随机的放入4个盒子中,若每个盒子的容球数不限,则有三个盒子各放一个球的概率是3433!4C .5.设,A B 为随机事件,已知().,().().0705, 03P A P B P A B ==-=,则()P AB = 0.4 ;()P B A -= 0.1 .二、是非题(每小题2分,共计20分)1.( ⨯ )从一批产品中随机抽取100件,发现5件次品,则该批产品的次品率为5%.2.( √ )若事件,A B 为对立事件,则A 与B 互斥,反之不真.3.( ⨯ )对于事件,A B ,若()0P AB =,则A 与B 互斥.4.( √ )在古典概型的随机试验中,()0P A =当且仅当A 是不可能事件.5.( √ )若0()1P B <<且()(|)P A P A B =,则()(|)P A P A B =.6.( ⨯ )设A 与B 是两个概率不为零的互不相容事件,则()()()P AB P A P B =.7.( ⨯ )对于事件,,A B C ,若()()()()P ABC P A P B P C =,则()()()P AB P A P B =.8.( ⨯ )设随机事件A 分别与随机事件B 、C 独立,则A 也与事件B C 独立.9.( √ )设随机事件,,A B C 相互独立,则A 与B C 相互独立.10.( ⨯ )设()0P C >且()()()P AB C P A C P B C =,则()()()P AB P A P B =.三、选择题(每小题2分,共计10分)1.某学生参加两门外语考试,设事件i A ={第i 门外语考试通过} (i =1,2),则事件{两门外语考试至少有一门没通过}可以表示为( D ).(A) 12A A ; (B )1212A A A A ; (C )12A A ; (D )12A A 2.设事件,,A B C 满足关系式ABC A =,则关系式的意义是( A ).(A )当A 发生时,B 或C 至少有一个不发生; (B )当A 发生时,B 和C 必定都不发生;(C )当B 和C 都不发生时,A 必定发生; (D )当B 或C 至少有一个不发生时,A 必定发生.3.设事件,A B 满足()1P A B =,则( D ).(A )A B ⊃;(B )B A ⊃;(C )()0P B A =;(D )()()P AB P B =.4.设0()1,0()1P A P B <<<<,且()()1P A B P A B +=,则( B ).(A )A 、B 互斥; (B )A 、B 独立; (C )A 、B 不独立; (D )A 与B 互逆.5.设,,A B C 是三个相互独立的事件,且0()1P C <<,则下列四对事件中,不独立的是( B ).(A )A B 与C ;(B )AC 与C ;(C )A B -与C ;(D )AB 与C .四、计算1. (10分)设事件,A B 满足()0.6,()0.5,()0.2P A P B P AB ===,求(),()P A B P B A . 解 ()()()0.3P AB P B P AB =-=,()()()()0.60.50.30.8P A B P A P B P AB =+-=+-= .()()()0.2P AB P A P AB =-=, ()()0.5()P BA P B A P A ==. (另法:通过()()0.2,()0.8,()()()()0.3P AB P A B P A B P AB P A P B P A B =⋃=∴⋃=∴=+-⋃= 也可计算. )2. (5分)已知事件,A B 满足()()P AB P AB =,且()P A p =,求()P B .解 ()()1()P AB P A B P A B ==- 1()()()()P A P B P AB P AB =--+=()1P B p =-.3. (5分)10个运动队平均分成两组预赛,计算最强的两个队被分在同一组内的概率.解 385102C p C =(分成的两组是可区分的, 如A 组和B 组). 4. (10分)某医院用某种新药医治流感,对病人进行试验,其中34的病人服此药,14的病人不服此药,五天后有70%的病人痊愈.已知不服药的病人五天后有10%可以自愈.(1)求该药的治愈率;(2)若某病人五天后痊愈,求他是服此药而痊愈的概率.解 (1)设 A =(服药),B =(痊愈). ()()()()()()()P B P AB P AB P A P B A P A P B A =+=+31()0.10.744P B A =⨯+⨯=, ()0.9P B A =. (2)27()28P A B =. 5. (10分)甲袋中有两个白球,四个黑球,乙袋中有四个白球,两个黑球.现在掷一均匀硬币,若得正面就从甲袋中连续摸n 次球(取后放回),若得反面就从乙袋中摸n 次.若已知摸到的n 个球全是白球.求这些球是从甲袋中取出的概率.解 设A =(硬币掷得正面)=(甲袋中连续摸n 次球),B =(摸到的n 个球全是白球). 11()()()()123()1112()()()()()12()()2323n nn n P A P B A P AB P A B P B P A P B A P A P B A ⨯====++⨯+⨯. 6. (10分)12个乒乓球中3个旧的,9个新的.第一次比赛时取出三个用完后放回,第二次比赛时又取出三个.求第二次取出的三个中有两个新球的概率.解 设i A =(第一次取出i 个新球) (0,1,2,3)i =,B =(第二次取出的三个中有两个新球).3330003212121122132139339843975966333333331212121212121212()()()()()0.455i i i i i i i P B P A B P A B P A P B A C C C C C C C C C C C C C C C C C C C C C C =======⨯+⨯+⨯+⨯=∑∑(本题设i A =(第一次取出i 个旧球) (0,1,2,3)i =也可以.)五、(10分)几何概型的样本空间S 与随机事件,A B 如图所示,试证,A B 相互独立.证明 只要证()()P A P A B =(本题利用独立性的定义式也可证明). ()()()()a b c c P A a b c d c d +⨯==+⨯++,()()()()P AB a c c P A B P B a c d c d⨯===⨯++, 所以,A B 相互独立.。

《概率论与数理统计》单元自测题及答案.doc

《概率论与数理统计》单元自测题及答案.doc

第一章随机事件与概率专业__________ 班级__________ 姓名__________ 学号_________一、填空题:1.设A, B 是随机事件,P(A) = 0.7 , P(B) = 0.5 , P(A - B) = 0.3 ,贝ij P(AB)=___________ , P(BA) = ______________ ;2•设A, B 是随机事件,P(A) = 0.4 , P(B) = 0.3, P(AB) = 0.1, M P(AB)=3.在区间(0,1)中随机地取两个数,则两数之和小于1的概率为 ____________ ;4.三台机器相互独立运转,设第一、第二、第三台机器发生故障的概率依次为0. 1, 0.2,0. 3,则这三台机器中至少有一台发生故障的概率为_______________ ;19 5.设在三次独立试验中,事件A出现的概率相等,若已知A至少出现一次的概率等于亍,27则事件A在每次试验屮出现的概率P(A)为_____________ 。

二、选择题:1.以A表示事件“甲种产品畅销,乙种产品滞销”,则对立事件方为( )(A) “甲种产品滞销,乙种产品畅销”;(B) “甲、乙产品均畅销”;(C) “甲种产品滞销或乙种产品畅销”;(D) “甲种产品滞销”。

2.设A, B为两个事件,则下面四个选项中正确的是( )(A) P( A u B) = P( A) + P(B);(B) P(AB) = P(A)P(B);(C) P(B-A) = P(B)-P(A) ;(D) P(AuB) = l-(P(AB)。

3.对于任意两事件A与B,与AuB=B不等价的是( )(A)AuB;(B)BuA;(C) AB =(/>;(D) AB =(/)O4.设P(A) = 0.6 , P(B) = 0.8 , P(B|A) = 0.8,则有( )(A)事件A与3互不相容;(B)事件A与B互逆;(C)事件4与B相互独立;(D) Bu A。

概率统计第一章习题

概率统计第一章习题

第一章 概率论的基本概念基础训练I一、选择题1、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为:( )A )甲种产品滞销,乙种产品畅销;B )甲乙产品均畅销;C )甲种产品滞销;D )甲产品滞销或乙种产品畅销。

2、设事件B A ,是两个概率不为零的互不相容事件,则下列结论正确的是( )A ),AB 互不相容; B )A 与B 相容;C ))()()(B P A P AB P =;D ))()(A P B A P =-。

3、对于任意事件B A ,,有=-)(B A P ( )A ))()(B P A P -; B ))()()(AB P B P A P +-;C ))()(AB P A P -;D ))()()(AB P B P A P -+。

4、已知5个人进行不放回抽签测试,袋中5道试题(3道易题,2道难题),问第3个人抽中易题的概率是( )A )53;B )43;C )42;D )103. 5、设()0.8P A =,()0.7P B =,(|)0.8P A B =,则下列结论正确的有( )A )B A ,相互独立; B )B A ,互不相容;C )A B ⊃;D ))()()(B P A P B A P +=⋃。

二、填空题1、设C B A ,,是随机事件,则事件“A 、B 都不发生,C 发生”表示为 , “C B A ,,至少有两个发生”表示成 。

2、设A 、B 互不相容,4.0)(=A P ,7.0)(=⋃B A P ,则=)(B P ;3、某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸中的一种,则同时订这两种的住户百分比是: ;4、设4/1)()()(===C P B P A P ,0)()(==BC P AB P ,8/1)(=AC P ,则C B A 、、三件事至少有一个发生的概率为 ;5、若A 、B 互不相容,且,0)(>A P 则=)|(A B P ;若A 、B 相互独立,且,0)(>A P 则=)|(A B P 。

概率统计小测验1-3章(带答案)

概率统计小测验1-3章(带答案)

概率统计1-3章小测(100分钟共120分) 姓名___________学号______________________ 一、填空题,每题4分,共60分。

(1)已知 则=0.7(2)一批产品共有10个正品和2个次品,随机抽取,每次抽一个,抽出后不再放回,则第三次抽出的是次品的概率为__1/6__________.(抽签问题)(3)从数1,2,3,4中任取一个数,记为,再从1到X 中任取一个数,记为,则=13/48 (4)在区间内任取两个数,则事件”两数之和小于”的概率为___17/25________. (5)设~(0,2)X U ,则42Y X =+的概率密度1210()8Y y f y other ⎧≤≤⎪=⎨⎪⎩(6)设~(0,2)X U ,则在内的概率密度()Y f y =(7)设X 的分布函数为(),14,F x Y X =-则Y 的分布函数1()1()4Y yF y F -=-. (8)设(),max(,2),X e Y X λ~=则Y 的分布函数02()12Y yy F y ey λ-<⎧=⎨-≥⎩ (9)设X 与Y 相互独立,~(1,0.5),X B Y 有密度(),Y f y 令2,Z X Y =+则11()()(2)22Z Y f z f z f z =+- (10)设X 有密度函数53(),0,xf x Ax ex -=> 则635!A =.(11)设X 服从均匀分布(0,1)U ,且当1~(0,),X x Y U x=时,则(1)1/2P Y <= (12)设X 有密度函数2()3,01,f x x x =<<Y 表示对X 的三次独立观察中1{}2X ≥发生的次数,则147(2)512P Y ==.(13)设(2,)X B p ~, (3,)Y B p ~,已知63(Y 1)64P ≥=,则31(1)()84P X p ===. (14)设(,)X Y 的分布函数22(1e )(1e ),0,0(,),0,others x y x y F x y --⎧-->>=⎨⎩则210()0xX e x F x x -⎧->=⎨≤⎩()0.5,P A =()0.6P B =(|)0.8,P B A =()P A B X Y }2{=Y P (0,1)652Y X =(0,4)(15) 设X 与Y 独立同分布于指数分布()e λ,min(,),Z X Y =则~()Z e λ 二、计算题1(10分)现有同类型设备200台,各台工作是相互独立的,发生故障的概率都是0.02.假设在通常情况下一台设备的故障可由一个人来处理,问至少需配备多少工人,才能保证设备发生故障但不能及时维修的概率小于0.01。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
三、计算题 1.假设雷达站对甲、乙、丙三个独立飞行的目标进行跟踪, 而雷达发现三个目标的概率相应为 p1 , p2 , p3 。记 A ={无一目标被发现},
B ={至少一个目标被发现},
C ={最多一个目标被发现}.试求事件A、B、C的概率。
P( A) (1 p1 )(1 p2 )(1 p3 )
8
2、根据以往的临床记录,知道癌症患者对某种试验呈阳性反应 的概率为0.95,非癌症患者对这试验呈阳性反应的概率为0.01. 设被试验者患有癌症的概率为0.005,若某人对试验呈阳性反应, 求此人患有癌症的概率.

设A “试验结果呈阳性反应” B “检查者患有癌症”
P B P A B P AB P BA = P A P B P A B P B P A B
(A) 0.125
(B) 0.25 (C) 0.325
(D) 0.375
3. 一批零件10个,其中有8个合格品,2个次品,每次任取一 个零件装配机器,若第2次取到的是合格品的概率为p2 ,第3次 取到的合格品的概率为 p3 ,则( B ) (A) p2 p3 (B) p2 p3 (C) p2 p3 (D) p2与 p3 的大小不能确定
一、填空题
第一章 自测题
1.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投 1 信的概率为 。
4
2.一间宿舍内住有6个同学,则他们之中恰好有4个人的生日在 同一个月份的概率为 0.0073 ;没有任何人的生日在同一个月 份的概率为 0.2228 。
3.有γ个球,随机地放在n个盒子中 ( n),则某指定的γ个 r! 。 盒子中各有一球的概率为
P( B) 1 (1 p1 )(1 p2 )(1 p3 )
P (C ) (1 p1 )(1 p2 )(1 p3 ) p1 (1 p2 )(1 p3 ) (1 p1 ) p2 (1 p3 ) (1 p1 )(1 p2 ) p3
1 p1 p2 p1 p3 p2 p3 2 p1 p2 p3
又因P ( E | D1 ) 0.2 P( E | D2 ) 0.6 P ( E | D3 ) 1
P( E ) P( D1 ) P( E | D1 ) P( D2 ) P( E | D2 ) P( D3 ) P( E | D3 )
0.458
11Biblioteka 5.若事件A与B相互独立,且
P ( A B)
P P ( A) 0.5 , ( B) 0.25,则
0.375 _________;P ( A B) ___________。 0.625
P( A B) P( AB) P( A) P( B)
2
P 6.已知P( A) 0.92 , ( B) 0.93 , ( B | A) 0.85 ,则 P


=0.323129
0.005 0.95
=
0.005 0.95 0.995 0.01
9
3. 考虑一元二次方程 x 2 Bx C 0 ,其中B、C分别是 将一枚色子(骰子)接连掷两次先后出现的点数,求该方程 有实根的概率 p 和有重根的概率 q
6
(C) C n1 p
r 1
r 1
(1 p) nr 1 ; (D) p r (1 p) nr
6. 有10张奖券中含3张中奖的奖券,每人只能购买1张,则前 3个购买者都中奖的概率为( D ).
A、 10 0.7 2 0.3 ; C3
B、0.3;
C、
7 ; 40
D、
1 120
19 p 36
1 q 18
10
4.
甲乙丙三人向同一飞机射击,设击中飞机的概率分别为0.4、
0.5、0.7,如果只有一人击中,则飞机被击落的概率为0.2,如果 有两人击中,则飞机被击落的概率为0.6。如果三人都击中,则 飞机一定被击落。求飞机被击落的概率。 解
设A、B、C分别表示甲、乙、丙三 人分别击中飞机,
5
4.10颗骰子同时掷出,共掷5次,则至少有一次全部出现一个点 的概率是(C). (A)
5 1 6
10 5

(B)

1 1 1 6 5 1 6
5 10

(C)
7.在5件产品中,有3件一等品和2件二等品,从中任取2件,那 么以0.7为概率的事件是( D ). A.都不是一等品 C.至少有1件一等品 B.恰有1件一等品 D.至多有1件一等品 )。
8. 设 B A ,则下面正确的等式是( B
A、P( AB) 1 P( A) ; B、P( B A) P( B) P( A) C、 P( B | A) P( B) ; D、 P( A | B) P( A)
2 2 4 4
n 4 C6 12 1111
r
6 A12
12 6
12 6
1
4.设 P ( A) 0.3 ,P ( A B ) 0.8 ,若A与B互斥,则 2 ;若A与B独立,则 P(B ) P (B) 0.5 7 ;若 ,则 A B
P ( A B)
0.5 。
5 0.3 P( B) 0.3P( B) 0.8 P( B) 7
8. 设随机事件 A , B 互不相容,且 P( A) 0.3 ,P( B ) 0.6 , 0 则 P( B A) .
4
二、选择题
1. 已知P(A)=0.3,P(B)=0.5,P(A∪B)=0.6,则P(AB)=( B ). (A) 0.15 (B) 0.2 (C) 0.8 (D) 1 2.同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为 ( B )
1 1 1 6
10 5
5 10
(D)

5. 设每次试验成功的概率为 p (0 p 1) ,重复进行
次试验取得 r (1 r n)
r (A) C n1 p r (1 p) nr ; 1
n
.
次成功的概率为
B
(B)
r C n p r (1 p) nr
Di 表示有人击中飞机,( 1、 3) i i 2、
E表 示飞 机被 击落
则P( A) 0.4,P( B) 0.5,P(C ) 0.7
P( D1 ) P( ABC ) P( ABC ) P( ABC ) 0.36 P( D2 ) P( ABC ) P( ABC ) P( ABC ) 0.41 P( D3 ) P( ABC ) 0.14
P( A | B ) 0.829 。P ( A B )
P( BA) 0.85 P ( A)
0.988。
P( B | A ) 0.85
P( BA) 0.85 0.08 0.068
A
B
P( AB) P( B) P( BA) 0.93 0.068 0.862 P( AB) P( A) P( AB) 0.92 0.862 0.058
P( A | B ) P( AB) 0.058 0.829 0.07 P( B)
3
7.设事件A与B独立,A与B都不发生的概率为 1 9 ,A发生 且B不发生的概率与B发生且A不发生的概率相等,则A发生的概率 为: 2 . 3
1 (1 x)(1 y ) 9 x(1 y) y(1 x)
相关文档
最新文档