2019云南特岗最后一套题-中学数学-答案

合集下载

2019年云南特岗教师招聘考试市场模拟卷答案第一部分学科

2019年云南特岗教师招聘考试市场模拟卷答案第一部分学科
甲末 v v 对乙有: v乙末 ,所以 cos 2 cos 乙末
,故 A 正确、 BCD
5.【答案】C。解析:解析:由图知内能 U kp ,k 为曲线斜率,而 U V 为常数,所以本题答案为 C。
m0 i i RT pV ,因此, M 2 2
6.【答案】C。解析:由于长通电螺线管中产生的磁场方向平行于螺线管的中心轴线,与正粒子的 运动方向平行,则正粒子在磁场中不受洛伦兹力,正粒子重力又不计,则粒子做匀速直线运动,故 C 正 确,ABD 错误。故选:C。
2
R × +3
2
×R× =I2R×T, 解得 I=5A。
17.光子的能量为 E hv ,而 v
,h ,所以 E 。 2 2 三、实验题(2 题,每题 8 分,共 16 分)
1 2 v gh =常量。 2
18.【答案】测量范围;分度值;1.30;多次测量求平均值。解析:(1)选择工具时,应选用测量 范围和分度值合适的测量工具。(2)图示刻度尺 1cm 又分为 10 个小刻度,故最小刻度值为 1mm;物 体起始端对应的刻度值为 1.00cm,末端对应的刻度值为 2.30cm,物体长度为 2.30cm-1.00cm=1.30cm。 (3)为了提高测量的准确程度,可通过多次测量求平均值的方法,减小测量的误差。故答案为:测量 范围;分度值;1.30;多次测量求平均值。 19. 【答案】 12.09, 0.66。 解析: 原子从能级 n=3 向 n=1 跃迁所放出的光子的能量为 13.60﹣1.51=12.09eV, 当光子能量等于逸出功时,恰好发生光电效应,所以逸出功 W0=12.09eV;从能级 n=4 向 n=1 跃迁所放 出的光子能量为 13.6 ﹣ 0.85eV=12.75eV ,根据光电效应方程得,最大初动能 Ekm=hv ﹣ W0=12.75 ﹣ 12.09=0.66eV。故答案为:12.09,0.66。

2019年云南中考数学试卷解析

2019年云南中考数学试卷解析

2019年云南中考数学试卷解析一、选择题(共8小题,每小题3分,满分24分)1.5的相反数是()A.B.﹣5 C.D.5考点:相反数。

2018629分析:根据相反数的定义,即只有符号不同的两个数互为相反数,进行求解.解答:解:5的相反数是﹣5.故选B.点评:此题考查了相反数的概念.求一个数的相反数,只需在它的前面加“﹣”号.2.如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图。

2018629分析:根据俯视图是从上面看到的识图分析解答.解答:解:从上面看,是1行3列并排在一起的三个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.下列运算正确的是()A.x2•x3=6 B.3﹣2=﹣6 C.(x3)2=x5D.40=1考点:负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂。

2018629分析:利用同底数幂、负指数、零指数以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.解答:解:A、x2•x3=x6,故本选项错误;B、3﹣2==,故本选项错误;C、(x3)2=x6,故本选项错误;D、40=1,故本选项正确.故选D.点评:此题考查了同底数幂、负指数、零指数以及幂的乘方的性质.注意掌握指数的变化是解此题的关键.4.不等式组的解集是()A.x<1 B.x>﹣4 C.﹣4<x<1 D.x>1考点:解一元一次不等式组。

2018629分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到不等式组的解集.解答:解:,由①得﹣x>﹣1,即x<1;由②得x>﹣4;由以上可得﹣4<x<1.故选C.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CA D的度数为()A.40°B.45°C.50°D.55°考点:三角形内角和定理。

2019年云南省中考数学试卷-答案

2019年云南省中考数学试卷-答案

云南省2019年初中学业水平考试数学答案解析一、填空题 1.【答案】6-【解析】零上记为正数,则零下记为负数,故答案为6-. 【考点】正负数表示两个相反意义的量. 2.【答案】2(1)x -【解析】222211(1)x x x -+=-,故答案为2(1)x -. 【考点】分解因式. 3.【答案】140【解析】∵AB CD ∥,∴同位角相等,∴1∠与2∠互补,∴218040140∠=-=,故答案为140. 【考点】平行线的性质,平角的意义. 4.【答案】15【解析】∵点(3,5)在反比例函数k y x =上,∴53k=,∴3515k =⨯=. 【考点】反比例函数的性质. 5.【答案】甲班【解析】由频数分布直方图知D 等级的人数为13人,由扇形统计图知D 等级的人数为4030%12⨯=,∴D 等级较多的人数是甲班,故答案为甲班. 【考点】统计图的应用.6.【答案】【解析】过点D 作DE AB ⊥于E ,∵30A ∠=,∴sin3023DEAD ==cos306AE AD ==,在Rt DBE △中,2BE =,∴8AB AE BE =+=,或4AB AE BE =-=,∴平行四边形ABCD 的面积为8⨯=4⨯=故答案为 【考点】平行四边形的性质,特殊角的三角函数,勾股定理. 二、选择题 7.【答案】B【解析】根据轴对称和中心对称定义可知,A 选项是轴对称,B 选项既是轴对称又是中心对称,C 选项是轴对称,D 选项是轴对称图形,故选B .【考点】轴对称图形和中心对称图形的概念.8.【答案】C【解析】科学记数法较大数10N a ⨯,其中110a ≤<,N 为小数点移动的位数.∴ 6.88,5a N ==,故选C . 【考点】科学记数法. 9.【答案】D【解析】多边形内角和公式为(2)180n -⨯,其中n 为多边形的边的条数.∴十二边形内角和为(122)1801800-⨯=,故选D . 【考点】多边形的内角和公式. 10.【答案】B,则被开方数1x +要为非负数,即10x +≥,∴1x -≥,故选B . 【考点】二次根式有意义的条件. 11.【答案】A【解析】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴2π8πr =,∴4r =,圆锥的全面积等于2ππ16π32π48πS S rl r +=+=+=侧底,故选A . 【考点】圆锥的侧面展开图,圆锥的全面积. 12.【答案】C【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n +,故选C . 【考点】探索规律. 13.【答案】A【解析】∵5AB =,13BC =,12CA =,∴222AB AC BC +=,∴ABC △为直角三角形,且90A ∠=,∵O为ABC △内切圆,∴90AFO AEO ∠=∠=,且AE AF =,∴四边形AEOF 为正方形,设O 的半径为r ,∴OE OF r ==,∴2AEOF S r =四边形,连接AO ,BO ,CO ,∴ABC AOB AOC BOC S S S S =++△△△△,∴1()2AB AC BC ++12AB AC =,∴2r =,∴24AEOF S r ==四边形,故选A . 【考点】勾股定理逆定理,正方形的判定与性质,切线长定理,解方程组. 14.【答案】D【解析】解不等式组得2x >,x a >,根据同大取大的求解集的原则,∴2a >,当2a =时,也满足不等式的解集为2x >,∴2a ≥,故选D . 【考点】解不等式组. 三、解答题15.【答案】解:9121=+--原式7=【解析】解:9121=+--原式7=【考点】实数的运算.16.【答案】证明:在ABC △和ADC △中,∵,,,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴()SSS ABC ADC △≌△. ∴B D ∠=∠.【解析】证明:在ABC △和ADC △中,∵,,,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴()SSS ABC ADC △≌△. ∴B D ∠=∠.【考点】全等三角形的判定及性质.17.【答案】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90; (2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【解析】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90; (2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 【考点】统计的综合应用.18.【答案】解:设甲校师生所乘大巴车的平均速度为x km /h ,则乙校师生所乘大巴车的平均速度为1.5x km /h .根据题意得24027011.5x x-=. 解得60x =,经检验,60x =是原分式方程的解. ∴60x =,1.590x =.答:甲、乙两校师生所乘大巴车的平均速度分别为60 km /h 和90 km /h .【解析】解:设甲校师生所乘大巴车的平均速度为x km /h ,则乙校师生所乘大巴车的平均速度为1.5x km /h .根据题意得24027011.5x x-=. 解得60x =,经检验,60x =是原分式方程的解. ∴60x =,1.590x =.答:甲、乙两校师生所乘大巴车的平均速度分别为60 km /h 和90 km /h . 【考点】列分式方程解应用题.19.【答案】解:(1)方法一:列表法如下:(),x y 所有可能出现的结果共有16种.方法二:树形图(树状图)法如下:(),x y 所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等. ∵x y +为奇数的有8种情况,∴81()162P ==甲获胜. ∵x y +为偶数的有8种情况,∴81()162P ==乙获胜. ∴()()P P =甲获胜乙获胜.∴这个游戏对双方公平.【解析】解:(1)方法一:列表法如下:(),x y 所有可能出现的结果共有16种.方法二:树形图(树状图)法如下:(),x y 所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等. ∵x y +为奇数的有8种情况,∴81()162P ==甲获胜. ∵x y +为偶数的有8种情况,∴81()162P ==乙获胜. ∴()()P P =甲获胜乙获胜. ∴这个游戏对双方公平. 【考点】求随机事件的概率.20.【答案】解:(1)证明:∵AO OC =,BO OD =, ∴四边形ABCD 是平行四边形.又∵2AOB OAD ∠=∠,AOB ∠是AOD △的外角, ∴AOB OAD ADO ∠=∠+∠. ∴OAD ADO ∠=∠. ∴AO OD =.又∵2AC AO OC AO =+=,2BD BO OD OD =+=, ∴AC BD =.∴四边形ABCD 是矩形.(2)解:设4AOB x ∠=,3ODC x ∠=,则3ODC OCD x ∠=∠=. 在ODC △中,180DOC OCD CDO ∠+∠+∠=. ∴433180x x x ++=,解得18x =. ∴31854ODC ∠=⨯=.∴90905436ADO ODC ∠=-∠=-=. 【解析】解:(1)证明:∵AO OC =,BO OD =, ∴四边形ABCD 是平行四边形.又∵2AOB OAD ∠=∠,AOB ∠是AOD △的外角, ∴AOB OAD ADO ∠=∠+∠. ∴OAD ADO ∠=∠. ∴AO OD =.又∵2AC AO OC AO =+=,2BD BO OD OD =+=, ∴AC BD =.∴四边形ABCD 是矩形.(2)解:设4AOB x ∠=,3ODC x ∠=,则3ODC OCD x ∠=∠=. 在ODC △中,180DOC OCD CDO ∠+∠+∠=. ∴433180x x x ++=,解得18x =. ∴31854ODC ∠=⨯=.∴90905436ADO ODC ∠=-∠=-=.【考点】矩形的判定与性质,三角形外角的性质,等腰三角形的判定,三角形的内角和定理. 21.【答案】解:(1)∵抛物线223)6(y x k k x k =++-+的对称轴是y 轴,∴2602k k x +-=-=,即260k k +-=.解得3k =-或2k =.当2k =时,二次函数解析式为26y x =+,它的图象与x 轴无交点,不满足题意,舍去. 当3k =-时,二次函数解析式为29y x =-,它的图象与x 轴有两个交点,满足题意. ∴3k =-.(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为2-或2. 当2x =时,5y =-; 当2x =-时,5y =-.∴点P 的坐标为(2,)5-或(2,5)--.【解析】解:(1)∵抛物线223)6(y x k k x k =++-+的对称轴是y 轴,∴2602k k x +-=-=,即260k k +-=.解得3k =-或2k =.当2k =时,二次函数解析式为26y x =+,它的图象与x 轴无交点,不满足题意,舍去. 当3k =-时,二次函数解析式为29y x =-,它的图象与x 轴有两个交点,满足题意. ∴3k =-.(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为2-或2. 当2x =时,5y =-; 当2x =-时,5y =-.∴点P 的坐标为(2,)5-或(2,5)--. 【考点】二次函数的图象与性质.22.【答案】解:(1)当610x ≤≤时,由题意设()0y kx b k =+≠,它的图象经过点(6,1000)与点(10,200).∴10006,20010,k b k b =+⎧⎨=+⎩解得200,2200,k b =-⎧⎨=⎩当1012x <≤时,200y =.答:y 与x 的函数解析式为2002200,610,200,1012.x x y x -+⎧=⎨⎩≤≤<≤(2)当610x ≤≤时,2002200y x =-+, 266200220017()()()200()12502W x y x x x =-=--+=-+- ∵2000-<,610x ≤≤, 当172x =时,W 最大,且W 的最大值为1 250. 当1012x <≤时,200y =,6200(6200120()0)W x y x x =-=-=-. ∵2000>,∴2001200W x =-随x 增大而增大.又∵1012x <≤, ∴当12x =时,W 最大,且W 的最大值为1 200. ∵12501200>, ∴W 的最大值为1 250.答:这一天销售西瓜获得利润的最大值为1 250元.【解析】解:(1)当610x ≤≤时,由题意设()0y kx b k =+≠,它的图象经过点(6,1000)与点(10,200).∴10006,20010,k b k b =+⎧⎨=+⎩解得200,2200,k b =-⎧⎨=⎩当1012x <≤时,200y =.答:y 与x 的函数解析式为2002200,610,200,1012.x x y x -+⎧=⎨⎩≤≤<≤(2)当610x ≤≤时,2002200y x =-+,266200220017()()()200()12502W x y x x x =-=--+=-+- ∵2000-<,610x ≤≤, 当172x =时,W 最大,且W 的最大值为1 250. 当1012x <≤时,200y =,6200(6200120()0)W x y x x =-=-=-. ∵2000>,∴2001200W x =-随x 增大而增大. 又∵1012x <≤,∴当12x =时,W 最大,且W 的最大值为1 200. ∵12501200>, ∴W 的最大值为1 250.答:这一天销售西瓜获得利润的最大值为1 250元. 【考点】函数的综合应用.23.【答案】解:(1)证明:2DE DB DA =, ∴DE DBDA DE=. 又∵BDE EDA ∠=∠, ∴DEB DAE △∽△.(2)∵AB 是C 的直径,E 是C 上的点, ∴90AEB ∠=,即BE AF ⊥. 又∵AE EF =,10BF =, ∴10AB BF ==.∴DEB DAE △△,os 5c BED ∠=, ∴EAD BED ∠=∠,cos cos 45EAD BED ∠=∠=. 在Rt ABE △中,由于10AB =,4os 5c EAD ∠=,得cos 8AE AB EAD =∠=,∴6BE =. ∴DEB DAE △∽△, ∴6384DE DB EB DA DE AE ====. ∵10DB DA AB DA =-=-,∴341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩,经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解.∴16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩.(3)解:连接FM .∵BE AF ⊥,即90BEF ∠=,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上, ∴点M 在以BF 为直径的圆上. ∴FM AB ⊥.在Rt AMF △中,由cos FAM AF∠=得, cos 2co 46455s 28AM AF FAM AE EAB =∠=∠==⨯⨯. ∴160643527535MD DA AM -==-=. ∴35235MD =. 【解析】解:(1)证明:2DE DB DA =, ∴DE DBDA DE=. 又∵BDE EDA ∠=∠, ∴DEB DAE △∽△.(2)∵AB 是C 的直径,E 是C 上的点, ∴90AEB ∠=,即BE AF ⊥. 又∵AE EF =,10BF =, ∴10AB BF ==.∴DEB DAE △△,4os 5c BED ∠=, ∴EAD BED ∠=∠,cos cos 45EAD BED ∠=∠=. 在Rt ABE △中,由于10AB =,4os 5c EAD ∠=,得cos 8AE AB EAD =∠=,∴6BE =. ∴DEB DAE △∽△, ∴6384DE DB EB DA DE AE ====. ∵10DB DA AB DA =-=-,∴341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩,11 / 11经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解. ∴16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩. (3)解:连接FM .∵BE AF ⊥,即90BEF ∠=,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上,∴点M 在以BF 为直径的圆上.∴FM AB ⊥.在Rt AMF △中,由cos FAM AM AF∠=得, cos 2co 46455s 28AM AF FAM AE EAB =∠=∠==⨯⨯. ∴160643527535MD DA AM -==-=. ∴35235MD =. 【考点】相似三角形的判定与性质,圆的性质,等腰三角形的判定,锐角三角函数,勾股定理.。

云南省特岗教师招考仿真试卷[初中数学科目]参考答案及解析

云南省特岗教师招考仿真试卷[初中数学科目]参考答案及解析

云南省特岗教师招聘考试仿真试卷二(初中数学) 部分试题(满分:100分考试时间:150分钟)专业基础知识部分得分评卷人一、选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是()。

A.x·x3=x2B.x3-x2=xC.x3÷x=x2D.x3+x3=x62.已知如图,下列条件中,不能判断直线l1∥l2的是()。

A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.如图,某飞机于空中A处探测到地面目标B,此时从飞机上看目标B的俯角α=30°,飞行高度AC=1 200米,则飞机到目标B的距离AB为()。

A.1 200米B.2 400米C.4003米D.1 2003米试题由中人教育独家提供,任何网站如需转载,均需得到中国教育在线教师招聘频道和中人教育双方的书面许可,否则追究法律责任。

4.下列图形中阴影部分的面积相等的是()。

A.①②B.②③C.③④D.①④5.如图,已知△EFH和△MNK是位似图形,那么其位似中心的点是()。

6.若三角形的三边长分别为3、4、x-1,则x的取值范围是()。

A.0<X<8B.2<X<8C.0<X<6D.2<X<67.在△ABC中,已知D是AB边上一点,若AD=2CD,且CD=13CA+λCB,则λ=()。

A.13B.-13C.23D.-238.已知f(x)=ax2+bx+c(a>0),α、β为方程f(x)=x的两根,且0<α<β。

当0<X<Α时,给出下列不等式,成立的是()。

A.x<F(X)B.X≤F(X)C.x>f(x)D.x≥f(x)9.在等比数列{an}中,a1=2,前n项和为Sn。

若数列{an+1}也是等比数列,则Sn等于()。

A.2nB.3nC.2n+1-2D.3n-110.将四名曾参加过奥运会的运动员分配到三个城市进行奥运知识的宣传,每个城市至少分配一名运动员,则不同的分配方法共有()。

【必备】2019年云南省特岗教师初中数学学科专业知识试卷全解析版

【必备】2019年云南省特岗教师初中数学学科专业知识试卷全解析版

2016-2019年全国特岗教师招聘初中数学真题卷温馨提示:本套试卷收录2016-2019特岗教师招聘考试中最具有代表性的初中数学真题,包含了四川省、辽宁省、河北省、河南省、海南省、江西省、黑龙江省、安徽省、云南省、甘肃省等主要招考省份,内容详实,覆盖面广,有利于考生把握当前命题趋势,了解考试题型,洞悉考点变化,达到及时有效复习的目的。

2020年度,全国特岗教师招聘计划分配名额表如下:以下为试题,参考解析附后一、单选题1.如图所示的圆锥的主视图是( )A .B .C .D .2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A .B .C .D .3.下列运算正确的是( ).A .236x x x ⋅=B .2353()x x x y ⋅=C .246()x x -=D .532x x x ÷=4.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域乙探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学计数法可表示为( ).A .101510⨯B .120.1510⨯C .111.510⨯D .121.510⨯ 59 )A.3 B.±3C.3D.±36.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x 的图象大致为()A.B.C.D.7.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h8.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()。

云南特岗中学数学2016-2018

云南特岗中学数学2016-2018

3
三、解答题(17-20 题各 6 分,21 题 8 分)
17.如图, AC 是平行四边形 ABCD 的对角线, BAC DAC 。 (1)求证: AB BC ;
(2)若 AB 2 , AC 2 3 ,求平行四边形 ABCD 的面积。
18.某食品企业一个月内被消费者投诉的次数用 表示,据统计,随机变量 的概率分布如下表:
A.圆台的俯视图是两个同心圆
C.1712
B.平面直角坐标系内,点 A(2 x, x) 一定不在第三象限
4
D.1713
C.平行四边形、矩形、菱形、正方形和等边三角形这五种图形中,既是中心对称图形又是轴对
称图形的共有三种
D.在比例尺为 1:8 的图纸上,甲、乙两个圆的直径比为 1:3,那么甲乙两个圆实际的直径比为
2
3
A.
B.
C.1
7
7
2
D.
7
7.投掷两枚骰子,得到正面向上的点数分别为 m 和 n ,则复数 (m ni)(n mi) 为实数的概率为( )
A. 1 3
B. 1 4
C. 1 6
D. 1 12
8.已知 f (cos x) cos 2x ,则 f (sin15) 的值=( )
A. 1 2
B. 1 2
A. 5 5
B. 5 5
C. 2 5 5
D. 2 5 5
9.曲线 y x2 与直线 x 0 , x 1 , y t (0 t 1) 所围成的图形的面积情况为( )
A. t 1 时,面积最大 2
C. t 1 时,面积最大 4
B. t 1 时,面积最小 2
D. t 1 时,面积最小 4
A. x y
B. x , y 在 a 上的投影相等

2019年特岗教师招聘考试中学 数学试卷

2019年特岗教师招聘考试中学数学试卷作者:jskslm 2019-02-05 15:50 阅读:1622019年特岗教师招聘考试中学数学试卷(满分为100分)一、单项选择题(在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内。

本大题共12小题,每小题3分,共36分。

)1.若不等式x2-x≤0的解集为M,函数f(x)=ln(1-|x|)的定义域为N,则M∩N为()。

A.[0,1)B.(0,1)C.[0,1]D.(-1,0]2.将函数y=2x+1的图像按向量a平移得到函数y=2x+1的图像,则a等于()。

A.(-1,-1)B.(1,-1)C.(1,1)D.(-1,1)3.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()。

A.13B.23C.33D.234.若不等式组x≥0,x+3y≥4,3x+y≤4,所表示的平面区域被直线y=kx+43分为面积相等的两部分,则k的值是()。

A.73B.37C.43D.345.一个等差数列首项为32,该数列从第15项开始小于1,则此数列的公差d的取值范围是()。

A.-3113≤d<-3114B.-3113<d<-3114C.d<3114D.d≥-31136.∫π2-π2(1+cosx)dx等于()。

A.πB.2C.π-2D.π+27.在相距4k米的A、B两地,听到炮弹爆炸声的时间相差2秒,若声速每秒k米,则爆炸地点P必在()。

A.以A、B为焦点,短轴长为3k米的椭圆上B.以AB为直径的圆上C.以A、B为焦点,实轴长为2k米的双曲线上D.以A、B为顶点,虚轴长为3k米的双曲线上8.通过摆事实、讲道理,使学生提高认识、形成正确观点的德育方法是()。

A.榜样法B.锻炼法C.说服法D.陶冶法9.一次绝对值不等式|x|>a(a>0)的解集为x>a或x<a,|x|<a(a>0)的解集为-a<x<a。

2019年云南省初中学业水平考试数学试题卷(附答案解析)

2019年云南省初中学业水平考试数学试卷、填空题(本大题共6小题,每小题3分,共18分)1 .若零上8 C 记作+8 C,则零下6 C 记作 __________ C. 2. 分解因式:x 2- 2x +1 = __________ . 3. 如图,若 AB//CD ,/1 = 40 度,则Z2 = _____ 度.k4.若点(3, 5)在反比例函数 y ( k 丸)的图象上,则k =.x5. 某中学九年级甲、乙两个班参加了一次数学考试 ,考试人数每班都为 40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图根据以上统计图提供的信息 ,则D 等级这一组人数较多的班是 __________ .6 .在平行四边形 ABCD 中,/ A = 30 °, AD = 4・.3,BD = 4,则平行四边形 ABCD 的面积等 于、选择题(本大题共8小题,每小题4分,共32分)8. 2019年 五一”期间,某景点接待海内外游客共 688000人次,688000这个数用科学记数法表示为甲班数学成绩频数分布直方图 乙班数学成绩扇形统计图7.下列图形既是轴对称图形B.13 .如图,△ ABC 的内切圆O O 与BC 、CA 、AB 分别相切于点 12 ,则阴影部分(即四边形AEOF )的面积是( A. 4 B. 6.25 C. 7.5["x —1)》2 ,的解集是x >a ,则a 的取值范围是a -x :0C . a >2D . a >2三、解答题(本大共9小题,共70分)15 . ( 6 分)计算:32+ (n - 5) ° - -4 + ( - 1 ) -1A . 68.8 X 104B . 0.688 X 1069. 一个十二边形的内角和等于 ()A. 2160 ° B . 2080 °10 .要使 _1有意义,则x 的取值范围为2A. xW0B . x >- 1C . 6.88 X 105D . 6.88 X 106C . 1980 °D .1800 °( )C . x >0D . x <- 111. 一个圆锥的侧面展开图是半径为 8的半圆,则该圆锥的全面积是()A . 48 nB . 45 nC . 36 nD . 32 n12 .按一定规律排列的单项式:x 3, - x 5, x 7, - x 9, x 11,……,第n 个单项式是(n - 1 x 2n - 1B .( - 1) n x 2n -1C .( - 1) n -1心+1D . ( - 1) n x 2n+114 .若关于x 的不等式组A . a v 2D 、E 、F ,且 AB = 5 , BC = 13 , CA =16.( 6 分)如图,AB = AD , CB = CD .求证:/B =/D .17 . ( 8分)某公司销售部有营业员 15人,该公司为了调动营业员的积极性据目标完成的情况对营业员进行适当的奖励 ,为了确定一个适当的月销售目标 ,公司有关部门统计了这15人某月的销售量,如下表所示月销售量/件数1770480220180120 90人数 1 1 3 3 3 4(1)直接写出这15名营业员该月销售量数据的平均数 、中位数、众数;温馨提示:确定一个适当的月销售目标是一个 关键问题,如果目标定得太高,多数 营业员完不成任务,会使营业员失去 信心;如果目标定得太低,不能发挥 营业员的潜力•18 .( 6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围 ,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地 240千米和270千米的两地同时出发,前往研学教育”基地开展扫黑除恶教育活动 •已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车 的平均度的1.5倍,甲校师生比乙校师生晚 1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度•,决定实行目标管理,根(2)如果想让一半左右的营业员都能达到月销售目标 中,哪个最适合作为月销售目标 ?请说明理由. ,你认为(1)中的平均数、中位数、众数19 • (7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1, 2, 3 , 4的四个小球(除标号外无其它差异)•从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示•若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x, y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由20 .( 8分)如图,四边形ABCD中,对角线AC、BD相交于点O, AO = OC, BO= OD,且/A0B=2ZOAD.(1)求证:四边形ABCD是矩形;(2)若ZA0B:/0DC = 4:3,求ZAD0 的度数.21 .( 8分)已知k是常数,抛物线y = x2+ (k2+k- 6) x+3k的对称轴是y轴,并且与x轴有两个交占八、、♦(1)求k的值;(2)若点P在物线y= x2+ (k2+k- 6) x+3 k上,且P到y轴的距离是2 ,求点P的坐标.22 .( 9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售•已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍•经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x(元/千克)的函数关系如图所示:|y(1) 求y与x的函数解析式(也称关系式);(2) 求这一天销售西瓜获得的利润W的最大值•23 •(12分)如图,AB是O O的直径,M、D两点AB的延长线上,E是O C上的点,且DE2= DB?DA,延长AE 至F,使得AE= EF,设BF= 10, cos ZBED= 4•5(1)求证:△ DEB s^DAE;(2)求DA, DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长•F2019年云南省初中学业水平考试数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1 .(3分)(2019?云南)若零上8 C记作+8 C,则零下6 C记作 -6 C.考点】11:正数和负数.专题1511 :实数.分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答】解:根据正数和负数表示相反的意义,可知如果零上8C记作+8 C,那么零下6 C记作-6 C.故答案为:-6 .点评】本题考查了正数和负数的知识,解题关键是理解正”和负”的相对性,确定一对具有相反意义的量•2 • (3 分)(2019?云南)分解因式:x2-2x+1 = (X- 1)2考点】54 :因式分解-运用公式法分析】直接利用完全平方公式分解因式即可分析】根据两直线平行,同位角相等求出Z3,再根据邻补角的定义列式计算即可得解解答】解:•••AB//CD,/1 = 40 ° ,B /•23=Z1 = 40 ° ,•••/2= 180 °- Z3= 180 °- 40 ° ^140故答案为:140 •点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键•k4 • (3分)(2019?云南)若点(3, 5)在反比例函数y (k#0)的图象上,则k= 15x考点】G6:反比例函数图象上点的坐标特征•专题】534 :反比例函数及其应用分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点k(3, 5)代入反比例函数y (k丸)即可.xk解答】解:把点(3, 5)的纵横坐标代入反比例函数y二一得:k = 3X5 = 15x故答案为:15点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k的值;比较简单.5. (3分)(2019?云南)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图甲班数学成绩频数分布直方图乙班数学成绩扇形统计图根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.考点】V8:频数(率)分布直方图;VB:扇形统计图.专题】542 :统计的应用.分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40 X30% = 12 人,即可得出答案.解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40 X30% = 12 (人),13 > 12 ,所以D等级这一组人数较多的班是甲班;故答案为:甲班.点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.6. (3分)(2019?云南)在平行四边形ABCD中,/A = 30 °,AD = 4.3 , BD= 4,则平行四边形ABCD的面积等于16 3或8 3.考点】L5:平行四边形的性质专题】555 :多边形与平行四边形.分析】过D作DE丄AB于E,解直角三角形得到AB = 8,根据平行四边形的面积公式即可得到结论.解答】解:过D作DE丄AB于E,在Rt△ ADE 中30 °,AD = 4 二,•••DE=-L A D = 2 乙AE=—AD = 6,2 2在Rt△ BDE 中,VBD= 4,••BE=2,如图1 ,.・.AB = 8,••平行四边形ABCD的面积=AB?DE= 8 X2 == 16如图2, AB= 4 ,••平行四边形ABCD的面积=AB?DE= 4 X2 = 8 :,故答案为:16「或8点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30。

【数学】2019年云南省特岗教师初中数学学科专业知识试卷全解析版

2016-2019年全国特岗教师招聘初中数学真题卷温馨提示:本套试卷收录2016-2019特岗教师招聘考试中最具有代表性的初中数学真题,包含了四川省、辽宁省、河北省、河南省、海南省、江西省、黑龙江省、安徽省、云南省、甘肃省等主要招考省份,内容详实,覆盖面广,有利于考生把握当前命题趋势,了解考试题型,洞悉考点变化,达到及时有效复习的目的。

2020年度,全国特岗教师招聘计划分配名额表如下:以下为试题,参考解析附后一、单选题1.小飞研究二次函数y=-(x-m)2-m+1(m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m 的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点A(x 1,y 1)与点B(x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2;④当-1<x<2时,y 随x 的增大而增大,则m 的取值范围为m≥2其中错误结论的序号是( ) A .①B .②C .③D .④2.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是( )A .B .C .D .3.如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN AB ⊥,垂足为N 、P 、Q 分别是AM 、BM 上一点(不与端点重合),如果MNP MNQ ∠=∠,下面结论:①12∠=∠;②180P Q ∠+∠=;③Q PMN ∠=∠;④PM QM =;⑤2MN PN QN =⋅.其中正确的是( )A .①②③B .①③⑤C .④⑤D .①②⑤4.如图,抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x >3时,y <0;②3a+b>0;③21a 3-≤≤-;④3≤n≤4中,正确的是( )A.①②B.③④C.①④D.①③5.网购越来越多地成为人们的一种消费方式,在2018年11月11日的网上促销活动中,当天的全网总销售额达到3143.2亿元,其中3143.2亿元用科学记数法表示为( )A.31.432×1010B.3.1432×1012C.3143.2×108D.3.1432×10116.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y27.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=30°,OD=2,那么DC的长等于()A.2 B.4 C3D.38.2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为()A.1.32×109B.1.32×108C.1.32×107D.1.32×1069.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示: 成绩 4.50 4.60 4.65 4.70 4.75 4.80(米)人数232341则这15名运动员成绩的中位数、众数分别是()A.4.65,4.70B.4.65,4.75C.4.70,4.70,D.4.70,4.75 10.有的美术字是轴对称图形,下面四个美术字中可以看作轴对称图形的是( )A.B.C.D.11.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°12.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x113.如图,AB是⊙O的弦,CD是⊙O的直径,CD=15,CD⊥AB于M,如果sin∠ACB=,则AB=()A.24 B.12 C.9 D.614.一个正多边形的每一个外角都等于45°,则这个多边形的边数为( ) A.4 B.6 C.8 D.1015.2014年巴西世界杯在南美洲国家巴西境内12座城市中的12座球场内举行,本届世界杯的冠军将获得3500万美元的奖励,将3500万用科学记数法表示为()A.3.5×106B.3.5×l07C.35×l06D.0.35×l08二、填空题16.过平行四边形ABCD的对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF=__________.17.如图,∠AOB30°,点P是∠AOB内的一定点,且OP6,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是__________.18.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线143y x=-+上.设△P 1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,Sn=_____.19.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x (s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.20.已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为_____.三、解答题21.如图,在正方形ABCD中,AB=2,E是AD边上的一点(点E与点A和点D不重合),BE的垂直平分线交AB于点M,交DC于点N.(1)证明:MN = BE.(2)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式.(3)当AE为何值时,四边形ADNM的面积最大?最大值是多少?22.某校附近有一条笔直的公路l,该路段车辆限速40千米/小时,数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)23.某种机器在加工零件的过程中,机器的温度会不断变化.当机器温度升高至︒时,机器会自动启动冷却装置控制温度上升的速度;当温度升到100C︒40C时,机器自动停止加工零件,冷却装置继续工作进行降温;当温度恢复至40C︒时,机器自动开始继续加工零件,如此往复,机器从20C︒时开始,机器的温度y(C︒)随时间t(分)变化的函数图象如图所示.(1)当机器的温度第一次从40C︒升至100C︒时,求y与t之间的函数关系式;(2)冷却装置将机器温度第一次从100C︒降至40C︒时,需要多少分钟?(3)机器的温度在98C︒以上(含98C︒)时,机器会自动发出鸣叫进行报警.当t≤≤时,直接写出机器的鸣叫时间.015424.如图,抛物线y=﹣x2+bx+c经过A(0,3),C(2,n)两点,直线l:y=1x+2过C点,且与y轴交于点B,抛物线上有一动点E,过点E作直线EF⊥x 2轴于点F,交直线BC于点D(1)求抛物线的解析式.(2)如图1,当点E在直线BC上方的抛物线上运动时,连接BE,BF,是否存在点E使直线BC将△BEF的面积分为2:3两部分?若存在,求出点E的坐标,若不存在说明理由;(3)如图2,若点E在y轴右侧的抛物线上运动,连接AE,当∠AED=∠ABC 时,直接写出此时点E的坐标.25.2019中国北京世界园艺博览会于2019年4月29日至10月7日在北京市延庆区举办,预售期门票价然有“平日票”和“推定日票”两种,其中平日票的单价比指定日票的单价少40元1张:某学校计划组织学生去参观,用9600元购买的平日票的票数与用12800元购买的旅定日票的票数相等.(1)求该学校购买的平日票、指定日票的单价分别是多少元?(2)若两种票共购买了200张,且购买的总费用是28800元,求购买了多少张平日票?参考答案:一、单选题1.C【解析】【分析】把顶点坐标代入y=-x+1即可判断①;根据勾股定理即可判断②;根据在对称轴的右边y随x的增大而减小可判断③;;根据在对称轴的右边y随x的增大而增大可判断④.【详解】把(m,-m+1)代入y=-x+1,-m+1=-m+1,左=右,故①正确;当-(x-m)2-m+1=0时,x1=, x2=,若顶点与轴的两个交点构成等腰直角三角形,则1-m+(1-m)2+1-m+(1-m)2=4(1-m),即m2-m=0,∴m=0或1时,∴存在一个m的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;故②正确;当x1<x2,且x1、x2在对称轴右侧时,∵-1<0, ∴在对称轴右侧y随x的增大而减小,即y1>y2,故③错误;∵-1<0, ∴在对称轴左侧y随x的增大而增大,∴m≥2,故④正确.故选C.【点睛】本题考查了二次函数的图像与性质,勾股定理,二次函数与坐标轴的交点,熟练掌握二次函数的图像与性质是解答本体的关键. 对于二次函数y=a(x-h)2+k (a,b,c为常数,a≠0),当a>0时,抛物线开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.其顶点坐标是(h,k),对称轴为直线x=h.2.D【解析】【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【详解】所给图形的俯视图如图所示:,故选D.【点睛】本题考查了俯视图,明确俯视图是从物体上面看得到的图形是解题的关键. 3.B【解析】【分析】利用等角的余角相等得到①对;利用三角形内角和定理得②错;利用垂径定理,同弧所对的圆周角相等得③对;利用三角形相似得④错,⑤对.【详解】解:延长QN交圆O于C,延长MN交圆O于D,如图∵MN⊥AB,∠MNP=∠MNQ,则∠1=∠2,故①正确;∵∠P+∠PMN<180°,∴∠P+∠Q<180°,故②错误;∵AB是⊙O的直径,MN⊥AB,AM DA=,由∠1=∠2,∠ANC=∠2,∴∠1=∠ANC,得P,C关于AB对称,PA AC=,PD MC=,∴∠Q=∠PMN,故③正确;∵∠MNP=∠MNQ,∠Q=∠PMN,∴△PMN∽△MQN,∴MN2=PN•QN,PM不一定等于MQ;故④错误,⑤正确.故选:B.【点睛】此题考查了垂径定理、圆周角定理、相似三角形的判定与性质以及等腰三角形的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.4.D【解析】①∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0。

2019年下半年教师资格证考试《初中数学》真题及答案

2019年下半年教师资格证考试《初中数学》真题及答案一、单项选择题。

下列各题的备选答案中,只有一个是符合题目要求的,请根据题干要求选择正确答案。

(本大题共8小题,每小题5分,共40分)1在利用导数定义证明=的过程中用到的极限是()。

A、B、(1+)C、D、q2设为n阶方阵,则下列命题一定正确的是()。

A、B、C、若且,则D、若且,则3下列定积分计算结果正确的是()。

A、B、C、D、4将椭圆绕长轴旋转一周,所得旋转曲面的方程为()。

A、B、=1C、D、5设和,是方程组的两个不同的基础解系,则下列结论正确的()。

A、向量组的秩小于向量组的秩B、向量组的秩大于向量组的秩C、向量组的秩等于向量组的秩D、向量组的秩与向量组的秩无关6三个非零向量共面,则下列结论不一定成立的是()。

A、B、C、线性相关D、7在平面直角坐标系中,将一个多边形依次沿两个坐标轴方向分别平移2个单位和3个单位后,得到的图形与原来的图形的关系不一定正确的是()。

A、全等B、平移C、相似D、对称8学生是数学学习的主体是数学教学的重要理念,下列关于教师角色的概述不正确的是()。

A、组织者B、引导者C、合作者D、指挥者二、简答题。

请按题目要求,进行简答。

(本大题共5小题,每小题7分,共35分)9设,,变换,其中变换矩阵,(1)写出椭圆在该变换下满足的曲线方程(5分)(2)举例说明在该变换下什么性质保持不变,什么性质发生变化(例如距离、斜率等)(2分)10利用一元函数积分计算下列问题:(1)求曲线与所围平面图形面积(4分)(2)求曲线段绕x轴旋转一周所围成的几何体体积(3分)11一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。

每次取出1个球,求最多取到3个白球的概率。

12简述研究中学几何问题的三种主要方法。

13简述数学教学活动中调动学生学习积极性的原则。

三、解答题。

请对以下题目进行解答。

(本大题共1小题,共10分)14对于问题:“已知函数在上可导,且,对于任何,有,求证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学数学参考答案
一、单选题
BDACD BACBC
二、填空题11.32π
12.1/313.02=-+y x 14.-115.116.x
y y
y -ln 三、解答题17.52;101;103;5218.)
4(1
2x e y -=19.SA ⊥BC,AB ⊥BC 所以BC ⊥SAB 所以BC ⊥AM,AM ⊥SB 所以AM ⊥SBC,所以AM ⊥SC 所以SC ⊥AMN 20.(1))1,0(a -递增,),1
(+∞-a 递减(2)]
0,1[-21.(1)221,32x y +=
(2)k =四、数学教学法知识
22.【参考答案】
(1)函数思想
(2)方程思想
(3)分类思想
(4)数形结合思想
(5)化归思想
23.【参考答案】
公理1:如果一条直线上的两个点在一个平面内,那么这条直线上的所有点都在此平面内。

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理3:过不在同一条直线上的三点,有且只有一个平面。

公理4:平行于同一条直线的两条直线互相平行。

五、教学设计题
略。

六、简答题
25.【参考答案】
(1)人的全面发展指的是人的体力和智力的全面和谐充分的发展,还包括道德和个性的发展。

(2)旧式分工造成了人的片面发展
(3)机器大工业生产为人的全面发展提供了基础和可能
(4)社会主义制度是实现人全面发展的社会条件(5)教育与生产劳动相结合是“造就全面发展的人的唯一方法”26.【参考答案】(1)20世纪30年代初,苏联心理学家维果斯基首先将“最近发展区”这一概念引入儿童心理学的研究,提出“良好的教学应走在发展前面”的著名论断;(2)维果斯基认为,儿童有两种发展水平:一是儿童的现有水平,既由一定的已经完成的发展系统所形成的儿童心理机能的发展水平;二是可能达到的水平。

这两种水平之间的差异,就是最近发展区;(3)维果斯基强调教学不能只适应发展的现有发展水平,还应适应最近发展区,从而走在发展的前面,最终跨越“最近发展区”而达到新的发展水平。

七、论述题略。

相关文档
最新文档