专题2——积分上限函数(变限积分)与不定积分之间的关系

专题2——积分上限函数(变限积分)与不定积分之间的关系

1 专题2——积分上限函数(变限积分)与不定积分之间的关系

注意积分上限函数(数学全书上成为变限积分)的定义:函数()f x 为区间[,]a b 上的连续函数,设0x 为区间[,]a b 上的一定点,积分0()x

x f t dt ?,[,]x a b ∈(这里的积分变量用t 表示而没有用x 表示,

主要是为了避免与积分上限x 产生混淆,在定积分中,积分变量的选取与定积分的指没有关系,即000()()()x x x x x x f t dt f u du f x dx ==?

??)定义了一个函数,令为0()()x x x f t dt φ=?,[,]x a b ∈,且有0()(())()x x x f t dt f x φ''==?

由原函数的定义及0()(())()x x x f t dt f x φ''==?可知,函数()x φ即0

()x x f t dt ?为()f x 在区间[,]a b 上的一个原函数,那么()f x 在区间[,]a b 上的不定积分(即()f x 在区间[,]a b 上的全体原函数)可以表示为:

0()()x x f x dx f t dt C =+??,[,]x a b ∈,C 为任意常数。

所以,求函数()f x 在区间I 上的不定积分(亦即全体原函数),既可以用不定积分的方法()f x dx ?求出,也可以用定积分的方法0()x

x f t dt C +?求出。

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

详解Matlab求积分的各种方法

详解Matlab求积分的各种方法 一、符号积分由函数int来实现。 该函数的一般调用格式为: int(s): 没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v): 以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b): 求定积分运算。 a,b分别表示定积分的下限和上限。 该函数求被积函数在区间[a,b]上的定积分。 a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。 当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。 当a,b中有一个是inf时,函数返回一个广义积分。 当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。 内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变 量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =57/-

/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2^(3/4) %给出有理数 解>>VF2=vpa(F2) %给出默认精度的数值解VF2 = 224.9 232805二、数值积分 1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。 它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1], i=1,2,…,n,其中x1=a,xn+1=b。 这样求定积分问题就分解为求和问题。 2.数值积分的实现方法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。 该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace)基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。 该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace)其中fname是被积函数名。 a和b分别是定积分的下限和上限。 tol用来控制积分精度,缺省时取tol= 0.0 01。 trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace= 0。

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

一元函数微积分重点

微积分的基本内容可以分为三大块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数和常微分方程与差分方程。一元函数微积分学的知识点是考研数学三微积分部分出题的重点,应引起重视。多元函数微积分学的出题焦点是二元函数的微分及二重积分的计算。无穷级数和常微分方程与差分方程考查主要集中在数项级数的求和、幂级数的和函数、收敛区间及收敛域、解简单的常微分方程等。 一、熟记基本内容 事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。对基本内容的复习不能只注重速度而忽视质量。在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。 二、紧抓内容重点 在看教材及辅导资料时要依三大块分清重点、次重点、非重点。阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。比如在看函数极限的性质中的局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。这个部分也是每年必定会出题考查的,必须引起注意。多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。 三、检测学习效果 大量做题是学习数学区别与其他文科类科目的最大区别。在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。并不是对两个院系的同学有什么诟病,这种状况只是所学专业特点使然。在备考研究生考试数学的时候,如果充分了解其特点,就能对症下药。微积分的选择及填空题考查的是基本知识的掌握程度及技巧的灵活运用,可做做《考研数学客观题1500题》,必定能达到所希望的结果。微积分的解答题注重计算及综合应用能力,平时多做这方面的题目既可以练习做题速度及提高质量,也能检测复习效果。 高考数学中关于一元函数微积分学所考查的知识点高考数学中关于一元函数微积分学所考查的知识点:

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

一元函数积分知识点完整版

一元函数积分知识点完整版

牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知?+=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 一.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在 ]1,0[上连续,A dx x f =?20)cos (π,则 ==?π 20)cos (dx x f I _______。 二.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑?=∞→--+=n i n b a n a b n a b i a f dx x f 1))((lim )( ∑?=∞→---+=n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5:

求∑=∞→+=n i n i n n i n w 12tan lim 三.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 四.考察分项积分方法 讲解:利用不定积分(定积分)线性性质把复杂函数分解成几个简单函数的和,再求积分。 问题6: 求下列不定积分: dx x x ?++2cos 1cos 12 五.考察定积分的分段积分方法 讲解:利用定积分的区间可加性把复杂的区间分解成几个简单区间的和,再求积分。 问题7: 计算以下定积分: {}?-+22cos ,5.0min )1(ππdx x x 六.考察不定积分的分段积分方法 讲解:有时被积函数是用分段函数的形式表示的,这时应该采用分段积分法。 问题8:

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

不定积分与定积分的区别与联系

不定积分与定积分的区别与联系 不定积分计算的是原函数(得出的结果是一个式子) 定积分计算的是具体的数值(得出的借给是一个具体的数字) 不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减 积分 积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。 在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的. 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。其中:[F(x) + C]' = f(x) 一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值. 定积分 就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b. 不定积分 设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C. 其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分. 由定义可知: 求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分. 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得

一元函数积分知识点完整版

一元函数积分相关问题 前言: 考虑到学习的效率问题,我在本文献中常常会让一个知识点在分隔比较远的地方出现两次。这种方法可以让你在第二次遇到同样的知识点时顺便复习下这个知识点,同时第二次出现这个知识点时问题会稍微升华点,不做无用的重复。 一.考查原函数与不定积分的概念和基本性质 讲解:需要掌握原函数与不定积分的定义、原函数与不定积分的关系,知道求不定积分与求微分是互逆的关系,理解不定积分的线性性质。 问题1: 若)(x f 的导函数是x sin ,则所有可能成为)(x f 的原函数的函数是_______。 二.考查定积分的概念和基本性质 讲解:需要掌握定积分的定义与几何意义,了解可积的充分条件和必要条件,掌握定积分的基本性质。 定积分的基本性质有如下七点: 1、线性性质 2、对区间的可加性 3、改变有限个点的函数值不会改变定积分的可积性与积分值 4、比较定理(及其三个推论) 5、积分中值定理 6、连续非负函数的积分性质 7、设)(x f 在],[b a 上连续,若在],[b a 的任意子区间],[d c 上总是有 ? =d c dx x f 0)(,则当 ],[b a x ∈时,0)(≡x f 问题2: 设? = 2 )sin(sin π dx x M ,?=20 )cos(cos π dx x N ,则有() (A )N M <<1 (B )1<

分的关系,了解初等函数在定义域内一定存在原函数但不一定能积出来,需要重点掌握牛顿—莱布尼兹公式及其推广。 其中变限积分的求导方法为: 设)(x f 在],[b a 上连续,)(x ?和)(x ψ在],[βα上可导,当],[βα∈x 时, b x x a ≤≤)(),(ψ?,则? =) () ()(x x dt t f y ?ψ在],[βα上可以对x 求导,且 )('))(()('))((x x f x x f dx dy ψψ??-= 牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知 ? +=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 四.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在]1,0[上连续, A dx x f =? 2 )cos (π ,则==? π 20 )cos (dx x f I _______。 五.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑? =∞ →--+ =n i n b a n a b n a b i a f dx x f 1))((lim )( ∑? =∞ →---+ =n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5: 求∑ =∞ →+=n i n i n n i n w 1 2tan lim 六.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 七.考察分项积分方法

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

5Mathematica求不定积分与函数作图

355 §4 Mathematica 求不定积分与函数作图 4.1 求不定积分 1 用Mathematica 求不定积分有两种方式 (1) 用命令Integrate[f,x] (*其中x 为积分变量*) (2) 直接用工具栏输入不定积分?f(x)dx 。 例4.1 计算不定积分? +dx x x 2 4 11。 解 方法一: ? +=dx x x In 2 4 11:]1[ 2 3 1)3231(]1[x x x Out ++- = 方法二: ),11( Integrate :]2[2 4 x x x In += 23 1)3231(]2[x x x Out ++- = 2 除了指定的积分变量之外,其它所有符号都被作为常数处理 例4.2 计算不定积分dx c bx ax )(2++?。 解 ?++=dx c x b x a In )**(:]3[2 3 2]3[2 2ax bx cx Out + += 3 积分变量不一定是单个的符号变量,也可以是一个函数,在例5.4.3中,积分变量是x sin 。 例4.3 计算不定积分?x d x sin )log(sin 2。 解 ?=][S i n ]][S i n [L o g :]4[2x d x In ][Sin ]][Sin [Log ][Sin 2]4[2x x x Out +-=

356 4 Integrate 命令也能在复数平面上进行积分运算 例4.4 计算不定积分?dx e Ix x )sinh(。 解 ?=dx x x I In ][Exp *]*[Sinh :]5[ =]5[Out i ])[Sin 2 1][Cos 21 (x e x e x x +- 5 Integrate 命令在处理积分运算时会做两个假设。第一个假设已经在例4.2中提到,即Mathematica 假设除了积分变量之外其它符号都被作为常数处理。第二个假设是Mathematica 求得的积分结果是一个通式(generic form),积分结果可能在某些点不成立,这时Mathematica 会告诉?)()(x d x f 的标准结果,并且假设这一结果在哪些点不成立。 例4.5 计算不定积分?dx x n 。 解 dx x In n ?=:]6[ n x Out n += +1]6[1 // 假设n ≠-1. 6 如果积分结果是(或部分是)数学物理特殊函数,结果以特殊函数的形式输出。 例4.6 计算不定积分dx e x x n ?。 解 ]],[Exp ^[Integrate :]7[x x n x In = ),1()1(]7[11x n x Out n n -+Γ--=+-- 7 如果无法积分,Mathematica 会保留积分的原式,若原式中含有常数系数,Mathematica 会把常数系数提到积分之外,保留积不出来的表达式。 例4.7 计算不定积分?++dx hx x a )sec log()4(。 解 ?++=dx x x a In ]][Sech [Log )4(:]8[ ?++=dx x x a Out ]][Sech [Log )4(]8[ 注意:Mathematica 不会在积分结果后面加上积分常数(integration constant )。因此,应注意不定积分的结果还应有一个积分常数C 。

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

相关文档
最新文档