专题2——积分上限函数(变限积分)与不定积分之间的关系

合集下载

考研——积分上限的函数(变上限积分变限积分)知识点全面总结

考研——积分上限的函数(变上限积分变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点()()xaF x f t dt =⎰形如上式的积分,叫做变限积分。

注意点:一、在求导时,是关于x 求导,用讲义上的求导公式直接计算。

二、在求积分时,那么把x 看做常数,积分变量t 在积分区间],[x a 上变更。

(即在积分内的x 作为常数,能够提到积分之外。

)关于积分上限函数的理论定理1若是)(x f 在],[b a 上持续,则)(x f 在(a ,b )上可积,而)(x f 可积,那么⎰=xa dt t f x F )()(在],[b a 上持续。

定理2若是)(x f 在],[b a 上有界,且只有有限个中断点,那么)(x f 在(a ,b )上可积。

定理3若是)(x f 在],[b a 上持续,则⎰=xa dt t f x F )()(在],[b a 上可导,而且有).(])([)(x f dt t f dx d x F xa=='⎰ ==========================================注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后取得的函数,性质比原先的函数改良了一步:可积改良为持续;持续改良为可导。

这是积分上限函数的良好性质。

而咱们明白,可导函数)(x f 通过求导后,其导函数)(x f '乃至不必然是持续的。

(Ⅱ)定理(3)也称为原函数存在定理。

它说明:持续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。

咱们明白,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。

定理(3)把二者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

重要推论及计算公式:推论1)(])([x f dt t f dx d bx -=⎰ <变上限积分改变上下限,变号。

> 推论2)()]([])([)(x x f dt t f dxd x c ϕϕϕ'=⎰ <上限是复合函数的情形求导。

最新考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

最新考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点()()xaF x f t dt =⎰形如上式的积分,叫做变限积分。

注意点:1、在求导时,是关于x 求导,用课本上的求导公式直接计算。

2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。

(即在积分内的x 作为常数,可以提到积分之外。

)关于积分上限函数的理论定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则⎰=xa dtt f x F )()(在],[b a 上连续。

定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。

定理3如果)(x f 在],[b a 上连续,则⎰=xa dt t f x F )()(在],[b a 上可导,而且有).(])([)(x f dt t f dx d x F xa=='⎰ ==========================================注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。

这是积分上限函数的良好性质。

而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。

(Ⅱ)定理(3)也称为原函数存在定理。

它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。

我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。

定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

重要推论及计算公式:推论1 )(])([x f dt t f dx d bx -=⎰ <变上限积分改变上下限,变号。

>推论2 )()]([])([)(x x f dt t f dxd x c ϕϕϕ'=⎰ <上限是复合函数的情况求导。

专题2——积分上限函数(变限积分)与不定积分之间的关系

专题2——积分上限函数(变限积分)与不定积分之间的关系

1专题2——积分上限函数(变限积分)与不定积分之间的关系
注意积分上限函数(数学全书上成为变限积分)的定义:函数为区间上的连续函数,设()f x [,]a b 为区间上的一定点,积分,(这里的积分变量用表示而没有用表0x [,]a b 0()x
x f t dt ⎰[,]x a b ∈t x 示,主要是为了避免与积分上限产生混淆,在定积分中,积分变量的选取与定积分的指没有关系,x 即)定义了一个函数,令为,,且000()()()x
x x x x x f t dt f u du f x dx ==⎰⎰⎰0()()x
x x f t dt φ=⎰[,]x a b ∈有0()(())()
x
x x f t dt f x φ''==⎰由原函数的定义及可知,函数即为在区间0()(())()x
x x f t dt f x φ''==⎰()x φ0()x
x f t dt ⎰()f x 上的一个原函数,那么在区间上的不定积分(即在区间上的全体原函[,]a b ()f x [,]a b ()f x [,]a b 数)可以表示为:,,为任意常数。

0()()x
x f x dx f t dt C =+⎰⎰[,]x a b ∈C 所以,求函数在区间上的不定积分(亦即全体原函数),既可以用不定积分的方法()f x I 求出,也可以用定积分的方法求出。

()f x dx ⎰0()x
x f t dt C +⎰。

高数论文浅谈定积分与不定积分的联系与区别

高数论文浅谈定积分与不定积分的联系与区别

浅谈定积分与不定积分的联系与区别摘要本文主要从概念和性质两方面分别讨论了不定积分、定积分之间的联系与区别.它们“形式”相像,相互之间又存在内在的联系,但如果忽视他们本质上的不同之处,将会导致很多错误.为此,本文就他们之间在定义上和性质上的联系与区别展开讨论,这将会有助于正确理解和掌握这类积分. 关键字 不定积分 定积分 性质 区别本文所涉及的包括不定积分、定积分的内容.主要讨论这两类积分在概念和性质两方面的联系与区别.能够比较系统地分析和总结这两类积分关系,便于解决实际问题.1概念1.1不定积分正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算——积分法.我们知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.定义1 设函数f 与F 在区间I 上都有定义,若()()I x x f x F ∈=',, 则称F 为f 在区间I 上的一个原函数.定义2 函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作dx x f ⎰)(,其中⎰称为积分号,)(x f 称为被积函数,dx x f )(称为被积表达式,x 称为被积变量.由定义2可见,不定积分与原函数是总体与个体的关系,即若F 是f 的一个原函数,则f 的不定积分是一个原函数族{}C F +,其中C 是任意常数.为方便起见,通常写作⎰+=C x F dx x f )()(.这时又称C 为积分常数,它可以任取一实数值. 1.2定积分定义1 设闭区间[]b a ,上有1-n 个点,依次为0121-=<<<<<=n n a x x x x x b ,它们把[]b a ,分成个n 小区间[]i i i x x ,1-=∆,n i ,,2,1⋅⋅⋅=.这些分点或这些闭子区间构成对[]b a ,的一个分割,记为 01{,,}=n T x x x 或12{,,}∆∆∆n .小区间∆i 的长度为1i i i x x x -∆=-,并记 {}i ni x T ∆=≤≤1max , 称为分割T 的模.注 由于n i T x i ,,2,1,⋅⋅⋅=≤∆,因此T 可用来反映[]b a ,被分割的细密程度.另外,分割一旦给出,T 就随之而确定;但是,具有同一细度T 的分割T 却又无限多个.定义2 设f 是定义在[]b a ,上的一个函数,J 是一个确定的实数.若对任给的正数ε,总存在某一正数δ,使得对[]b a ,的任何分割T ,以及在其上任意选取的点集{}i ξ,只要δ<T ,就有εξ<-∆∑=ni iiJx f 1)(,则称函数f 在区间[]b a ,上可积;数J 称为f 在区间[]b a ,上的定积分,记作⎰=b adxx f J )(.其中,f 称为被积函数,x 称为积分变量,[]b a ,称为积分区间,a 、b 分别称为这个定积分的上限和下限. 2不定积分与定积分的联系与区别 2.1定义上求定积分⎰badx x f )(,即是在闭区间[]b a ,上对某个量进行分割、累积的过程.英文短语definite integral 恰好反映了这个计算过程的本质.而不定积分⎰dx x f )(表示的是)(x f 的全体原函数,既没有分割,也没有积累,为什么也称为“积分”呢?下面将通过重新定义不定积分,证明把“不定积分”称为“积分”也是合理的.设)(x f 是闭区间[]b a ,上的连续函数,不妨设[]),(0)(b a x x f ∈≥.一方面,变上限定积分[]),()()(b a x dt t f x xa∈=Φ⎰是)(x f 在[]b a ,上的一个原函数.另一方面,把)(x f 连续延拓到()+∞∞-,,得到)(x F ,使)(x F 满足条件:0)(≥x F ,+∞=⎰∞-dt t F a)(,-∞=⎰∞+adt t F )(.让下限变动到s ,得到变动上限与变动下限的定积分⎰xsdt t F )(,()+∞∞-∈,s .则⎰⎰⎰⎰+Φ=+=asxaasxsdt t F x dt t F dt t F dt t F )()()()()(.因为⎰asdt t F )(是s 的连续函数,且+∞=⎰∞-dt t F a )(,-∞=⎰∞+adt t F )(,所以,对于任意常数c ,根据连续函数的介值性定理,存在s ',使得c dt t F a s =⎰')(.以上的分析结果可以总结为:令变动上限x 为自变量,变动下限s 为参数,则形式定积分⎰xsdt t F )(就是)(x f 在[]b a ,上的不定积分.也就是说,不定积分是一种特殊形式的定积分,是上限与下限都不定的定积分.因此可以说明,把不定积分称为积分是合理的.当[]b a x x f ,,0)(∈≤时,或当)(x f 在[]b a ,上不定号时,也可以类似讨论,并得到同样的结果.注:这里说形式定积分⎰xsdt t F )(就是)(x f 在[]b a ,上的不定积分,此时被积函数是)(t F ,而不是原来的函数)(x f .在很多教科书中,对不定积分的定义是强加的,并没有说明为什么能够将⎰+=c x F dx x f )()(称为“积分”,就更谈不上不定了.这里揭示了这两种积分的内在联系:定积分就是积分上、下限都确定的积分,不定积分就是积分上、下限都不定的积分.因此,两种积分在本质上是相似的.虽然,不定积分与定积分本质相似,不定积分是一种特殊形式的定积分,但是,在概念上,两种积分是根本不同的.)(x f 的不定积分就是它的全体原函数,而在区间[]b a ,上的定积分是一个极限值,即为是一个常数,这个常数仅仅依赖于被积函数)(x f 和积分区间[]b a ,,与积分变量的字母表示无关.不定积分与定积分所分别表示的几何意义也是不同的.)(x f 的不定积分的几何意义是以c x F y +=)(为其方程的一簇积分曲线.而)(x f 在区间[]b a ,上的定积分的几何意义是由曲线)(x f y =在直线b x a x ==,以及x 轴所围成的曲边梯形的面积. 2.2性质上定理2.1 若函数f 在[]b a ,上连续,且存在原函数F ,即)()(x f x F =',[]b a x ,∈,则f 在[]b a ,上可积,且)()()(a F b F dx x f ba-=⎰.则称为牛顿—莱布尼茨公式.定积分⎰badx x f )(,原为求函数的极限,计算复杂.牛顿—莱布尼茨公式的意义就在于把不定积分与定积分联系起来了,为求定积分提供了一个很有效的方法,实质上是将定积分的求解归结为求不定积分的原函数.只要求出)(x f 的一个原函数,那么定积分⎰badx x f )(就等于)(x f 的原函数)(x F 在区间[]b a ,上的增量)()(a F b F -.牛顿—莱布尼茨公式体现了原函数与定积分的关系,但是原函数存在与函数可积并非充分条件,因此,运用牛顿—莱布尼茨公式时必须注意条件.例 函数⎪⎩⎪⎨⎧=≠-=0,00,1cos 21sin 2)(2x x xx x x x f 存在原函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(22x x x x x F ,但)(x f 在[]1,1-上不可积,因为21cos 2xx 在[]1,1-上无界. 此外,对于定积分的计算,不定积分的换元积分法和分部积分法也适用. 换元积分法定理2.2 设)(u g 在[]βα,上有定义,)(x u ϕ=在[]b a ,上可导,且)()(x x βϕα≤≤,[]b a x ,∈,并记 )())(()(x x g x f ϕϕ'=,[]b a x ,∈.(i)若)(u g 在[]βα,上存在原函数)(u G ,则)(x f 在[]b a ,上也存在原函数)(x F ,c x G x F +=))(()(ϕ,即C x G C u G du u g dx x x g dx x f +=+=='=⎰⎰⎰))(()()()())(()(ϕϕϕ.(ii)又若0)(≠'x ϕ,[]b a x ,∈,则上述命题(i )可逆,即当)(x f 在[]b a ,上存在原函数)(x F 时,)(u g 在[]βα,上也存在原函数)(u G ,且C u F u G +=-))(()(1ϕ,即⎰⎰⎰+=+=='=-C u F C x F dx x f dx x x g du u g ))(()()()())(()(1ϕϕϕ. 定理2.2' 若函数f 在[]b a ,上连续,ϕ在[]βα,上连续可微,且满足a =)(αϕ,b =)(βϕ,b t a ≤≤)(ϕ,[]βα,∈t , 则有定积分换元公式:⎰⎰'=βαϕϕdt t t f dx x f ba)())(()(. (1)所以在用还原法计算定积分时,一旦得到了新变量表示的原函数后,不必作变量还原而只要用新的积分限带入并求其差就可以了,这就是定积分换元积分法与不定积分换元法的区别,这一原因在于不定积分所求的是被积函数式的原函数,理应保留与原来相同的自变量;而定积分的计算结果是一个确定的数,如果式一边的定积分计算出来了,那么另一边的定积分自然也求得了. 分部积分法定理2.3 若)(x u 与)(x v 可导,不定积分dx x v x u )()(⎰'存在,则dx x v x u )()('⎰也存在,并有dx x v x u x v x u x v x u )()()()()()(⎰⎰'-='. (2)定理2.3' 若)(x u ,)(x v 为上[]b a ,的连续可微函数,则有定积分分部积分公式:dx x v x u a b x v x u dx x v x u baba ⎰⎰'-=')()()()()()(.不定积分的性质性质1 不为0的常数因子可以移到积分号前.性质2 不定积分的线性性质 []dx x g dx x f dx x g x f ⎰⎰⎰±=±)()()()(.推广:[]⎰⎰⎰±=±dx x g n dx x f m dx x ng x mf )()()()(,其中m 、n 为常数,且022≠+n m.定积分的性质性质1 被积函数的常数因子可以提到定积分符号前,即⎰⎰=babadx x f A dx x Af )()((A 为常数).性质2 函数的代数和的定积分等于他们的定积分的代数和,即[]⎰⎰⎰±=±babab a dx x g dx x f dx x g x f )()()()(.这个性质对有限个函数代数和也成立.性质3 积分的上下限对换则定积分变号,即⎰⎰-=abbadx x f dx x f )()(.性质4 如果将区间[]b a ,分成两个子区间[]c a ,及[]b c ,,那这子区间分成有限个的情形也成立. 性质5 如果在区间[]b a ,上,)()(x g x f ≤,则⎰⎰≤babadx x g dx x f )()(,()b a <.通过对比可以看出,不定积分与定积分有相同性质1与性质2.即,不定积分的两个性质对定积分都适用. 4总结本文从积分的定义入手,用定积分的形式来重新定义不定积分,揭示不定积分与定积分的内在联系,同时证明了不定积分也称为积分的合理性.又根据概念和性质上的不同,将不定积分与定积分区分开来. 参考文献[1]华东师范大学数学系.数学分析 (第三版) 上册 [M],北京:高等教育出版社,2006. [2]陈小平 无穷积分与定积分、瑕积分的区别[J] 北京:中国科技信息2010年第23期. [3]崔信 试论数学积分的几种性质[J] 北京:中国商界2010年第10期.[4]孙宝法用定积分形式定义的不定积分[J] 南京:大学数学第24卷第5期.[5]熊国敏定积分与瑕积分[J] 贵州:安顺师专学报(自然科学版)1994年第2期.[6]范君好Riemann积分和Lebesgue积分的联系和本质区别[J] 广西:桂林师范高等专科学校学报第24卷第3期.。

积分上限的函数的性质及其应用(正文)

积分上限的函数的性质及其应用(正文)

积分上限的函数的性质及其应用数学教育专业学生:祝胜前指导教师:张云摘要:变限积分函数分为变上限和变下限积分函数两种,变下限积分函数可以转化为变上限积分函数。

积分上限函数加强了微分和积分之间的联系,是定积分基本公式的理论基础。

变限积分函数的性质主要由被积分函数的性质、积分上(下)限的结构来决定。

我们对它进行初等性质及分析性质的研究,可深入了解其特性,并广泛用于解决一些微积分的问题。

关键词:积分上限函数,变限积分函数,导数,单调性,奇偶性Abstract: The variation range integral function divides into changes the upper limit and changes the lower integral function two kinds, changes the lower integral function to be possible to transform for changes the upper integral function. The integral upper limit function strengthened between the differential and the integral relation, is the definite integral fundamental formula rationale.The variation range integral function nature mainly by the structure which by in the integral function nature, the integral (next) is limited decided. We carry on the primary nature and the Analysis nature archery target research to it, but thoroughly understood its characteristic, and widely uses in solving some fluxionary calculus problems.Keyword: Integral upper limit function, variation range integral function, derivative, monotony, odevity0 问题的提出变速直线运动中位置函数与速度函数的联系:设某物体作直线运动,已知速度()v v t 是时间间隔12[,]T T 上t 的一个连续函数,且()0v t ≥,求物体在这段时间内所经过的路程.变速直线运动中路程为21()T T v t dt ⎰。

积分上限函数的性质及应用

积分上限函数的性质及应用

积分上限函数的性质及应用积分上限函数(即变上限的定积分)揭示了定积分和不定积分之间的联系,是一元函数微积分学中的一个重要概念.积分上限函数具有很多的性质,既具有普通函数相似的特征,由于它的上限是变化的,因而又有许多与积分有关的特殊性质.本文首先总结归纳出积分上限函数的重要性质,并对这些性质进行详细的证明;其次总结归类出证明积分等式、不等式的方法并进一步给出这些方法的具体应用.1 积分上限函数1.1 积分上限函数的定义)220](1[P设函数()f x 在区间[,]a b 上可积,对任何[,]x a b ∈,()f x 在[,]a x 上也可积.于是,由()(),[,]xaF x f t dt x a b =∈⎰,定义了一个以积分上限x 为自变量的函数,称为积分上限函数即变上限的定积分.1.2 积分上限函数的几何意义)350](2[P如果[,]x a b ∀∈,有函数()0f x ≥,对区间[,]a b 上任意x ,积分上限函数()F x 是区间[,]a x 上曲边梯形的面积,如下图的阴影部分.图1.11.3 积分上限函数的性质1.3.1积分上限函数的连续性)221](1[P若函数()f x 在区间[,]a b 上可积,则积分上限函数()F x 在区间[,]a b 上连续. 证 [,]x a b ∀∈,且[,]x x a b +∆∈,有()()()()()()x xx x xaaxF x F x x F x f t dt f t dt f t dt +∆+∆∆=+∆-=-=⎰⎰⎰因为f 在[,]a b 上可积,所以f 在[,]a b 上有界, 即存在正数M ,使得()f x M ≤,[,]x a b ∀∈,当0x ∆≥时,x M dt t f dt t f x F xx x xx x ∆≤≤=∆⎰⎰∆+∆+)()()( 当0x ∆<时,x M dt t f dt t f x F xx xxx x ∆≤≤=∆⎰⎰∆+∆+)()()(所以0lim ()0x F x ∆→∆=, 即积分上限函数()F x 在点x 连续,而由x 的任意性,可知函数()F x 在区间[,]a b 上连续.1.3.2积分上限函数的可导性[1](221)P若函数()f x 在区间[,]a b 上连续,则积分上限函数()F x 在区间[,]a b 上可导,且()()F x f x '=. 证 [,]x a b ∀∈,且[,]x x a b +∆∈,(0)x ∆≠有()()()()()()x xx x xaaxF x F x x F x f t dt f t dt f t dt +∆+∆∆=+∆-=-=⎰⎰⎰由积分第一中值定理,有()1()()x xx F x f t dt f x x x xθ+∆∆==+∆∆∆⎰ (01)θ≤≤ 因为函数)(x f 在区间],[b a 上连续,所以00()()lim lim ()()x x F x F x f x x f x xθ∆→∆→∆'==+∆=∆即()F x 在点x 可导. 而由x 的任意性,可知函数()F x 在区间[,]a b 上可导.1.3.3积分上限函数的可积性若函数()f x 在区间[,]a b 上连续,则积分上限函数()F x 在区间[,]a b 上可积.证 已知函数()f x 在区间[,]a b 上连续,则()f x 在区间[,]a b 上可积,所以由1.3.1可推出积分上限函数()F x 在区间[,]a b 上连续,则()F x 在区间[,]a b 上可积.1.3.4积分上限函数的单调性若函数)(x f 在区间[,]a b 上连续且非负(正),则积分上限函数()F x 在区间[,]a b 上单调递增(减).证 因为)(x f 在区间[,]a b 上连续且非负,则()()0F x f x '=≥,所以)(x F 在区间[,]a b 上单调递增.同理可证另一种情况.特别地,若()f x 在[,]a b 上非负单调递增(减),则()F x 在[,]a b 上单调递增. 1.3.5积分上限函数的奇偶性[3](140)P若函数)(x f 在区间[,]a a -上连续且为奇(偶)函数时,则积分上限函数)(x F 为偶(奇)函数. 证 设)(x f 在区间[,]a a -上连续且为奇函数,即)()(x f x f -=-.()()xF x f t dt --=⎰,令t u -=()()()()()()xxxF x f u d u f u du f t dt F x -=--===⎰⎰⎰,所以)(x F 为偶函数.同理 当)(x f 在区间[,]a a -上连续且为偶函数,即)()(x f x f =-.()()xF x f t dt --=⎰,令t u -=()()()()()()xxxF x f u d u f u du f t dt F x -=--=-=-=-⎰⎰⎰所以)(x F 为奇函数.1.3.6积分上限函数的凹凸性[4](32)P若函数)(x f 在区间上[,]a b 单调递增(递减),则积分上限函数()F x 在区间[,]a b 上是凸(凹)函数.证 因为函数)(x f 在区间[,]a b 上单调递增,取123,,[,]x x x a b ∈,且123x x x <<, 则123()()()f x f x f x <<.2121()()F x F x x x --2121()()x x aaf t dt f t dtx x -=-⎰⎰2121()x x f t dtx x =-⎰2()f x ≤≤3232()x x f t dtx x -⎰3232()()F x F x x x -=-所以()F x 在区间[,]a b 上是凸函数.同理可证明另一种情况.1.3.7积分上限函数的周期性[3](140)P若函数)(x f 在(,)-∞+∞上以T 为周期,对任意a b <, )(x f 在区间[,]a b 上可积,且()0Tf t dt =⎰,则积分上限函数()F x 也以T 为周期. 证 ()()x T a F x T f t dt ++=⎰()()()Tx TaTf t dt f t dt f t dt +=++⎰⎰⎰0()0()x TaTf t dt f t dt +=++⎰⎰令t u T =+()()()()()xaF x T f u T d u T f u T d u T +=+++++⎰⎰()00()xaf u T du f u T du=+++⎰⎰00()()xaf u du f u du =+⎰⎰()()xaf t dt F x ==⎰所以()F x 是一个以T 为周期的函数.1.3.8积分上限函数的有界性若函数)(x f 在区间[,]a b 上连续,则积分上限函数()F x 在区间[,]a b 上有界. 证 因为函数)(x f 在区间[,]a b 上连续,所以由积分上限函数的可积性可知 函数)(x f 在区间[,]a b 上可积,即函数)(x f 在区间[,]a b 上有界. 所以存在正数M ,使得()f x M ≤,[,]x a b ∈ 则()F x ()xaf t dt ≤⎰()()xaf t dt M b a ≤≤-⎰,所以积分上限函数()F x 在区间[,]a b 上有界.2 积分上限函数的应用给出积分上限函数在证明积分等式、不等式的问题中应用. 2.1 利用积分上限函数证明积分等式在证明积分等式时,根据题设条件设积分上限函数为()F x ,由拉格朗日中值定理的推论:如果在某个区间上恒有()0F x '=,则在该区间上()F x 恒等于一个常数,即可证明某些关于积分的等式.例1 若()f x 在区间[,]a b 上连续,则()()bbaaf x dx f a b x dx =+-⎰⎰.证 设()()xaF x f t dt =⎰,则()()F x f x '=()()()ba f x dx Fb F a =-⎰()()()bb aaf a b x dx f a b x d a b x +-=-+-+-⎰⎰()b aF a b x =-+-()()F a b b F a b a =-+-++-()()F b F a =-于是命题得证.例2 设()f x 是连续函数,证明0[()]()()xu xf t dt du x u f u du =-⎰⎰⎰.证 方法一 令00()[()]()()x ux F x f t dt du x u f u du =--⎰⎰⎰()()()()()0xxF x f t dt f u du x f x xf x '=--+=⎰⎰()F x C ≡(C 为常数),因为(0)0F =,所以()0F x ≡, 即[()]()()x uxf t dt du x u f u du =-⎰⎰⎰.方法二 记 10()()()()()xx xg x x u f u du x f u du uf u du =-=-⎰⎰⎰20()[()]xug x f t dt du =⎰⎰则由 10()()()()()xx g x f u du xf x xf x f u du '=+-=⎰⎰, 20()()xg x f u du '=⎰由此得到 12()()g x g x ''=,所以12()()g x g x C -≡,(C 为常数)12(0)(0)0g g ==,所以12()()g x g x =即[()]()()xu xf t dt du x u f u du =-⎰⎰⎰.例3 设函数()f x 在区间[,]a b 上可积,则[,]x a b ∃∈,证明 ()()xbaxf t dt f t dt =⎰⎰.证 令()()()ybayF y f t dt f t dt =-⎰⎰.由函数)(x f 在区间[,]a b 上可积,可知()F y 区间[,]a b 上连续,且()(),()()b baaF a f t dt F b f t dt =-=⎰⎰.若()0baf t dt ≠⎰,则()()0F a F b <,由零点定理可知[,]x a b ∃∈,使得()()()0x b axF x f t dt f t dt =-=⎰⎰或()()x ba xf t dt f t dt =⎰⎰.若()0baf t dt =⎰,则取x a =或x b =,有()().x baxf t dt f t dt =⎰⎰于是命题得证.例4 设()f x 是连续函数,证明 232001()()2aa x f x dx xf x dx =⎰⎰.证 构造辅助函数232001()()()2a a F a x f x dx xf x dx =-⎰⎰.由积分上限函数的导数定理及复合函数求导法则得32221()()()202F a a f a a f a a '=-⋅=,所以()F a C ≡(C 为常数),又因为(0)0F =,所以()0F a =, 故2321()()2aa x f x dx xf x dx =⎰⎰.例5在区间(0,1)上连续,证明 ⎰⎰⎰⎰=1311])([61)()()(dt t f dz z f dy y f dx x f x y x .证 令0()()xF x f t dt =⎰,则()()F x f x '=. 原等式左端11(){()[()()]}x f x f y F y F x dy dx =-⎰⎰12101(){[()()]}2x f x F y F x dx=-⎰1201()[(1)()]2f x F F x dx =-⎰ 3101[(1)()]6F F x =-=3)]1([61F==⎰13])([61dt t f 右端 故所证等式成立.2.2 利用积分上限函数证明积分不等式在证明积分不等式时,根据题意构造积分上限函数,可适时选择常数变易法、辅助函数法等方法去解决问题.例1 设()f x 在区间[,]a b 上连续,且单调增加,求证()()2bbaa ab xf x dx f x dx +≥⎰⎰. 证明 构造辅助函数()F x ()xa t f t dt =⎰()2xaa x f t dt +-⎰,则()0F a =,对任意[,]x ab ∈,()F x 关于x 求导,有()F x '=1()()()22x a a xxf x f t dt f x +--⎰ 1()()22x a x a f x f t dt-=-⎰ 1[()()]2xaf x f t dt =-⎰ 因为()f x 单调递增,所以()0F x '≥.()F x 在区间[,]a b 上连续并且单调递增,则()()F b F a ≥0=,所以命题得证.例2设()f x 在区间],[b a 上单调增并且连续,证明 ()a b +()2()bbaaf x dx xf x dx ≤⎰⎰.证 构造辅助函数()()()2()x xaaF x a x f t dt tf t dt =+-⎰⎰则 ()F x '=()xa f t dt ⎰+()()2()a x f x xf x +-()()()xaf t dt x a f x =--⎰()()()()0x a f x x a f x ≤---=由此可知,()F x 在区间[,]a b 上单调递减,所以()()F b F a ≤0=,即()a b +()2()bbaaf x dx xf x dx ≤⎰⎰.例3 设()f x 在区间[,]a b 上正值连续,证明⎰badxx f )(1()badx f x ≥⎰2()b a -. 证 构造辅助函数()F x =2()()()xxaadtf t dt x a f t --⎰⎰则()F x '=1()()xaf x dt f t ⎰+1()2()()xaf t dt x a f x --⎰ ()()[]2()()()xaf x f t dt x a f t f x =+--⎰ 因为()()2()()f x f t f t f x +≥, ()2()2()0F x x a x a '≥---= 所以()F x 在区间[,]a b 上单调递增,而()0F a =,()0F x ≥ )(a x ≥,则()0F b ≥,即⎰badxx f )(≥⎰dx x f ba)(12)(a b -. 例4 设函数()f x 在区间[,]a b 上连续且单调递减,证明 对任意(0,1]a ∈,均有()af x dx ⎰1()a f x dx ≥⎰.证 方法1 设x at =,等式左端化为:11()()()af x dx a f at dt a f ax dx ==⎰⎰⎰因为()f x 单调递减,01a <≤,所以()()f ax f x ≥,于是11()()()af x dx a f ax dx a f x dx =≥⎰⎰⎰.方法21()()af x dx a f x dx ≥⎰⎰等价于1()()1af x dx f x dx a≥⎰⎰ (0)a >设0()()xf x dx F x x=⎰,(01)x <≤,则02()()()x f x x f t dtF x x⋅-'=⎰.因为()f x 连续,利用积分中值定理2()()()f x x f x F x x ξ⋅-⋅'=()()f x f xξ-= (0)x ξ<< 因为()f x 在[0,1]上单调递减,所以当x <<ξ0时,)()(ξf x f <,从而当10≤<x 时()0F x '≤,故()F x 在[0,1]上单调递减,于是对任意(0,1)a ∈,有()(1)F a F >,特别地当1a =时,原不等式中的等号成立,所以1001()()af x dx f x dx a≥⎰⎰, 即1()()af x dx a f x dx ≥⎰⎰.例5已知当b x a ≤≤时,()0,()0f x f x '''>>,证明()()()[()()]2bab ab a f a f x dx f a f b --<<+⎰. 证 ⑴令()()()()xaF x f t dt x a f a =--⎰()a x b ≤≤,则()()()F x f x f a '=-当b x a ≤≤时,()0f x '>,所以()f x 在区间[,]a b 上单调递增,即 ()()f x f a ≥. 当且仅当a x =时,()0F x '=,所以()F x 在区间[,]a b 上单调递增, 即 ()()0F b F a >=,则 ()()()ba b a f a f x dx -<⎰.⑵令()()[()()]2xax aG x f t dt f a f x -=-+⎰ ()a x b ≤≤,则 1()()[()()]()22x aG x f x f a f x f x -''=-+-()()()22f x f a x af x --'=-因为()f x 在],[x a )(b x a ≤<上满足拉格朗日中值定理,所以(,)a x ξ∃∈,得()()()()f x f a x a f ξ'-=-()[()()]2x aG x f f x ξ-'''=- ()a x ξ<< 当a x b ≤≤时,()0f x ''>,()f x '在[,]a b 上单调递增,则()()f f x ξ''< 故()0G x '< ()a x b <≤,所以可知,()G x 在a x =处连续.因为()G x 在[,]a b 上单调减,()()0G b G a -<. 则 ()[()()]02bab af x dx f a f b ---<⎰, 所以()[()()]2bab af x dx f a f b -<+⎰,结合⑴原不等式得证. 例6 证明 若函数()f x 与()g x 在区间[,]a b 可积,则[][]222(()())()()b bbaaaf xg x dx f x dx g x dx ≤⎰⎰⎰(施瓦茨不等式)证 构造辅助函数222()[()][()](()())xx xaaaF x f t dt g t dt f t g t dt =-⎰⎰⎰2222()()()()()2()()()()xxxaaaF x f x g t dt g x f t dt f x g x f t g t dt '=⋅+⋅-⎰⎰⎰2222[()()2()()()()()()]xaf xg t f x g x f t g t f t g x dt =-⋅+⎰2[()()()()]0xaf xg t f t g x dt =-≥⎰从而()F x 在区间[,]a b 上单调递增,故有()()0F b F a ≥= 则222(()())[()][()]bbbaaaf xg x dx f x dx g x dx ≤⎰⎰⎰.例7 设()f x 在[0,1]上连续可微,且满足(0)0f =,0()1f x '<≤,证明11230(())()f x dx f x dx ≥⎰⎰.证 作辅助函数230()(())()xxF x f t dt f t dt =-⎰⎰ [0,1]x ∈.由于(0)0F =,32()2()()()()[2()()]xxF x f x f t dt f x f x f t dt f x '=-=-⎰⎰ .令20()2()()xG x f t dt f x =-⎰,[0,1]x ∈.由于()f x 在区间[0,1]上连续可微,(0)0f =,0()1f x '<≤,所以()f x 单调递增. 故()0f x >,(0,1]x ∈.(0)0G =,则()2()2()()2()[1()]0G x f x f x f x f x f x '''=-=-≥,故()(0)0G x G ≥=,[0,1]x ∈.当(0,1)x ∈时,()0F x '≥,()F x 单调递增.特别当1123(1)(())()(0)0F f x dx f x dx F =-≥=⎰⎰,即得证11230(())()f x dx f x dx ≥⎰⎰.例8 设()f x 在区间[,]a b 上有连续的导数,且()0F a =,证明2221()()[()]2bb aa f x dxb a f x dx '≤-⎰⎰证 2221()()[()]()2x x a a F x x a f t dt f t dt '=--⎰⎰22221()()[()]()[()]()2x a F x x a f x x a f t dt f x '''=-+--⎰ 22221()[()]()1[()]2x x a a x a f x f x dx f t dt''=--+⋅⎰⎰ 22221()[()]()(())2x a x a f x f x f t dt ''≥--+⎰(施瓦茨不等式)22221()[()]()()2x a f x f x f x '=--+ 221()[()]02x a f x '=-≥ 得出()F x 为单调递增函数,当a x >∀时,()()0F x F a ≥=特别地2221()()[()]()02b b a a F b b a f x dx f x dx '=--≥⎰⎰得证2221()()[()]2bb aa f x dxb a f x dx '≤-⎰⎰.例9设函数()f x 在区间[,]a b 上连续并可微,且()0f a =,证明不等式22()[()]baM b a f x dx '≤-⎰,其中max ()a x bM f x ≤≤=证 由施瓦茨不等式可知 222(()())()()bb ba aaf xg x dx f x dx g x dx ≤⎰⎰⎰因为22()[()]1[()]xxx aaax a f x dx dx f x dx ''-=⎰⎰⎰22[()]()xaf x dx f x '≥=⎰ ([,])x a b ∀∈引入辅助函数2()()[()]xaF x x a f x dx '=-⎰,222()1[()][()]()xxx aaaF x dx f x dx f x dx f x ''=≥=⎰⎰⎰ ([,])x a b ∈所以22()()[()]()ba Fb b a f x dx f x '=-≥⎰.11 故由题设[,]x a b ∀∈,所以22()[()]b a M b a f x dx '≤-⎰.。

考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点()()xaF x f t dt=⎰形如上式的积分,叫做变限积分。

注意点:1、在求导时,是关于x 求导,用课本上的求导公式直接计算。

2、在求积分时,则把x 看作常数,积分变量在积分区间上变动。

t ],[x a (即在积分内的x 作为常数,可以提到积分之外。

)关于积分上限函数的理论定理1如果在上连续,则在(a ,b )上可积,而可积,则)(x f ],[b a )(x f )(x f 在上连续。

⎰=xa dt t f x F )()(],[b a 定理2如果在上有界,且只有有限个间断点,则在(a ,b )上可积。

)(x f ],[b a )(x f 定理3如果在上连续,则在上可导,而且有)(x f ],[b a ⎰=xa dt t f x F )()(],[b a ).(])([)(x f dt t f dx d x F xa=='⎰==========================================注:(Ⅰ)从以上定理可看出,对作变上限积分后得到的函数,性质比原来的函数改进了一步:)(x f 可积改进为连续;连续改进为可导。

这是积分上限函数的良好性质。

而我们知道,可导函数经过求导后,其导函数甚至不一定是连续的。

)(x f )(x f ' (Ⅱ)定理(3)也称为原函数存在定理。

它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。

我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。

定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

重要推论及计算公式:推论1 <变上限积分改变上下限,变号。

>)(])([x f dt t f dx d bx -=⎰推论2 <上限是复合函数的情况求导。

>)()]([])([)(x x f dt t f dxd x c ϕϕϕ'=⎰推论3 <上下限都是变的时候,用上限的减去)()]([)()]([])([)()(x x f x x f dt t f dxd x x ϕϕψψψϕ'-'=⎰下限的。

变上限几分是不定积分原函数

变上限几分是不定积分原函数

变上限几分是不定积分原函数不定积分是微积分中的重要概念,是求函数的原函数的过程。

原函数是指在给定函数连续的定义域内求其导函数等于该函数的函数。

而变上限几分是一种特殊的不定积分形式,其上限是变量而不是常数。

在本文中,将详细探讨变上限几分的求解方法和原理。

假设给定函数$f(x)$在$[a,b]$上连续,那么其变上限积分可定义为:$$F(x) = \int_a^x f(t) dt$$其中,$F(x)$为$f(x)$的变上限积分函数,$t$为积分变量。

我们来推导一下变上限积分的原函数。

根据定义,当求导数$\frac{dF(x)}{dx}$时,我们可以将上限$x$看作常数,积分变量$t$看作$x$,然后对$t$求导,即:$$\frac{dF(x)}{dx} = \frac{d}{dx} \int_a^x f(t) dt$$根据导数的求导公式,得到:$$\frac{dF(x)}{dx} = f(x)$$其中,$f(x)$为给定函数$f(t)$在$x$处取值。

由于导函数为$f(x)$,根据微积分基本定理,我们可以得出:$$F(x) = \int f(x) dx + C$$其中,$C$为常数。

上述推导说明了变上限积分的原函数为$f(x)$在不定积分后再加上一个常数$C$。

为了更加深入地理解变上限几分,我们来看一个具体的例子。

例题:求函数$f(x)=2x$的变上限积分函数。

解:根据推导公式,我们可以知道:$$F(x) = \int_a^x f(t) dt$$$$= \int_a^x 2t dt$$$$=[t^2]_a^x$$$$=x^2-a^2$$所以,$f(x)=2x$的变上限积分函数为$F(x)=x^2-a^2+C$,其中$C$为常数。

通过这个例子,我们可以发现,变上限积分函数的求解实际上就是将给定函数积分一次,并在结果中将上限用$x$替代,并加上一个常数$C$。

这与常规不定积分的原函数求解方法是相同的。

总结一下,变上限积分函数的求解方法可归结为以下几个步骤:1.对给定函数$f(x)$进行不定积分,将上限用$x$替代,得到积分结果$F(x)$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 专题2——积分上限函数(变限积分)与不定积分之间的关系
注意积分上限函数(数学全书上成为变限积分)的定义:函数()f x 为区间[,]a b 上的连续函数,设0x 为区间[,]a b 上的一定点,积分0()x
x f t dt ⎰,[,]x a b ∈(这里的积分变量用t 表示而没有用x 表示,
主要是为了避免与积分上限x 产生混淆,在定积分中,积分变量的选取与定积分的指没有关系,即000()()()x x x x x x f t dt f u du f x dx ==⎰
⎰⎰)定义了一个函数,令为0()()x x x f t dt φ=⎰,[,]x a b ∈,且有0()(())()x x x f t dt f x φ''==⎰
由原函数的定义及0()(())()x x x f t dt f x φ''==⎰可知,函数()x φ即0
()x x f t dt ⎰为()f x 在区间[,]a b 上的一个原函数,那么()f x 在区间[,]a b 上的不定积分(即()f x 在区间[,]a b 上的全体原函数)可以表示为:
0()()x x f x dx f t dt C =+⎰⎰,[,]x a b ∈,C 为任意常数。

所以,求函数()f x 在区间I 上的不定积分(亦即全体原函数),既可以用不定积分的方法()f x dx ⎰求出,也可以用定积分的方法0()x
x f t dt C +⎰求出。

相关文档
最新文档