原函数与定积分的关系
定积分概念与性质

x → 积分变量 f ( x )dx → 被积表达式 ,
a → 积分上限 ,
[a,b] → 积分区间
b → 积分下限
注
(1)定积分是一个数值 (1)定积分是一个数值 (2)定积分的值与区间的分法无关,与 (2)定积分的值与区间的分法无关, ξ i 的取法无关 定积分的值与区间的分法无关 (3)定积分的值只与区间长度有关, 与被积函数有关。 (3)定积分的值只与区间长度有关, 定积分的值只与区间长度有关 与被积函数有关。
3 求和
0
∑
i =1
n
i 2 1 ∆ Ai = ( ) n n i =1
∑
n
=
1 n3
(1 + 2 2 + 3 2 + L + n 2 )
1 n ( n + 1 )( 2 n + 1 ) = 3 6 nn
4 0 取极限
λ→0
lim
∑
f (ξ i ) ∆ x i
i =1
即
∫
1
0
1 n( n + 1)(2n + 1) 1 = lim 3 = n →∞ n 6 3 1 2 x dx = 3
定理表明: 定理表明: (1)连续函数一定存在原函数 (1)连续函数一定存在原函数 牛顿---------莱布尼兹公式 二.牛顿-----莱布尼兹公式 (2) 把定积分与原函数之间 建立起联系 定理 3 .
如果函数 F ( x )是连续函数 f ( x )
b
在区间[a , b]上的一个原函数 , 则 f ( x )dx = F (b ) − F (a )
2 0 若 V = 变量, 则可通过下面的步骤 变量,
(1)分割
一元函数的定积分与定积分的计算

一元函数的定积分与定积分的计算定积分是微积分中的重要概念,用于计算一元函数在给定区间上的面积、曲线长度、体积等问题。
本文将介绍一元函数的定积分以及常见的定积分计算方法。
一、一元函数的定积分在介绍定积分之前,我们先来回顾一下导数的概念。
对于一元函数f(x),它的导数f'(x)表示函数在某一点处的瞬时变化率。
类似地,定积分可以看作是函数在一定区间上的累积变化量。
设函数f(x)在区间[a, b]上连续,把[a, b]分成n个小区间,每个小区间的长度为Δx。
在每个小区间上选择一个点ξi,并计算出f(ξi)。
将Δx 逐渐趋近于0,ξi逐渐靠近区间[a, b]的端点,可以得到如下极限:∑f(ξi)Δx → ∫f(x)dx其中∑表示求和,Δx表示小区间的长度,ξi表示取点的位置,∫表示定积分,f(x)dx表示被积函数。
定积分∫f(x)dx的几何意义是曲线y=f(x)与x轴以及直线x=a、x=b所围成的区域的面积。
根据定积分的定义,我们可以将定积分分为两种情况:1. 当被积函数f(x)为非负函数时,定积分的值表示函数曲线与x轴及两条垂直直线x=a、x=b所围成的面积;2. 当被积函数f(x)为有正负之分的函数时,定积分的值表示函数曲线与x轴及两条垂直直线x=a、x=b所围成的有向面积,即正面积减去负面积。
二、定积分的计算方法计算定积分的方法多种多样,这里介绍几种常见的方法。
1. 几何法:根据定积分的几何意义,可以通过几何图形的面积公式计算定积分的值。
具体步骤是将被积函数对应的图形分割成几何形状简单的子图形,计算每个子图形的面积,然后将这些面积相加得到定积分的近似值。
2. 基本积分法:定积分的计算可以通过求导的逆操作——积分来实现。
根据函数的导数与原函数的关系,可以利用一些基本积分公式对被积函数进行积分。
常见的基本积分公式包括多项式函数、指数函数、三角函数等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式是定积分与不定积分之间的重要关系。
不定积分与定积分

不定积分与定积分积分是数学分析中重要的概念和工具,在微积分中具有广泛的应用。
其中不定积分和定积分是常见的两种类型。
它们分别具有不同的定义和性质,对于解决实际问题和求解函数的面积等概念都有着重要的作用。
一、不定积分1.1 定义不定积分是函数的原函数的集合。
给定一个连续函数f(x),其不定积分可以表示为∫f(x)dx = F(x) + C,其中F(x)是f(x)的一个原函数,C为常数。
1.2 性质不定积分具有线性性质,即∫[af(x) + bg(x)]dx = a∫f(x)dx + b∫g(x)dx,其中a、b为常数。
同时,不定积分满足微积分基本定理,即对于函数f(x)的原函数F(x),有∫f'(x)dx = F(x) + C。
1.3 计算方法求解不定积分的方法有很多,最常用的方法是换元法和分部积分法。
换元法是通过引入新的变量替代原变量,将原函数转换成更容易积分的形式。
分部积分法则是通过对乘积的两个函数进行积分,得到原函数的表达式。
二、定积分2.1 定义定积分是对函数在一个闭区间上的积分。
给定函数f(x)在[a, b]区间上连续,定积分可以表示为∫[a, b]f(x)dx。
定积分表示函数在该区间上的面积或曲线与x轴所围成的面积。
2.2 性质定积分具有线性性质和可加性质,即对于函数f(x)和g(x),有∫[a, b][f(x) ± g(x)]dx = ∫[a, b]f(x)dx ± ∫[a, b]g(x)dx。
同时,定积分也满足中值定理,即在区间[a, b]上存在一个点c,使得∫[a, b]f(x)dx = f(c)·(b - a)。
2.3 计算方法计算定积分可以使用几何意义的面积计算法、代数意义的换元法和分段函数积分法等。
其中,面积计算法是将曲线区间划分成若干个小矩形,再对这些小矩形的面积求和。
而换元法和分段函数积分法则是通过转换变量或分别对函数在不同区间求积分。
不定积分与定积分的区别与联系

不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)定积分计算的是具体的数值(得出的借给是一个具体的数字)不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分积分,时一个积累起来的分数,现在网上,有很多的积分活动。
象各种电子邮箱,qq等。
在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。
在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x) + C]' = f(x)一个实变函数在区间[a,b]上的定积分,是一个实数。
它等于该函数的一个原函数在b的值减去在a的值.定积分就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。
实际上,定积分的上下限就是区间的两个端点a,b.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分.定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。
把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。
定积分与不定积分

定积分与不定积分定积分与不定积分是微积分学中的两个重要概念。
它们分别用于求函数的面积和原函数。
定积分和不定积分是微积分中的基本工具,广泛应用于物理、经济、工程、计算机科学等各个领域。
本文将介绍定积分和不定积分的概念、性质以及它们的应用。
首先,我们来介绍不定积分。
不定积分,也称为积分,是求函数的原函数的过程。
给定一个函数f(x),它的原函数F(x)满足F'(x)=f(x),则称F(x)为f(x)的不定积分。
不定积分通常用∫f(x)dx表示,其中∫称为积分号,f(x)为被积函数,dx为积分变量。
求解不定积分的过程称为积分运算。
不定积分具有线性性质和区间可加性,即∫(af(x)+bg(x))dx=a∫f(x)dx+b∫g(x)dx,以及∫[a,b]f(x)dx=∫[a,c]f(x)dx+∫[c,b]f(x)dx。
接下来,我们来介绍定积分。
定积分是求函数曲线与x轴之间的面积的过程。
给定一个函数f(x),要求解其在区间[a,b]上的定积分,可以将[a,b]分割成多个小区间,然后在每个小区间上构造矩形,最后将这些矩形的面积相加。
当区间的划分变得足够细密时,所得到的面积近似于真实的面积。
定积分的计算可使用积分的定义公式或牛顿-莱布尼茨公式。
定积分通常用∫[a,b]f(x)dx表示,表示函数f(x)在区间[a,b]上的定积分值。
定积分具有线性性质和区域可加性,即∫[a,b](af(x)+bg(x))dx=a∫[a,b]f(x)dx+b∫[a,b]g(x)dx,以及∫[a,b]f(x)dx=∫[a,c]f(x)dx+∫[c,b]f(x)dx。
定积分和不定积分之间存在着重要的关系。
根据牛顿-莱布尼茨公式,定积分可以看作是不定积分的一个特例。
具体地说,如果F(x)是f(x)的原函数,那么根据定积分的定义,函数f(x)在区间[a,b]上的定积分可以表示为F(b)-F(a),即定积分等于不定积分的值在区间端点上的差值。
微积分基本公式

1exdx
0
2
(2x
1
1)dx
[ex ]10
[x2
x]12
e
1.
例 8 计算 4| x 3 | dx . 0
解
4
3
4
3
4
| x 3| dx | x 3| dx | x 3| dx (x 3)dx (x 3)dx
0
0
3
0
3
1 [(x 2
3)2 ]30
1 [(x 2
1.3 牛顿—莱布尼茨公式
当 x a 时 , 有 F(a) (a) C , 因 为 (a) 0 , 所 以 C F(a) ; 当 x b 时 , F(b) (b) C F(a) ,所以 (b) F(b) F(a) ,即
b f (x)dx F(b) F(a) . a
该公式进一步揭示了定积分与被积函数的原函数的联系,并且表明:当被积函数的原 函数可以求出时,f (x) 在[a ,b] 上的定积分值等于它的任意一个原函数 F(x) 在区间[a ,b] 上的增量.为了方便把 F(b) F(a) 表示为
解 先要算出从开始刹车到停车所需的时间.当 t 0 时,汽车速度
v0
36
km/h
36 1 000 3 600
m/s
10
m/s
.
刹车后 t 时刻汽车的速度为 v(t) v0 at 10 5t . 当汽车停止时,速度 v(t) 0 ,代入上式得,t 2 s .于是从开始刹车到停车汽车所走过的
x x
x
a f (t)dt a f (t)dt
x x
a
a f (t)dt x f (t)dt
xx f (t)dt (积分区间的可加性) x
定积分的概念及性质

一、定积分的概念及性质定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。
牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。
要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。
被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。
定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。
二、定积分的计算定积分的计算主要依靠牛顿—莱布尼兹公式进行。
在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。
定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。
尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。
例如用换元法来计算定积分⎰22cos sin πxdx x ,如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即⎰202cos sin πxdx x x u sin =313110312==⎰u du u 。
可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。
但如果计算过程中不采用新变元,则无需换限,即=⎰202cos sin πxdx x 31sin 31sin sin 203202==⎰ππx x xd 。
在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。
后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。
定积分与原函数的关系 微积分基本定理【高等数学PPT课件】

2) 变限积分求导:
d (x)
dx a
f
(t) d t
f
[ (x)](x)
d
dx
( x) (x)
f
(t)
dt
d dx
a
f (t) d t
(x)
( x)
a
f
(t) d t
f [ (x)](x) f [ (x)] (x)
第二节 定积分与原函数的关系 微积分基本定理
一、积分上限函数
二、牛顿—莱布尼茨公式
一、积分上限函数
定理1. 若
x
则变上限函数 y
y f (x)
(x) a f (t) d t
(x)
证: x, x h [a, b] , 则有
o a x b x
(x
h) h
(x)
1
o
x
0
例6
设
f
(x)
2x 5
0 1
x x
1
,
2
求
2
0
f
( x)dx.
解:
2
0
f
ห้องสมุดไป่ตู้
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
y
在[1,2]上规定当x 1时, f ( x) 5,
原式
1
2xdx
2
5dx 6.
0
1
o 12x
例7. 设
解:设
1