专题4.4 立体几何中最值问题 玩转压轴题突破140分之高三数学选填题高端精品 Word版 含解析
专题2.1与三角函数相关地最值问题-玩转压轴题,突破140分之高三数学选填题高端精品(原卷版)

A.22C. 1D.2B.27、【2021XX 省芮城中学模拟】 将函数 fx 2cos2x 的图像向右平移个单位后得到函数g x 的图像,6假设函数gx 在区间 0,a上单调递增,那么正数a 的取值X 围为〔〕3A.,3B., C.6 , D. 0,486 2322a 28. 【XX 省中原名校 〔豫南九校〕2021届高三上学期第四次质量考评】b1,那么acos 2sin b 的最大值为〔〕23 C.2D.23A.1B.39. 【2021XXXX 市第十八中学模拟】函数f x 4sinxcos x 0 在区间,2上是2 223增函数,且在区间0, 上恰好取得一次最大值,那么 的取值X 围是〔〕A.0,1B.0,3C.1,D.1 , 342 410、【2021XXXX 市胶南市第八中学模拟】函数f xsinx(0,0 ), x 为24f x 的零点,x为 yf x 图像的对称轴,且f x在,2上单调,那么的最大值为〔 〕9418 A. 11B. 9C. 7D. 511、【2021XX 省襄阳市四校联考】函数f x3sin 2xcos 2x为奇函数,且在0,上为4减函数的 值可以是〔 〕A.B.5D.6 6 C.4612. 【2021XX 省XX 市实验中学模拟】 函数 f x sinx 0 x 1 ,假设 ab ,且 f a f b ,那么 41的最小值为 _____________.a b13. 【XX市浦东新区2021届高三数学一模试题】函数f x sin x 〔0 〕,将f x的图像向左平移个单位得到函数g x 的图像,令 h x f x g x ,如果存在实数m,使得对任意的实数x,2都有 h m h x h m1成立,那么的最小值为 ________。
专题5.3 解析几何中的范围问题-玩转压轴题,突破140分之高三数学选择题填空题高端精品(2019版

一.方法综述圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定取值范围;②利用隐含或已知的不等关系建立不等式,从而求出取值范围;③利用基本不等式求出取值范围;④利用函数的值域的求法,确定取值范围.二.解题策略类型一利用题设条件,结合几何特征与性质求范围【例1】【安徽省六安市第一中学2019届高考模拟四】点在椭圆上,的右焦点为,点在圆上,则的最小值为()A.B .C .D.【答案】D【解析】解:设椭圆的左焦点为则故要求的最小值,即求的最小值,圆的半径为2所以的最小值等于,的最小值为,故选D.【指点迷津】1. 本题考查了椭圆定义的知识、圆上一动点与圆外一定点距离的最值问题,解决问题时需要对题中的目标进行转化,将未知的问题转化为熟悉问题,将“多个动点问题”转化为“少(单)个动点”问题,1从而解决问题.2.在圆锥曲线的最值问题中,若题目的条件和结论能明显体现几何特征和意义时,则考虑用图形性质来解决,这样可使问题的解决变得直观简捷.【举一反三】1.【河北省石家庄市第二中学2019届高三上期末】已知实数满足,,则的最大值为()A .B.2 C .D.4【答案】D【解析】设点在圆上,且,原问题等价于求解点A和点C 到直线距离之和的倍的最大值,如图所示,易知取得最大值时点A,C 均位于直线下方,作直线于点,直线于点,取的中点,作直线于点,由梯形中位线的性质可知,当直线时,直线方程为,两平行线之间的距离:,由圆的性质,综上可得:的最大值.本题选择D选项.2.点分别为圆与圆上的动点,点在直线上运23动,则的最小值为( )A .7B .8C .9D .10【答案】A 【解析】 设圆 是圆关于直线对称的圆,可得,圆的方程为,可得当点 位于线段上时,线段的长就是圆 与圆上两个动点之间的距离最小值,此时的最小值为,,圆的半径为,圆的半径为 ,∴,因此的最小值为 ,所以A选项是正确的.类型二 通过建立目标问题的表达式,结合参数或几何性质求范围 【例2】抛物线上一点到抛物线准线的距离为,点关于轴的对称点为,为坐标原点,的内切圆与切于点,点为内切圆上任意一点,则的取值范围为__________.【答案】【解析】因为点在抛物线上,所以,点A 到准线的距离为,解得或.当时,,故舍去,所以抛物线方程为∴,所以是正三角形,边长为,其内切圆方程为,如图所示,∴.设点(为参数),则,∴.【指点迷津】本题主要考查抛物线性质的运用,参数方程的运用,三角函数的两角和公式合一变形求最值,属于难题,对于这类题目,首先利用已知条件得到抛物线的方程,进而可得到为等边三角形和内切圆的方程,进而得到点的坐标,可利用内切圆的方程设出点含参数的坐标,进而得到,从而得到其取值范围,因此正确求出内切圆的方程是解题的关键.【举一反三】【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三二模】已知直线与椭圆:相交于,两点,为坐标原点.当的面积取得最大值时,()A .B .C .D .【答案】A【解析】由,得.设,,则,,.又到直线的距离,则的面积,当且仅当,即时,的面积取得最大值.45此时,.故选A.类型三 利用根的判别式或韦达定理建立不等关系求范围【例3】【四川省内江、眉山等六市2019届高三第二次诊断】若直线x ﹣my+m =0与圆(x ﹣1)2+y 2=1相交,且两个交点位于坐标平面上不同的象限,则m 的取值范围是( ) A .(0,1) B .(0,2)C .(﹣1,0)D .(﹣2,0)【答案】D 【解析】 圆与直线联立,整理得图像有两个交点方程有两个不同的实数根,即得.圆都在轴的正半轴和原点,若要交点在两个象限,则交点纵坐标的符号相反,即一个交点在第一象限,一个交点在第四象限.,解得,故选D 项. 【指点迷津】圆都在轴的正半轴和原点,若要两个交点在不同象限,则在第一、四象限,即两交点的纵坐标符号相反,通过联立得到,令其小于0,是否关注“判别式”大于零是易错点.【举一反三】已知直线1y x =-+与椭圆()222210x y a b a b +=>>相交于,A B 两点,且OA OB ⊥(O 为坐标原点),若椭圆的离心率132e ⎡∈⎢⎣⎦,则a 的最大值为___________.106类型四 利用基本不等式求范围【例4】如图,已知抛物线24y x =的焦点为F ,直线l 过F 且依次交抛物线及圆()22114x y-+=于点,,,A B C D 四点,则4AB CD +的最小值为( )A .172 B . 152 C . 132 D . 112【答案】C【解析】由题意得()1,0F ,即为圆的圆心,准线方程为1x =-. 由抛物线的定义得1A AF x =+,又12AF AB =+,所以12A AB x =+. 同理12D CD x =+. ①当直线l 与x 轴垂直时,则有1A D x x ==, ∴331544222AB CD +=+⨯=.7②当直线l 与x 轴不垂直时,设直线l 方程为()1y k x =-, 由()21{4y k x y x=-=消去y 整理得()2222240k x k x k -++=,∴22241,A D A D k x x x x k +⋅=+=,∴55134424222A D A D AB CD x x x x +=++≥+=,当且仅当4A D x x =时等号成立. 综上可得1342AB CD +≥.选C . 【指点迷津】(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.利用定义可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.(2)圆锥曲线中的最值问题,可利用基本不等式求解,但要注意不等式成立的条件. 【举一反三】【1.河南省安阳市2019届高考一模】已知双曲线的一个焦点恰为圆Ω:的圆心,且双曲线C 的渐近线方程为.点P 在双曲线C 的右支上,,分别为双曲线C 的左、右焦点,则当取得最小值时,=( )A .2B .4C .6D .8【答案】B 【解析】 由圆Ω:的圆心(2,0),可得焦点,,双曲线C 的渐近线方程为,可得,且,解得,,设,可得,,当且仅当时取等号,可得.故选:B.2.【四川省凉山州市2019届高三第二次诊断】已知抛物线:的焦点为,过点分别作两条直线,,直线与抛物线交于、两点,直线与抛物线交于、两点,若与的斜率的平方和为,则的最小值为___.【答案】8【解析】设,设直线为,联立直线和抛物线得到,两根之和为:,同理联立直线和抛物线得到由抛物线的弦长公式得到代入两根之和得到,已知,故答案为:8.类型五构建目标函数,确定函数值范围或最值【例5】【上海市交大附中2019届高考一模】过直线上任意点向圆作两条切线,切点分别为,线段AB 的中点为,则点到直线的距离的取值范围为______.【答案】【解析】∵点为直线上的任意一点,∴可设,则过的圆的方程为,化简可得,与已知圆的方程相减可得的方程为,由直线的方程为,联立两直线方程可解得,,8故线段的中点,∴点到直线的距离,∵,∴,∴,∴,∴,即故答案为:【指点迷津】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.【举一反三】1.【2019届高三第二次全国大联考】已知椭圆的右焦点为,左顶点为,上顶点为,若点在直线上,且轴,为坐标原点,且,若离心率,则的取值范围为A .B .C .D .【答案】A【解析】由题意得,直线的方程为,所以,直线的方程为,所以,故.由可得,整理得,显然函数在上单调递增,所以,即.故选A.2.【山东师范大学附属中学2019届高三第四次模拟】已知双曲线C :右支上非顶点的9一点A关于原点O的对称点为B,F 为其右焦点,若,设,且,则双曲线C离心率的取值范围是______.【答案】【解析】解:设双曲线的左焦点为,连接,,,可得四边形为矩形,设,,即有,且,,,,由,可得,则,可得,即有,则,即有.故答案为:.1011类型六 利用隐含或已知的不等关系建立不等式求范围【例6】【云南省保山市2019年高三统一检测】已知坐标原点为O ,过点作直线n 不同时为零的垂线,垂足为M ,则的取值范围是______.【答案】【解析】 根据题意,直线,即,则有,解可得,则直线恒过点.设,又由与直线垂直,且为垂足, 则点的轨迹是以为直径的圆,其方程为, 所以;即的取值范围是;故答案为:.【指点迷津】1.本题根据题意,将直线变形为,分析可得该直线恒过点,设,进而分析可得点的轨迹是以为直径的圆,其方程为,据此分析可得答案.2.此类问题为“隐形圆问题”,常规的处理办法是找出动点所在的轨迹(通常为圆),常见的“隐形圆”有: (1)如果为定点,且动点满足,则动点 的轨迹为圆;(2)如果中,为定长,为定值,则动点的轨迹为一段圆弧.特别地,当,则的轨迹为圆(除去);(3)如果为定点,且动点满足(为正常数),则动点的轨迹为圆;【举一反三】已知椭圆22221(0)x y a b a b+=>>的上、下顶点、右顶点、右焦点分别为B 2、B 1、A 、F ,延长B 1F 与AB 2交于点P ,若∠B 1PA 为钝角,则此椭圆的离心率e 的取值范围为_____.【答案】15⎫-+⎪⎪⎝⎭【解析】由题意得椭圆的长半轴、短半轴、半焦距分别为a 、b 、c ,(22a b -) 可得∠B 1PA 等于向量2B A 与21F B 的夹角,12∵A (a ,0),B 1(0,﹣b ),B 2(0,b ),F 2(c ,0) ∴2B A =(a ,﹣b ),21F B =(﹣c ,﹣b ), ∵∠B 1PA 为钝角,∴2B A 与21F B 的夹角大于2π, 由此可得2B A •21F B <0,即﹣ac+b 2<0, 将b 2=a 2﹣c 2代入上式得:a 2﹣ac ﹣c 2<0,不等式两边都除以a 2,可得1﹣e ﹣e 2<0,即e 2+e ﹣1>0, 解之得e <152--或e >152-+, 结合椭圆的离心率e ∈(0,1),可得15-+<e <1,即椭圆离心率的取值范围为(15-+,1).故答案为(152-+,1).三.强化训练 一、选择题1.【江西省上饶市2019届高三二模】已知双曲线的左焦点为,过原点的直线与双曲线的左、右两支分别交于、两点,且,若的范围为,则双曲线的离心率的取值范围为( ) A .B .C .D .【答案】B 【解析】设F'为双曲线的右焦点,连接AF',BF',,∴四边形AFBF'为矩形,且AB=2c,∴在中,,(1),(2)(1)(2)两式相加故选:B2.【四川省南充市高三2019届第二次高考适应】已知直线与椭圆交于两点,且(其中为坐标原点),若椭圆的离心率满足,则椭圆长轴的取值范围是()A .B .C .D .【答案】A【解析】联立得:(a2+b2)x2﹣2a2x+a2﹣a2b2=0,设P(x1,y1),Q(x2,y2)△=4a4﹣4(a2+b2)(a2﹣a2b2)>0,化为:a2+b2>1.x1+x2=,x1x2=.∵OP⊥OQ,∴=x1x2+y1y2=x1x2+(x1﹣1)(x2﹣1)=2x1x2﹣(x1+x2)+1=0,∴2×﹣+1=0.化为a2+b2=2a2b2.∴b2=.∵椭圆的离心率e 满足≤e≤,∴,∴,,化为5≤4a2≤6.解得:≤2a≤.满足△>0.∴椭圆长轴的取值范围是[,].故选:A.3.【河南省天一大联考2019届高三阶段性测试(五)】已知抛物线:,定点,,点是抛物线上不同于顶点的动点,则的取值范围为()A .B .C .D .【答案】A13【解析】作出抛物线,如图所示.由图可知,当直线与抛物线相切时,最大.设直线的方程为,联立得.令,得,此时,所以.4.【四川省内江、眉山等六市2019届高三第二次诊断】设点是抛物线上的动点,是的准线上的动点,直线过且与(为坐标原点)垂直,则点到的距离的最小值的取值范围是()A .B .C .D .【答案】B【解析】抛物线的准线方程是若点的坐标为,此时直线的方程为,显然点到直线的距离的最小值是1若点的坐标为,其中则直线的斜率为直线的斜率为直线的方程为即,1415设与直线平行且与抛物线相切的直线方程为代入抛物线方程得所以解得所以与直线平行且与抛物线相切的直线方程为 所以点到直线的距离的最小值为直线与直线的距离,即因为所以综合两种情况可知点到直线的距离的最小值的取值范围是所以选B 项.5.【2019届湘赣十四校高三第二次联考】如果图至少覆盖函数的一个最大值点和一个最小值点,则的取值范围是( ) A . B . C .D .【答案】D 【解析】 化简得,所以,函数靠近圆心的最大值点为,最小值点为,所以只需,解之可得.故选D6.【上海交通大学附属中学2019届高三3月月考】已知点为椭圆上的任意一点,点分别为该椭圆的上下焦点,设,则的最大值为( )A .B .C .D .【答案】D【解析】设||=m,||=n,||=2c,A,B为短轴两个端点,由正弦定理可得,即有,由椭圆定义可得e,∴.在三角形中,由m+n=2a,cos -1=,当且仅当m=n时,即P为短轴端点时,cos 最小,最大,∴=,∴故选:D.7.【2019届湘赣十四校高三第二次联考】已知正方体中,,为的中点,为正方形内的一个动点(含边界),且,则的最小值为()A .B .C .D .【答案】B【解析】设的中点为,连接、,则在中,,,∴.∴是以为圆心,以1为半径的圆面(位于正方形内).以为原点建系如图所示,则,,,设的坐标为,则,..1617设点的坐标为,则.故选:B8.【北京市朝阳区2019年高三年级第一次综合练习】已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是( )A .B .[,]C .D .)【答案】D 【解析】圆C (2,0),半径r =,设P (x ,y ),因为两切线,如下图,P A ⊥PB ,由切线性质定理,知:P A ⊥AC ,PB ⊥BC ,P A =PB ,所以,四边形P ACB 为正方形,所以,|PC |=2, 则:,即点P 的轨迹是以(2,0)为圆心,2为半径的圆.直线过定点(0,-2),直线方程即,只要直线与P 点的轨迹(圆)有交点即可,即大圆的圆心到直线的距离小于等于半径,即:,解得:,即实数的取值范围是).本题选择D选项.二、填空题9.【广东省执信中学2018届高三11月月考】抛物线的焦点为,设、是抛物线上的两个动点,若,则的最大值为______.【答案】【解析】解:由抛物线焦半径公式得,,所以由,得,因此,,,所以的最大值为.所以填.10.【上海市徐汇区2019届高三上学期期末】已知圆M :,圆N :直线分别过圆心M、N ,且与圆M相交于A,B 两点,与圆N相交于C,D两点,点P 是椭圆上任意一点,则的最小值为______.【答案】8【解析】由题意可得,,,,,,18为椭圆上的点,由题意可知,,,故答案为:8.11.【北京市大兴区2019届高三4月一模】已知点,,点在双曲线的右支上,则的取值范围是_________.【答案】【解析】设点P(x,y),(x>1),所以,因为,当y>0时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是增函数,所以当y>0时函数f(x)的最小值=f(1)=1.即f(x)≥1.当y≤0时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是减函数,所以当y≤0时函数k(x)>0.综上所述,的取值范围是.12.【北京市顺义区2019届高三期末】过抛物线的焦点F的直线交抛物线于A,B两点交抛物线的准线于点C ,满足:若,则______;若,则的取值范围为______.19【答案】3【解析】解:由题意,抛物线的准线为,,所以另一种情况同理.所以AF 的斜率为,方程为,代入抛物线方程可得,所以可得,因为:,所以,设直线AB 的方程为,代入到,可得,,由,可得,,,,,,,2021,解得故答案为:3,.13.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,点P 在椭圆C 上,线段2PF 与圆:222xy b +=相切于点Q ,若Q 是线段2PF 的中点,e 为C 的离心率,则223a e b+的最小值是______________【答案】53【解析】 连接1,PF OQ , 由OQ 为中位线,可得1//OQ PF ,112OQ PF =, 圆222x y b +=,可得OQ b =且12PF b =,由椭圆的定义可得122PF PF a +=,可得222PF a b =-, 又2OQ PF ⊥,可得12PF PF ⊥,即有()()()2222222b a b c +-=,即为2222222b a ab b c a b +-+==-, 化为23a b =,即23b a =, 225c a b a =-=,即有5c e a ==,则22251515592322929a a ea a ba a a ++⎛⎫==+≥⋅⋅= ⎪⎝⎭,当且仅当59a a=时,即5a =时等号成立,所以223a e b +的最小值为5.14.【宁夏银川市2019年高三下学期质量检测】已知是抛物线上一动点,定点,过点作轴于点,则的最小值是______.【答案】【解析】由抛物线可知,其焦点坐标为,准线,设点P 到其准线的距离为,根据抛物线的定义可的则点P到y 轴的距离为,且则(当且仅当三点共线时取等号),所以的最小值为2.15.【北京市大兴区2019届高三4月一模】已知点,,点在双曲线的右支上,则的取值范围是_________.【答案】【解析】设点P(x,y),(x>1),所以,因为,当y>0时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是增函数,所以当y>0时函数f(x)的最小值=f(1)=1.即f(x)≥1.当y≤0时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是减函数,所以当y≤0时函数k(x)>0.综上所述,的取值范围是.16.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】以抛物线焦点为圆心,为半径作圆交轴于,两点,连结交抛物线于点(在线段上),22延长交抛物线的准线于点,若,且,则的最大值为_____.【答案】32【解析】由题意可得抛物线的焦点为,准线方程为,所以以为圆心,为半径的圆的方程为,因为,两点为圆与轴的两个交点,不妨令为轴正半轴上的点,由得,;所以直线的斜率为,因此直线的方程为,由得;由得,所以,,,又,且,所以,即,因此,当且仅当时,取等号.故答案为17.【河北省唐山市第一中学2019届高三下学期冲刺(一)】已知抛物线的焦点且垂直于轴的直线与抛物线相交于两点,动直线与抛物线相交于两点,若,则直线与圆相交所得最短弦的长度为________.【答案】4【解析】2324由题意可知,=2,=﹣2,∴•=﹣4,设,则,∴y 1y 2=﹣4. 又直线,联立方程组消去x 得:y 2﹣4ty ﹣4n =0,则y 1y 2=﹣4n ,y 1+y 2=4t ,∵y 1y 2=﹣4,∴n =1.即直线过点E (1,0). 又圆的圆心P (2,-2),半径r=3, ∴当弦最短时,PE ,弦长=2=4,故答案为:4.18.【山东省聊城市2019届高三一模】抛物线的焦点为,动点在抛物线上,点,当取得最小值时,直线的方程为_____. 【答案】或【解析】 设点的坐标为当且仅当,即时取等号,此时点坐标为或, 此时直线的方程为即或故答案为:或19.【四川省成都市2019届高三第二次诊断】已知为抛物线的焦点,过点的直线与抛物线相交于不同的两点,抛物线在两点处的切线分别是,且相交于点,则的小值是___.【答案】6【解析】设直线l的方程为:y=kx+1,A (),B (.联立,化为:x2﹣4kx﹣4=0,可得:=4k ,=﹣4,|AB|==k ()+4=4k2+4.对x2=4y两边求导可得:y′,可得切线PA的方程为:y ﹣(x ﹣)切线PB的方程为:y ﹣(x ﹣),联立解得:x ()=2k,y=﹣1.∴P(2k,﹣1).∴|PF|.∴|PF|,令t≥2.则|PF|t f(t),f′(t)=1,当t>4, f′(t)>0;t<4, f′(t)<0可得t=4时,函数f(t)取得极小值即最小值f(4)=6.当且仅当k时取等号.故答案为:6.20.【天津市和平区2019届高三下学期第一次调查】已知为正数,若直线被圆截得的弦长为,则的最大值是____________.【答案】【解析】圆的圆心坐标为(0,0),半径r=2,由直线被圆截取的弦长为,可得圆心到直线的距离,25,则时,取得最大值.故答案为:.26。
专题04 立体几何(解析版)2025高考数学冲刺压轴大题

专题04立体几何【题型简介】立体几何解答题是高考数学必考内容,该考点命题相对稳定,难度中等,是考生必须突破的核心内容之一.高考数学立体几何解答题,主要采用“论证与计算”相结合的方式,在命题上一般包含2~3小问,会涉及到空间点、线、面位置关系的判定与探究,特别是平行与垂直关系的证明;空间角(包括异面直线夹角、直线与平面所成角和二面角)或空间距离(包括空间几何体的体积、表面积和点到平面的距离等)的计算.立体几何在解题能力方面的要求是:在数学思想上,一般涉及转化与化归思想、数形结合思想、函数与方程思想;在解题方法上,一般涉及几何法、向量法,往往是两种方式相结合进行处理.【命题方向】命题方向一、线线角、线面角、二面角、距离问题命题方向二、翻折问题命题方向三、存在性问题命题方向四、开放性问题命题方向五、立体几何创新定义【典型例题】命题方向一、线线角、线面角、二面角、距离问题ABC DB⊥平面ABC;例1.(2023·天津和平·统考一模)在如图所示的几何体中,EA⊥平面,⊥====是AB的中点.,22,AC BC AC BC BD AE M⊥;(1)求证:CM EM(2)求直线EM与平面CDE所成角的正弦值;(3)求平面CME与平面CDE的夹角的余弦值.⊥,以C为原点,分别以CA,CB所在直线为x,y轴,过点C且与平面ABC垂【解析】(1)因为AC BC-,直的直线为z轴,建立如图所示的空间直角坐标系C xyz则()1,1,0M ,()2,0,1E ,所以()1,1,0CM = ,()1,1,1EM =-- ,所以1100CM EM ⋅=-++= ,所以CM EM ⊥ ,即CM EM ⊥;(2)因为()()2,0,1,0,2,2CE CD == ,设平面CDE 的法向量为(),,m x y z =,则20220m CE x z m CD y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令1x =,可得()1,2,2m =- ,又()1,1,1EM =-- ,设EM 与平面CDE 所成角为θ,则33sin 333EM m EM m θ⋅===⋅ 即直线EM 与平面CDE 所成的角的正弦值为33;(3)由题()1,1,0CM = ,()2,0,1CE = ,设平面CME 的法向量(),,n a b c = ,由200n CE a c n CM a b ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令1a =,则()1,1,2n =-- ,又平面CDE 的法向量()1,2,2m =- ,所以1246cos ,6114144m n m n m n⋅-+===++⨯++⋅ ,所以平面CME 与平面CDE 66本类试题一般分两种设问方式,一种是直接求解空间角或空间距离;另外一种是已知空间角或者空间距离,求解相关几何量的大小..解决这类问题一般需要先根据题意建立合适的空间直角坐标系,然后通过数学抽象将几何问题转化为代数问题,找到关键量的坐标表示(需引入参数,但要求尽可能少的参数,一般可以用共线向量处理),再用待定系数的方法进行直接运算,求解函数或方程,得出参数的具体值,最后还原到几何体中求解相应的几何量.变式提升1.(2023·全国·模拟预测)如图,在多面体ABCGF 中,ABC 为正三角形,FA ⊥平面ABC ,//FA CG ,24FA AB ==,D 为AB 的中点,E 为线段CG 上的动点.(1)若1CE =,求点F 到平面ABE 的距离;(2)若//CD 平面BEF ,求平面BEF 与平面BCE 所成锐二面角的余弦值.【解析】(1)解法一:因为FA ⊥平面ABC ,CD ⊂平面ABC ,所以FA CD ⊥.因为ABC 为正三角形,D 为AB 的中点,所以AB CD ⊥,又AB AF A = ,,AB AF ⊂平面ABF ,所以CD ⊥平面ABF .因为2AB =,所以CD =FA EC ∥,EC ⊄平面ABF ,AF ⊂平面ABF ,所以CE ∥平面ABF ,所以点E 到平面ABF 的距离等于点C 到平面ABF所以112432E ABF V -=⨯⨯⨯连接DE ,因为1CE =,所以2DE ==.因为AF ⊥平面ABC ,AF CG ∥,所以CG ⊥平面ABC ,AB ⊂ 平面ABC ,所以CG AB ⊥,又AB CD ⊥,CD CG C ⋂=,,CD CG ⊂平面CDE ,所以AB ⊥平面CDE ,因为DE ⊂平面CDE ,所以AB DE ⊥.设点F 到平面ABE 的距离为d ,则11222323F ABE d V d -=⨯⨯⨯⨯=,因为E ABF F ABE V V --=,所以233d =,解得d =.所以点F 到平面ABE 的距离为解法二:在平面ABC 内过A 作Ax AC ⊥,以A 为坐标原点,射线Ax ,AC ,AF 的方向分别为,,x y z 轴的正方向建立如图所示的空间直角坐标系A xyz -,由题易知()0,0,0A ,)B ,()0,2,1E ,()0,0,4F ,所以()0,0,4AF = ,)3,1,0AB = ,()0,2,1AE = ,设平面ABE 的法向量为()111,,m x y z = ,则00m AB m AE ⎧⋅=⎪⎨⋅=⎪⎩,即11113020y y z ⎧+=⎪⎨+=⎪⎩,令11x =,得(1,3,23m =- ,所以点F 到平面ABE 的距离331312AF m d m ⋅==++ (2)在平面ABC 内过A 作Ax AC ⊥,以A 为坐标原点,射线,,Ax AC AF 的方向分别为,,x y z 轴轴的正方向建立的空间直角坐标系A xyz -,则()0,0,0A ,)3,1,0B ,()0,0,4F ,()0,2,0C ,0321,2D ⎛⎫ ⎪ ⎪⎝⎭,设()0,2,E b ,则33,022CD ⎛⎫=- ⎪ ⎪⎝⎭,()3,1,4FB =- ,()0,2,4FE b =- .设平面BEF 的法向量为(),,n x y z = ,则00n FB n FE ⎧⋅=⎪⎨⋅=⎪⎩ ,即()340240y z y b z ⎧+-=⎪⎨+-=⎪⎩,令1z =,得)344,,162b b n ⎛⎫+-= ⎪ ⎪⎝⎭.因为CD ∥平面BEF ,所以0CD n ⋅= ,所以)3434306222b b +-⎛⎫+⨯-= ⎪⎝⎭,解得2b =,所以)3,1,1n = .取BC 的中点H ,连接AH ,则AH BC ⊥,33,022H ⎛⎫ ⎪ ⎪⎝⎭,因为FA ⊥平面ABC ,FA CG ∥,E 为线段CG 上的动点,所以EC ⊥平面ABC ,又AH ⊂平面ABC ,所以AH EC ⊥,又EC BC C = ,,EC BC ⊂平面BCE ,所以AH ⊥平面BCE ,所以平面BCE 的一个法向量为33,022AH ⎫=⎪⎪⎝⎭,所以平面BEF 与平面BCE 所成锐二面角的余弦值为cos ,n AH n AH n AH ⋅=⋅所以平面BEF 与平面BCE 所成锐二面角的余弦值为5.1.(2023·陕西咸阳·武功县普集高级中学统考一模)如图,直三棱柱111ABC A B C -中,1AC BC AA ==,D 为1CC 上一点.(1)证明:当D 为1CC 的中点时,平面1A BD ⊥平面11ABB A;(2)若90ACB ∠=︒,异面直线AB 和1A D 1B A D A --的余弦值.【解析】(1)证明:如图,分别取1A B ,11A B 的中点E ,F ,连接DE ,EF ,1FC ,易知1FE D C =,且FE ∥1C D ,∴1C DEF 是平行四边形,∴1C F DE ∥.由1111AC B C =,F 为11A B 的中点,可知111C F A B ⊥,而平面111A B C ⊥平面11ABB A ,且平面111A B C Ç平面1111ABB A A B =,1C F ⊂平面111A B C ,∴1C F ⊥平面11ABB A .又∵1C F DE ∥,∴DE ⊥平面11ABB A ,而DE ⊂平面1A BD ,∴平面1A BD ⊥平面11ABB A .(2)方法1:不妨设12AC BC AA ===,1C D m =,注意到11AB A B ∥,知11B A D ∠或其补角为异面直线AB 和1A D 所成角,在△11A B D中,11A B =,1A D =易知(22211cos 5B A D +-=∠解得1m =,即D 为1CC 的中点,如图,延长1A D 交AC 的延长线于F',连接BF ',过C 作CE DF '⊥'于E ',连接BE ',∵1,AC C C ⊂平面1A AF ',BC AC ⊥,1BC C C ⊥,1AC C C C = ,∴BC ⊥平面1A AF ',∴BC DF '⊥,又∵CE DF '⊥',∴DF '⊥平面BCE ',∴DF BE ''⊥∴BEC '∠为二面角1B AD A --的平面角,在Rt △'BCE 中,2BC =,CE '=tan BC BE C CE '∠='∴cos 6BE C '∠=,即二面角1B A D A --方法2:取C 为原点,直线CA ,CB ,1CC 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系C xyz -,不妨设12AC BC AA ===,CD m =,则()2,0,0A ,()0,2,0B ,()12,0,2A ,()0,0,D m ,∴()2,2,0AB =- ,()12,0,2A D m =-- .∴111cos ,5AB A D AB A D AB A D -⋅--⋅==⋅ ,解得1m =.由已知可得平面1A AD 的一个法向量为()10,1,0n =,易知()12,2,2A B =-- ,()12,0,1A D =-- ,设平面1A BD 的法向量为()2,,n x y z =u u r ,由212100n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩ 得()()()(),,2,2,200,,2,0,1020x y z x y z x y z x z ⎧⋅--=-+-=⎧⎪⇒⎨⎨⋅--=+=⎪⎩⎩,可取()21,1,2n =--,则121212cos ,n n n n n n ⋅<>==⋅∴二面角1B A D A --1.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.【解析】(1)由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BE ⊥,由于DE BE E ⋂=,,DE BE ⊂平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)[方法一]:判别几何关系依题意2AB BDBC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =.222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC .由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得32EF =,所以223131,2222DF BF DF ⎛⎫=-==-= ⎪⎪⎝⎭,所以34BF BD =过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111332333244F ABC ABC V S FH -=⋅⋅=⨯⨯= .[方法二]:等体积转换AB BC = ,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,3BE ∴连接EFADB CDB AF CFEF ACBED EF BD ∆≅∆∴=∴⊥∴∆⊥∆ 在中,当时,AFC面积最小222,,2,,BED EF AD CD AD CD AC E AC DE BE BD BE EDBE DE EF BD BD ⊥==∴+=∴⊥⋅⊥∆== 为中点DE=1若在中,32113222BEF BF S BF EF ∆=∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∆∴=+=⋅=⋅=命题方向二、翻折问题例2.(2023·广东梅州·统考一模)如图,在边长为4的正三角形ABC 中,E 为边AB 的中点,过E 作ED AC ⊥于D .把ADE V 沿DE 翻折至1A DE △的位置,连接1AC 、1AB .(1)F 为边1AC 的一点,若12CF FA = ,求证:BF //平面1A DE ;(2)当四面体1C EBA -的体积取得最大值时,求平面1A DE 与平面1A BC 的夹角的余弦值.【解析】(1)取AC 中点M ,连接MF ,MB因为在正三角形ABC 中,MB AC ⊥,又因为ED AC ⊥,所以//MB DE ,MB ⊄平面1A DE ,DE ⊂平面1A DE ,所以//MB 平面1A DE ,又有2CM MD = ,且12CF FA = ,所以1MF //DA,而MF ⊄平面1A DE ,1A D ⊂平面1A DE ,所以//MF 平面1A DE .有MF MB M = ,,MF MB ⊂平面MFB ,所以平面//MFB 平面1A DE ,又BF ⊂平面MFB ,因此//BF 平面1A DE .(2)因为11C BEA A BCE V V --=,又因为BCE 的面积为定值,所以当1A 到平面BCE 的距离最大时,四面体1C BEA -的体积有最大值,因为DE DC ⊥,1DE A D ⊥,1DC A D D = ,DC ,1A D ⊂平面1A DC ,所以DE ⊥平面1A DC ,因为DE ⊂平面ABC ,所以平面ABC ⊥平面1A DC ,当1A D CD ⊥时,平面ABC ⋂平面1A DC CD =,1A D ⊂平面1A DC 所以1A D ⊥平面ABC ,即在翻折过程中,点1A 到平面BCE 的最大距离是1A D ,因此四面体1C BEA -的体积取得最大值时,必有1A D ⊥平面ABC .如图,以点D 为原点,DE 为x 轴,DA 为y 轴,1DA 为z轴,建立空间直接坐标系,易知MB =DE =()0,0,0D,)E ,()0,3,0C -,()10,0,1A,()1,0B -,()10,1,0n = 为平面1A DE 的一个法向量,设平面1BCA 的法向量为()2,,n x y z =u u r ,()10,3,1AC =--,()2,0CB =由1223020A C n y z CB n y ⎧⋅=--=⎪⎨⋅=+=⎪⎩ ,令1y =-得:x =3z =,所以21,33n ⎛⎫=- ⎪ ⎪⎝⎭为平面1BCA的一个法向量,121212cos ,n n n n n n ⋅=== 所以平面1A DE 与平面1A BC的夹角(锐角)的余弦值为31.。
2020高考立体几何动点最值问题压轴选填题

2020高考立体几何动点最值问题压轴选填题立体几何问题中常见的探索性问题包括折叠问题、与函数图象相结合问题、最值问题和探索性问题。
探索性试题通常具有不确定性、探究性和开放性,要求学生具有较高的探究能力和创造性思维。
开放性问题需要学生具备扎实的基础知识和敏锐的洞察力,将平面几何问题类比推广到立体几何中。
折叠和展开问题则考查学生的空间想象能力和分析辨别能力,要求学生在“二维——三维——二维”的维数升降变化中进行思考。
典例1:在棱长为6的正方体ABCD中,点M是BC的中点,点P是面DCC所在的平面内的动点,且满足∠APD=∠MPC,则三棱锥P-BCD的体积最大值是多少?解题关键在于找到变化过程中的临界点,从而确定最值。
在这道题中,需要将空间问题平面化,同时注意到当P点位于D点时,三棱锥P-BCD的体积最大。
典例2:已知长方体ABCD的外接球O的体积为32π,其中BB1=2,则三棱锥O-ABC的体积的最大值是多少?类似于典例1,需要找到变化过程中的临界点。
在这道题中,可以通过求长方体ABCD的对角线长度,进而求出三棱锥O-ABC的高,从而求出体积。
注意到当三棱锥O-ABC的高等于长方体ABCD的对角线长度时,体积最大。
典例3:在棱长为1的正方体ABCD的对角线AC上取一点P,以A为球心,AP为半径作一个球,设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图像最有可能的是什么?这道题需要将立体几何和函数图象相结合,考查学生的数形结合能力和小题小作的技巧。
可以通过画图求出交线长度和f(x),然后根据函数图象的特点进行判断。
举一反三】正方体ABCD A'B'C'D'的棱长为1,E,F分别是棱AA',CC'的中点。
过直线EF的平面分别与棱BB'、DD'分别交于M,N两点,设BM x,x[0,1]。
给出以下四个结论:①平面MENF平面BDD B;②直线AC∥平面MENF始终成立;③四边形MENF周长L f(x),x[0,1]是单调函数;④四棱锥C MENF的体积V h(x)为常数。
厉兵秣马,2019高考数学立体几何必考压轴题及解析,冲刺140必备

厉兵秣马,2019高考数学立体几何必考压轴题及解析,冲刺140必备高中数学的立体几何很抽象,一直让不少学生头疼。
然而,每年的高考都会至少考一题立体几何,且往往是分值高的大题,如果没有迎难而上的勇气,一下子就会被别人甩下将近20分;相反,如果你能搞定立体几何,那你就等于甩开了数以万计被立体几何打败的学生,有助你考上理想大学。
高考对于立体几何的考查重点集中在以下几个方面:①几何的机构特征和三视图、直观图,重点是三视图。
②点、线、平面之间的位置关系,重点是平行关系、垂直关系和异面直线③空间的角度,重点是二面角、直线和平面所成的角、异面直线所成的角④空间向量,一般是以解答题的形式出现,这是立体几何考查的一个重要点。
下面是小编为同学们整理的2019年高考数学立体几何必考压轴题及答案解析,希望同学们一定要给予足够的重视!由于篇幅有限文中无法全部为同学们展示,所以,如果同学们需要完整版的话可以点小编的头像私信咨询小编哦~!私信:立体几何高中数学《立体几何》压轴题及答案解析在高一的时候,同学们开始学习立体几何“三视图”时,大家都会觉得这个内容非常难学.这块内容之所以难学其本质的原因是大家空间想象力不够,对空间几何体直观图的框架呈现方式没有深入理解,另平行投影的原理及三视图的边界意义是还原几何体的重点.三视图作为高考数学立体几何部分的核心考点之一,关键是如何还原几何体.涉及立体几何所有知识点:包括空间几何体(棱锥、棱柱、棱台、圆锥、圆柱、圆台、球)的直观图画法;三视图的投影原理(平行投影:长对正、高平齐、宽相等);截面的做法(平面的基本性质的应用);常见几何体的概念及相关计算公式(表面积和体积等).还原几何体过程中还会考虑到空间点、线、面位置关系的判断等,如线面平行、线面垂直的判定定理与性质定理.立体几何中的动态问题或最值问题,这类问题往往困扰成绩比较好的同学,一般成绩较弱的同学其实这类问题就果断放弃了.究其原因,这类问题的知识覆盖面广,很多同学在这方面缺乏专项的训练,常常在解题时没有明确的思路,无从下手.即使偶尔能做对,也是凭着运气成分,并不是实力使然,也不能100%的做对.。
高三数学选择填空难题突破 立体几何中最值问题

高三数学选择填空难题突破立体几何中最值问题一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。
二.解题策略类型一距离最值问题AB=,若线段DE上存在点P 【例1】如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且2⊥,则边CG长度的最小值为()使得GP BPA. 4B. D.【答案】D又22002B G a (,,),(,,),所以2,2,,,2,.22ax ax BP x GP x a ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭() 24022ax ax PB PG x x a ⎛⎫=-++-= ⎪⎝⎭.显然0x ≠且2x ≠.所以221642a x x =--. 因为()0,2x ∈,所以(]220,1x x -∈.所以当221x x -=, 2a 取得最小值12.所以a的最小值为故选D.【指点迷津】利用图形的特点,建立空间直角坐标系,设CG 长度为a 及点P 的坐标,求BP GP与的坐标,根据两向量垂直,数量积为0,得到函数关系式221642a x x =--,利用函数求其最值。
立体几何最值问题-高考数学一题多解
立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。
2024年高考数学立体几何大题突破(解析版)
立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
高三数学精选立体几何多选题 易错题难题质量专项训练试题
高三数学精选立体几何多选题 易错题难题质量专项训练试题一、立体几何多选题1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由11110m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.如图所示,正三角形ABC 中,D ,E 分别为边AB ,AC 的中点,其中AB =8,把△ADE 沿着DE 翻折至A 'DE 位置,使得二面角A '-DE -B 为60°,则下列选项中正确的是( )A .点A '到平面BCED 的距离为3B .直线A 'D 与直线CE 所成的角的余弦值为58C .A 'D ⊥BDD .四棱锥A '-BCED 237【答案】ABD 【分析】作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N .利用线面垂直的判定定理判定CD ⊥平面A'MN ,利用面面垂直的判定定理与性质定理得到'A 到平面面BCED 的高A'H ,并根据二面角的平面角,在直角三角形中计算求得A'H 的值,从而判定A;根据异面直线所成角的定义找到∠A'DN 就是直线A'D 与CE 所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED , ∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =∴A'M ,∴A'H =A'M sin60°=3,故A 正确; 连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角,DN =DA'=4,A'N =A'M ,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,==,∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=++=, 解得23x =,∴244371699R ⨯=+=,R ∴=故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.3.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为32C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.4.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.5.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒ B .点A 到平面BCD 的距离为263C .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD 的距离为3,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径, 因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即2=6OF AO =,所以四面体ABCD 的外接球体积334433V R OA ππ===,故C 正确;建系如图:,A C ⎛⎛⎫⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则,,0,,333AP x y AC →→⎛⎛=-=- ⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=,所以241392y +=,83y +,平方化简可得:22400399y x y ----,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.6.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为3232⎣⎦B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大 C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点 【答案】AC 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,利用空间向量法可判断A 选项的正误;证明出1AC ⊥平面1A BD ,分别取棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点E 、F 、Q 、N 、G 、H ,比较1A BD 和六边形EFQNGH 的周长和面积的大小,可判断B 选项的正误;利用空间向量法找出平面α与棱11A D 、11A B 的交点E 、F ,判断四边形BDEF 的形状可判断C 选项的正误;将矩形11ACC A 与矩形11CC D D 延展为一个平面,利用A 、M 、N 三点共线得知AM MN +最短,利用平行线分线段成比例定理求得MC ,可判断D 选项的正误. 【详解】对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()2,0,0A 、()2,2,0B 、设点()()0,2,02M a a ≤≤,AM ⊥平面α,则AM 为平面α的一个法向量,且()2,2,AM a =-,()0,2,0AB =,2232cos ,,32288AB AMAB AM AB AM a a ⋅<>===⎢⋅⨯++⎣⎦, 所以,直线AB 与平面α所成角的正弦值范围为32⎣⎦,A 选项正确;对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC , 在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,1BD CC ∴⊥,四边形ABCD 是正方形,则BD AC ⊥,1CC AC C =,BD ∴⊥平面1ACC ,1AC ⊂平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥, 1A D BD D ⋂=,1AC ∴⊥平面1A BD ,易知1A BD 是边长为22的等边三角形,其面积为()12322234A BD S =⨯=△,周长为22362⨯=.设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH 是边长为2的正六边形,且平面//EFQNGH 平面1A BD , 正六边形EFQNGH 的周长为62,面积为()2362334⨯⨯=,则1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误; 对于C 选项,设平面α交棱11A D 于点(),0,2E b ,点()0,2,1M ,()2,2,1AM =-,AM ⊥平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,()1,0,2E ∴,所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则()2,1,2F ,()1,1,0EF =,而()2,2,0DB =,12EF DB ∴=,//EF DB ∴且EF DB ≠, 由空间中两点间的距离公式可得2222015DE =++=,()()()2222212205BF =-+-+-=,DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,2222222MC AC DN AD ∴===-+, 11222MC CC =-≠,所以,点M 不是棱1CC 的中点,D 选项错误.故选:AC. 【点睛】本题考查线面角正弦值的取值范围,同时也考查了平面截正方体的截面问题以及折线段长的最小值问题,考查空间想象能力与计算能力,属于难题.7.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D DD .四边形1BFDE 面积的最小值为6 【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62.【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16232⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.8.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2 )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD 【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断. 【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾, 所以A 错;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN =,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。
2020高考立体几何动点最值问题压轴选填题
立体几何新颖问题压轴填空题以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( )A .36B . C.24 D .【名师指点】在运动变化过程中,当变量达到某一个特殊位置时,要所求的变量的最值达到. 这就要求看准变化中的临界点,从而确定最值. 空间问题平面化是解题关键.【举一反三】表面积为π60的球面上有四点C B A S 、、、且ABC ∆是等边三角形,球心O 到平面ABC 的距离为3,若ABC SAB 面⊥,则棱锥ABC S -体积的最大值为 .类型二 几何体的外接球或者内切球问题典例2 已知长方体1111D C B A ABCD -的外接球O 的体积为332π,其中21=BB ,则三棱锥ABC O -的体积的最大值为( )A.1B.3C.2D.4【举一反三】在三棱锥P ABC -中,PA ⊥平面ABC ,02,2,1,60PA AB AC BAC ===∠=,则该三棱锥的外接球的表面积为 .类型三 立体几何与函数的结合典例3 如图,在棱长为1的正方体1111ABCD A B C D -的对角线1AC 上取一点P ,以A 为球心,AP 为半径作一个球,设AP x =,记该球面与正方体表面的交线的长度和为()f x ,则函数()f x 的图像最有可能的是( )【名师指点】本题考查数形结合的数学思想方法,考查特殊值、小题小作的小题技巧.【举一反三】如图所示,正方体''''ABCD A B C D -的棱长为1,,E F 分别是棱'AA ,'CC 的中点,过直线EF 的平面分别与棱'BB 、'DD 分别交于,M N 两点,设BM x =,[0,1]x ∈,给出以下四个结论:①平面MENF ⊥平面BDD B '';②直线AC ∥平面MENF 始终成立;③四边形MENF 周长()L f x =,[0,1]x ∈是单调函数;④四棱锥C MENF '-的体积()V h x =为常数;以上结论正确的是___________.【精选名校模拟】1. 如图,正方体1111D C B A ABCD -的棱长为3,以顶点A 为球心, 2为半径作一个球,则图中球面与正方体的表面相交得到的两段弧长之和等于( )A .65πB .32π C. π D .67π2. 在三棱锥ABC P -中,PC PB PA ,,两两垂直,且1,2,3===PC PB PA ,设M 是底面ABC ∆内一点,定义),,()(p n m M f =,其中p n m ,,分别是三棱锥PAB M -,三棱锥PBC M -,三棱锥PCA M -的体积,若),,21()(y x M f =,且81≥+y ax ,则正实数a 的最小值为________.F EA'B'ABCD C'D'M N2. 已知5 2.236≈,如图,在矩形ABCD 中,5,3,AD AB E F ==、分别为AB 边、CD 边上一点,且1AE DF ==,现将矩形ABCD 沿EF 折起,使得ADEF BCFE ⊥平面平面,连接AB CD 、,则所得三棱柱ABE DCF -的侧面积比原矩形ABCD 的面积大约多( )A.68%B.70%C.72%D.75% 3. 如图四边形ABCD ,2AB BD DA ===,2BC CD ==.现将ABD ∆沿BD 折起,当二面角A BD C --处于5[,]66ππ过程中,直线AB 与CD 所成角的余弦值取值范围是( ) A .522[,]88- B .252[,]88 C .2[0,]8D .52[0,]84. 如图,90ACB ∠=︒,DA ⊥平面ABC ,AE DB ⊥交DB 于E ,AF DC ⊥交DC 于F ,且2AD AB ==,则三棱锥D AEF -体积的最大值为 .5. 已知四面体ABCD 的每个顶点都在球O 的表面上,5AB AC ==,8BC =,AD ⊥底面ABC ,G 为ABC ∆的重心,且直线DG 与底面ABC 所成角的正切值为12,则球O 的表面积为_________.7.已知ABC ∆的三边长分别为5=AB ,4=BC ,3=AC ,M 是AB 边上的点,P 是平面ABC 外一点.给出下列四个命题:①若⊥PM 平面ABC ,且M 是AB 边中点,则有PC PB PA ==;②若5=PC ,⊥PC 平面ABC ,则PCM ∆面积的最小值为215;③若5=PB ,⊥PB 平面ABC ,则三棱锥ABC P -的外接球体积为π62125;④若5=PC ,P 在平面ABC 上的射影是ABC ∆内切圆的圆心,则三棱锥ABC P -的体积为232;其中正确命题的序号是 (把你认为正确命题的序号都填上).ABCDEF8. 将矩形ABCD 绕边AB 旋转一周得到一个圆柱,3AB =,2BC =,圆柱上底面圆心为O ,EFG ∆为下底面圆的一个内接直角三角形,则三棱锥O EFG -体积的最大值是 .9. 我国南北朝时代的数学家祖恒提出体积的计算原理(祖恒原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.类比祖恒原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为1的梯形,且当实数t 取[]0,3上的任意值时,直线y t =被图1和图2所截得的两线段长始终相等,则图1的面积为 ____________.10. 已知平面α截一球面得圆M ,过圆M 的圆心的平面β与平面α所成二面角的大小为60°,平面β截该球面得圆N ,若该球的表面积为64π,圆M 的面积为4π,则圆N 的半径为__________.12.如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .给出下列四个结论:①存在点E ,使得11C A //平面F BED 1;②存在点E ,使得⊥D B 1平面F BED 1;③对于任意的点E ,平面⊥D C A 11平面F BED 1;④对于任意的点E ,四棱锥F BED B 11-的体积均不变. 其中,所有正确结论的序号是___________.13.已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .15. 正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为1,此时四面体ABCD 外接球表面积为____________ .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.方法综述
高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。
二.解题策略
类型一距离最值问题
AB=,若线段DE上存在点P 【例1】如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且2
⊥,则边CG长度的最小值为()
使得GP BP
A. 4
B. D.
【答案】D
又22002B G a (,,),(,,),所以2,2,,,2,.22ax ax BP x GP x a ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭
() 24022ax ax PB PG x x a ⎛⎫=-++-= ⎪⎝⎭
.显然0x ≠且2x ≠.所以221642a x x =--. 因为()0,2x ∈,所以(]
220,1x x -∈.所以当221x x -=, 2a 取得最小值12.所以a
的最小值为故选D.
【指点迷津】利用图形的特点,建立空间直角坐标系,设CG 长度为a 及点P 的坐标,求BP GP 与的坐标,
根据两向量垂直,数量积为0,得到函数关系式221642a x x =--,利用函数求其最值。
举一反三
1、如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,点E 、F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是_____。
【答案】
⎣⎦
∵P是侧面BCC1B1内一点,且A1P∥平面AEF,∴点P必在线段MN上。
A M===,
在Rt△A1B1M中,
1
A N=A1MN为等腰三角形,
同理在Rt△A1B1N中,可求得
12
当P在MN中点O时A1P⊥MN,此时A1P最短,P位于M或N处时A1P最长,
AO===
又
1
.
所以线段A1P长度的取值范围是
⎣⎦
2、【2017甘肃省天水市第一中学上学期期末】如图所示,在空间直角坐标系中,D是坐标原点,有一棱长为a 的正方体,E和F分别是体对角线和棱上的动点,则的最小值为()
A. B. C. a D.
【答案】B
3、如右图所示,在棱长为2的正方体1111ABCD A BC D -中,
E 为棱1CC 的中点,点,P Q 分别为面1111A B C D 和线段1BC 上的动点,则PEQ ∆周长的最小值为_______.
【解析】将面1111A B C D 与面11BB C C 折成一个平面,设E 关于11B C 的对称点为M ,E 关于1BC 对称点为N,
则PEQ ∆周长的最小值为MN ==类型二 面积的最值问题
【例2】已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,
3BC =, AB =E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是( )
A. [],4ππ
B. []2,4ππ
C. []3,4ππ
D. (]0,4π
【答案】B
关注.
举一反三
1、在三棱锥P-ABC 中,PA ⊥面ABC ,AB ⊥AC 且AC=1,AB=2,PA=3,过AB 作截面交PC 于D ,则截面ABD 的最小面积为( )
【答案】C
【解析】如图所示,当PC ABD ⊥面时 ,截面ABD 的面积最小,此时应有
min min 11V 33P ABC ABC S PA S PC S -=⨯⨯=⨯⨯⇒== 。
故选C 。
2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三
棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )
A .1
B .2
C .
21 D .4
1 【答案】B
ABC P -的正视图与俯视图的面积之比的最大值为2;故选B .
3、正三棱锥V-ABC 的底面边长为a 2,E,F,G,H 分别是VA,VB,BC,AC 的中点,则四边形EFGH 的面积的取值范围是( )
A .()+∞,0
B .⎪⎪⎭⎫ ⎝⎛+∞,332a
C .⎪⎪⎭
⎫ ⎝⎛+∞,632a D .⎪⎭⎫ ⎝⎛+∞,212a 【答案】B
【解析】不妨设侧棱长尾2b ,则322322⋅⋅>a b 即a b 3
3>.由已知条件得,四边形EFGH 的面积23
333a a a ab s =⋅>=,故选B 。
类型三 体积的最值问题
【例3】如图,已知平面
平面,,、是直线上的两点,、是平面内的两点,且,,
,,,是平面上的一动点,且有,则四棱锥体积的最大
值是( )
A. B. C. D.
【答案】A
【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的.
举一反三
1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠= ,则四面体ABCD 的体积的最大值是
A. B. 18 D. 36
【答案】A
2、如图,已知平面l αβ= ,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,
6,8AB BC ==,
在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )
A.16 C.48 D.144
【答案】C
【解析】,,DA DA βααβ⊂⊥∴⊥ 面. ,,DA CB αα⊥⊥PAD ∴∆和PBC ∆均为直角三角形.,APD BPC PAD ∠=∠∴∆ ∽PBC ∆.4,8,2AD BC PB PA ==∴= .
过P 作PM AB ⊥,垂足为M .则PM β⊥.令AM t =,()t R ∈.
则2222PA AM PB BM -=-,即()2
22246PA t PA t -=--,2124,PA t PM ∴=-∴=底面四边形ABCD 为直角梯形面积为()1486362
S =+⨯=.
136483
P ABCD V -∴=⨯.故C 正确. 3、(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )
A.4π
B.9π2
C.6π
D.32π3。