四川省凉山州初中毕业、高中阶段招生统一考试试卷及参考答案.pdf
2023年四川省凉山州(初三学业水平考试)中考化学真题试卷含详解

利于实现该目标的是
A. 合理使用化肥农药
B. 深埋处理废旧电池
C. 开发和利用新能源
D. 减少塑料袋的使用
4. 近年流行的“自热火锅”给人们的生活带来方便。某品牌“自热火锅”的部分说明如图。下面有关说法错误的是
A. 聚丙烯塑料属于有机合成材料
B. 料包中的营养成分缺少维生素
C. 牛肉、淀粉制品均富含蛋白质
【数据分析】乙组同学对图 2 数据进行讨论分析,证明猜想二成立。 I.a 点的实验现象为___________。 Ⅱ.b 点发生反应的化学方程式为___________。 Ⅲ.c 点对应溶液中全部溶质的化学式为___________。 【探究活动二】丙组同学提出直接蒸发溶剂可从剩余废液中回收纯净 CaCl2,理由是___________。 【交流与反思】甲组同学认为丙组同学提出的方法会对空气造成污染。在不借助其它试剂和仪器的情况下,除去废 液中对空气造成污染的物质,建议最好先在废液中加入下面______(填选项序号)试剂。 A.CaO B.Ca(OH)2 C.CaCO3
最小微粒是氧分子,化学符号 O2。
故选 A。
3. 我国“十四五规划”和 2035 年远景目标纲要第十一篇是《推动绿色发展,促进人与自然和谐共生》。下列做法不
利于实现该目标的是
A. 合理使用化肥农药
B. 深埋处理废旧电池
C. 开发和利用新能源
D. 减少塑料袋的使用
【答案】B
【解析】
【详解】A、合理使用化肥农药,有利于保证粮食产量,减少环境污染,故 A 正确;
B. 进入久未开启的菜窖前先做灯火实验
C. 高楼火灾时,人应乘电梯逃生
D. 吸烟有害健康,青少年一定不要吸烟
【答案】C
【解析】
四川省凉山州初中毕业、高中阶段招生统一考试

2009届四川省凉山州初中毕业、高中阶段招生统一考试物理试卷第Ⅰ卷(选择题共16分)一、选择题(共8个小题,每小题2分,共16分)在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母填在题后括号内。
1.以下数据与实际情况基本相符的是()A.一个普通中学生的质量约为100 gB.用手托起两个鸡蛋的力约为10 NC.课桌的高度约为80 cmD.家用空调的功率约为50 W2.如下图所示的四种现象中,属于光的折射现象的是()3.关于分子动理论和物体内能变化的说法,正确的是()A.在花丛旁闻到浓郁的花香属于扩散现象B.固体很难被压缩,是因为固体分子间有很大引力的缘故C.钻木取火是通过热传递的方法改变物体内能的D.沙漠地区的气温比沿海地区变化明显是因为沙石的比热容比较大4.下图所示的四个示意图中,用来研究电磁感应现象的是()5.下面关于生活中所涉的物理知识,错误..的是()A.电熨斗是利用电流的热效应来工作的B.加油站内禁止使用塑料桶盛装汽油是为了防止因摩擦起电引起火灾C.电视机待机(只有指示灯亮)时也会耗电D.刚竣工的水泥路面留有一道道的细槽是为了美观6.李明去商场购物,自动扶梯把他从一楼匀速送到二楼的过程中,他的()A.动能不变,势能增大,机械能不变B.动能不变,势能增大,机械能增大C.动能增大,势能增大,机械能增大D.动能增大,势能增大,机械能不变7.下列说法正确的是()A.凸透镜对光有发散作用B.光从空气斜射入水中,折射角大于入射角C.平面镜成的像可用光屏接收D.电影银幕粗糙是为了利用光的漫反射8.某导体接在电路中,如果把该导体两端电压减少到原来的一半,保持温度不变,则导体的电阻和通过它的电流()A.都减少到原来的一半B.都保持不变C.电阻不变,电流减小到原来的一半D.电阻不变,电流是原来的2倍第Ⅱ卷(非选择题共44分)二、填空题(每空1分,共14分)9.电磁波在真空中的传播速度是________m/s;“嫦娥一号”从月球向地球发射电磁波,经过1.28 s后到达地球,那么地球与月球相距为__________km。
2023年四川省凉山州数学中考真题(原卷版和解析版)

凉山州2023年初中毕业暨高中阶段学校招生考试数学试卷试卷满分150分考试时间120分钟A 卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.下列各数中,为有理数的是()A.B.3.232232223⋅⋅⋅C.π3D.2.如图是由4个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A. B. C. D.3.若一组数据123,,,,n x x x x 的方差为2,则数据1233,3,3,,3n x x x x ++++ 的方差是()A.2B.5C.6D.114.下列计算正确的是()A.248a a a ⋅= B.22423a a a += C.()362328a b a b = D.222()a b a b -=-5.2022年12月26日,成昆铁路复线全线贯通运营.据统计12月26日至1月25日,累计发送旅客144.6万人次.将数据144.6万用科学记数法表示的是()A.51.44610⨯ B.61.44610⨯ C.70.144610⨯ D.71.44610⨯6.点()2,3P -关于原点对称的点P '的坐标是()A.()2,3 B.()2,3-- C.()3,2- D.()2,3-7.光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,145,2120∠=︒∠=︒,则34∠+∠=()A.165︒B.155︒C.105︒D.90︒8.分式21x xx --的值为0,则x 的值是()A .B.1-C.1D.0或19.如图,在ABF △和DCE △中,点E 、F 在BC 上,BE CF =,B C ∠=∠,添加下列条件仍无法证明ABF DCE ≌△△的是()A.AFB DEC ∠=∠B.AB DC =C.A D ∠=∠D.AF DE=10.如图,在等腰ABC 中,40A ∠=︒,分别以点A 、点B 为圆心,大于12AB 为半径画弧,两弧分别交于点M 和点N ,连接MN ,直线MN 与AC 交于点D ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.50︒11.如图,在O 中,30OA BC ADB BC ⊥∠=︒=,,OC =()A.1B.2C.23D.412.已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是()A.<0abcB.420a b c -+<C.30a c +=D.20am bm a ++≤(m为实数)第Ⅱ卷非选择题(共52分)二、填空题(共5个小题,每小题4分,共20分)13.计算()20( 3.14)21π-+-_________.14.已知21y my -+是完全平方式,则m 的值是_________.15.如图,ABCO 的顶点O A C 、、的坐标分别是()()()003012,、,、,.则顶点B 的坐标是_________.16.不等式组()5231131722x x x x⎧+>-⎪⎨-≤-⎪⎩的所有整数解的和是_________.17.如图,在Rt ABC △纸片中,90ACB ∠=︒,CD 是AB 边上的中线,将ACD 沿CD 折叠,当点A 落在点A '处时,恰好CA AB '⊥,若2BC =,则CA '=_________.三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.先化简,再求值:()()()2(2)222x y x y x y y x y +-+--+,其中202312x ⎛⎫= ⎪⎝⎭,20222y =.19.解方程:2211x x x =+-.20.2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海沪山风景区(以下分别用A B C D 、、、表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的游客有多少人?(2)将两幅不完整的统计图补充完整;(3)若某游客随机选择A B C D 、、、四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择A 的概率.21.超速容易造成交通事故.高速公路管理部门在某隧道内的C E 、两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A D B F 、、、在同一直线上.点C 、点E 到AB 的距离分别为CD EF 、,且7m,895m CD EF CE ===,在C 处测得A 点的俯角为30︒,在E 处测得B 点的俯角为45︒,小型汽车从点A 行驶到点B 所用时间为45s .(1)求,A B 两点之间的距离(结果精确到1m );(2)若该隧道限速80千米/小时,判断小型汽车从点A 行驶到点B 是否超速?并通过计算说明理由.(参考1.7≈≈)22.如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,CAB ACB ∠=∠,过点B 作BE AB ⊥交AC 于点E .(1)求证:AC BD ⊥;(2)若10AB =,16AC =,求OE 的长.B 卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.已知2210x x --=,则3231052027x x x -++的值等于_________.24.如图,边长为2的等边ABC 的两个顶点A B 、分别在两条射线OM ON 、上滑动,若OM ON ⊥,则OC 的最大值是_________.五、解答题(共4小题,共40分)25.凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.(1)求雷波脐橙和资中血橙每千克各多少元?(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?26.阅读理解题:阅读材料:如图1,四边形ABCD 是矩形,AEF △是等腰直角三角形,记BAE ∠为α、FAD ∠为β,若1tan 2α=,则1tan 3β=.证明:设BE k =,∵1tan 2α=,∴2AB k =,易证()AAS AEB EFC △≌△∴2,EC k CF k ==,∴,3FD k AD k ==∴1tan 33DF k AD k β===,若45αβ+=︒时,当1tan 2α=,则1tan 3β=.同理:若45αβ+=︒时,当1tan 3α=,则1tan 2β=.根据上述材料,完成下列问题:如图2,直线39y x =-与反比例函数(0)my x x=>的图象交于点A ,与x 轴交于点B .将直线AB 绕点A 顺时针旋转45︒后的直线与y 轴交于点E ,过点A 作AM x ⊥轴于点M ,过点A 作AN y ⊥轴于点N ,已知5OA =.(1)求反比例函数的解析式;(2)直接写出tan tan BAM NAE ∠∠、的值;(3)求直线AE 的解析式.27.如图,CD 是O 的直径,弦AB CD ⊥,垂足为点F ,点P 是CD 延长线上一点,DE AP ⊥,垂足为点E ,∠∠EAD FAD =.(1)求证:AE 是O 的切线;(2)若4,2PA PD ==,求O 的半径和DE 的长.28.如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.凉山州2023年初中毕业暨高中阶段学校招生考试数学试卷试卷满分150分考试时间120分钟A卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.下列各数中,为有理数的是()A. B.3.232232223⋅⋅⋅ C.π3 D.【答案】A【解析】【分析】根据立方根、无理数与有理数的概念即可得.【详解】解:A2=,是有理数,则此项符合题意;B、3.232232223⋅⋅⋅是无限不循环小数,是无理数,则此项不符合题意;C、π3是无理数,则此项不符合题意;D是无理数,则此项不符合题意;故选:A.【点睛】本题考查了立方根、无理数与有理数,熟记无理数与有理数的概念是解题关键.2.如图是由4个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A. B. C. D.【答案】B【解析】【分析】根据俯视图可确定主视图的列数和小正方形的个数,即可解答.【详解】解:由俯视图可得主视图有2列组成,左边一列由2个小正方形组成,右边一列由1个小正方形组成.故选:B .【点睛】本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.3.若一组数据123,,,,n x x x x 的方差为2,则数据1233,3,3,,3n x x x x ++++ 的方差是()A.2B.5C.6D.11【答案】A 【解析】【分析】根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,设原平均数为x ,现在的平均数为3x +,原来的方差22221121()()(2n s x x x x x x n ⎡⎤=-+-+⋯+-=⎣⎦,现在的方差()()()22222121333333n S x x x x x x n ⎡⎤=+--++--+⋯++--⎣⎦,222121(()()n x x x x x x n ⎡⎤=-+-++-⎣⎦ ,2=.故选:A .【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.4.下列计算正确的是()A.248a a a ⋅=B.22423a a a += C.()362328a b a b = D.222()a b a b -=-【答案】C 【解析】【分析】利用同底数幂的乘法法则,合并同类项法则,幂的乘方法则,积的乘方法则和完全平方公式分别计算,即可得出正确答案.【详解】解:A .246a a a ⋅=,故该选项错误,不合题意;B .22223a a a +=,故该选项错误,不合题意;C .()362328a b a b =,故该选项正确,符合题意;D .222()2a b a ab b -=-+,故该选项错误,不合题意;故选:C .【点睛】本题考查同底数幂的乘法、合并同类项、幂的乘方,积的乘方和完全平方公式等知识点,熟练掌握各项运算法则是解题的关键.5.2022年12月26日,成昆铁路复线全线贯通运营.据统计12月26日至1月25日,累计发送旅客144.6万人次.将数据144.6万用科学记数法表示的是()A.51.44610⨯ B.61.44610⨯ C.70.144610⨯ D.71.44610⨯【答案】B【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:144.6万61.44610=⨯,故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.6.点()2,3P -关于原点对称的点P '的坐标是()A.()2,3 B.()2,3-- C.()3,2- D.()2,3-【答案】D【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】解:点()2,3P -关于原点对称的点P '的坐标是()2,3-,故选D .【点睛】本题考查关于原点对称的点的坐标,解题的关键是记住“关于原点对称的点,横坐标与纵坐标都互为相反数”.7.光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,145,2120∠=︒∠=︒,则34∠+∠=()A.165︒B.155︒C.105︒D.90︒【答案】C【解析】【分析】根据平行线的性质,两直线平行,同位角相等或同旁内角互补,即可求出答案.【详解】解:如图所示,AB CD ∥,光线在空气中也平行,13∠∠∴=,24180∠+∠=︒.145,2120︒∠=︒∠= ,345∴∠=︒,418012060∠=︒-︒=︒.344560105∴∠+∠=︒+︒=︒.故选:C .【点睛】本题考查了平行线的性质的应用,解题的关键在于熟练掌握平行线的性质.8.分式21x x x --的值为0,则x 的值是()A.0B.1-C.1D.0或1【答案】A【解析】【分析】根据分式值为0的条件进行求解即可.【详解】解:∵分式21x x x --的值为0,∴2010x x x ⎧-=⎨-≠⎩,解得0x =,【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是分子为0,分母不为0是解题的关键.9.如图,在ABF △和DCE △中,点E 、F 在BC 上,BE CF =,B C ∠=∠,添加下列条件仍无法证明ABF DCE ≌△△的是()A.AFB DEC∠=∠ B.AB DC = C.A D ∠=∠ D.AF DE=【答案】D【解析】【分析】根据BE CF =,可得BF CE =,再根据全等三角形的判定方法,逐项判断即可求解.【详解】解:∵BE CF =,∴BF CE =,∵B C ∠=∠,A 、添加AFB DEC ∠=∠,可利用角边角证明ABF DCE ≌△△,故本选项不符合题意;B 、添加AB DC =,可利用边角边证明ABF DCE ≌△△,故本选项不符合题意;C 、添加AD ∠=∠,可利用角角边证明ABF DCE ≌△△,故本选项不符合题意;D 、添加AF DE =,无法证明ABF DCE ≌△△,故本选项不符合题意;故选:D【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.10.如图,在等腰ABC 中,40A ∠=︒,分别以点A 、点B 为圆心,大于12AB 为半径画弧,两弧分别交于点M 和点N ,连接MN ,直线MN 与AC 交于点D ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.50︒【解析】【分析】先根据等边对等角求出70ABC ∠=︒,由作图方法可知,MN 是线段AB 的垂直平分线,则AD BD =,可得40ABD A ==︒∠∠,由此即可得到30DBC ABC ABD ∠=∠-∠=︒.【详解】解:∵在等腰ABC 中,40A ∠=︒,AB AC =,∴180702A ABC ACB ︒-===︒∠∠∠,由作图方法可知,MN 是线段AB 的垂直平分线,∴AD BD =,∴40ABD A ==︒∠∠,∴30DBC ABC ABD ∠=∠-∠=︒,故选B .【点睛】本题主要考查了等腰三角形的性质与判定,线段垂直平分线的尺规作图,三角形内角和定理等等,灵活运用所学知识是解题的关键.11.如图,在O 中,30OA BC ADB BC ⊥∠=︒=,,OC =()A.1B.2C.D.4【答案】B【解析】【分析】连接OB ,由圆周角定理得60AOB ∠=︒,由OA BC ⊥得,60COE BOE ∠=∠=︒,CE BE ==,在Rt OCE 中,由sin 60CE OC =︒,计算即可得到答案.【详解】解:连接OB ,如图所示,,30ADB ∠=︒ ,223060AOB ADB ∴∠=∠=⨯︒=︒,OA BC ⊥,60COE BOE ∴∠=∠=︒,113322CE BE BC ===⨯,在Rt OCE 中,603COE CE ∠=︒=,,32sin 6032CE OC ∴==︒,故选:B .【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.12.已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是()A.<0abc B.420a b c -+< C.30a c += D.20am bm a ++≤(m为实数)【答案】C【解析】【分析】根据开口方向,与y 轴交于负半轴和对称轴为直线1x =可得00a c ><,,20b a =-<,由此即可判断A ;根据对称性可得当2x =-时,0y >,当=1x -时,0y =,由此即可判断B 、C ;根据抛物线开口向上,对称轴为直线1x =,可得抛物线的最小值为a c -+,由此即可判断D .【详解】解:∵抛物线开口向上,与y 轴交于负半轴,∴00a c ><,,∵抛物线对称轴为直线1x =,∴12b a-=,∴20b a =-<,∴0abc >,故A 中结论错误,不符合题意;∵当4x =时,0y >,抛物线对称轴为直线1x =,∴当2x =-时,0y >,∴420a b c -+>,故B 中结论错误,不符合题意;∵当3x =时,0y =,抛物线对称轴为直线1x =,∴当=1x -时,0y =,∴0a b c -+=,又∵2b a =-,∴30a c +=,故C 中结论正确,符合题意;∵抛物线对称轴为直线1x =,且抛物线开口向上,∴抛物线的最小值为2a b c a a c a c ++=-+=-+,∴2am bm c a c ++≥-+,∴20am bm a ++≥,故D 中结论错误,不符合题意;故选C .【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的性质等等,熟练掌握二次函数的相关知识是解题的关键.第Ⅱ卷非选择题(共52分)二、填空题(共5个小题,每小题4分,共20分)13.计算0( 3.14)π-+_________.【答案】【解析】【分析】根据零指数幂、二次根式的性质进行计算即可.【详解】()03.14π-+11=+-=.【点睛】本题考查了实数的混合运算,二次根式的性质等知识,掌握任何一个不为零的数的零次幂都是1是解题的关键.14.已知21y my -+是完全平方式,则m 的值是_________.【答案】2±【解析】【分析】根据()2222a b a ab b ±=±+,计算求解即可.【详解】解:∵21y my -+是完全平方式,∴2m -=±,解得2m =±,故答案为:2±.【点睛】本题考查了完全平方公式.解题的关键在于熟练掌握:()2222a b a ab b ±=±+.15.如图,ABCO 的顶点O A C 、、的坐标分别是()()()003012,、,、,.则顶点B 的坐标是_________.【答案】()42,【解析】【分析】根据“平行四边形的对边平行且相等的性质”得到点B 的纵坐标与点C 的纵坐标相等,且3BC OA ==,即可得到结果.【详解】解: 在ABCO 中,()00O ,,()30A ,,3BC OA ∴==,BC AO ∥,∴点B 的纵坐标与点C 的纵坐标相等,()42B ∴,,故答案为:()42,.【点睛】本题主要考查了平行四边形的性质和坐标与图形的性质,此题充分利用了“平行四边形的对边相等且平行”的性质.16.不等式组()5231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩的所有整数解的和是_________.【答案】7【解析】【分析】先分别解不等式组中的两个不等式,得到不等式组的解集,再确定整数解,最后求和即可.【详解】解:()5231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩①②,由①得:53>32x x ---,∴2>5x -,解得:5>2x -;由②得:2143x x -≤-,整理得:416x ≤,解得:4x ≤,∴不等式组的解集为:542x -<≤,∴不等式组的整数解为:2-,1-,0,1,2,3,4;∴()21012347-+-+++++=,故答案为:7【点睛】本题考查的是求解一元一次不等式组的整数解,熟悉解一元一次不等式组的方法与步骤是解本题的关键.17.如图,在Rt ABC △纸片中,90ACB ∠=︒,CD 是AB 边上的中线,将ACD 沿CD 折叠,当点A 落在点A '处时,恰好CA AB '⊥,若2BC =,则CA '=_________.【答案】【解析】【分析】由Rt ABC △,90ACB ∠=︒,CD 是AB 边上的中线,可知CD AD =,则ACD A ∠=∠,由翻折的性质可知,ACD A CD '∠=∠,A C AC '=,则ACD A CD A '∠=∠=∠,如图,记A C '与AB 的交点为E ,90CEA ∠=︒,由180CEA ACD A CD A '∠+∠+∠+∠=︒,可得30A ∠=︒,根据tan BC A C AC A'==∠,计算求解即可.【详解】解:∵Rt ABC △,90ACB ∠=︒,CD 是AB 边上的中线,∴CD AD =,∴ACD A ∠=∠,由翻折的性质可知,ACD A CD '∠=∠,A C AC '=,∴ACD A CD A '∠=∠=∠,如图,记A C '与AB 的交点为E ,∵CA AB '⊥,∴90CEA ∠=︒,∵180CEA ACD A CD A '∠+∠+∠+∠=︒,∴30A ∠=︒,∴tan BC A C AC A'===∠,故答案为:【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,翻折的性质,等边对等角,三角形内角和定理,正切.解题的关键在于对知识的熟练掌握与灵活运用.三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.先化简,再求值:()()()2(2)222x y x y x y y x y +-+--+,其中202312x ⎛⎫= ⎪⎝⎭,20222y =.【答案】2xy ,1【解析】【分析】根据()2222a b a ab b ±=±+,()()22a b a b a b +-=-,单项式乘以多项式法则进行展开,再加减运算,代值计算即可.【详解】解:原式()2222244422x xy y x y xy y =++----2222244422x xy y x y xy y =++-+--2xy =.当202312x ⎛⎫= ⎪⎝⎭,20222y =时,原式202320221222⎛⎫ ⎪⨯⎝⎭=⨯1=.【点睛】本题考查了化简求值问题,完全平方公式、平方差公式,单项式乘以多项式法则,掌握公式及法则是解题的关键.19.解方程:2211x x x =+-.【答案】2x =【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:2211x x x =+-方程两边同乘()()11x x +-,得()12x x -=,整理得,220x x --=,∴()()120x x +-=,解得:11x -=,22x =,检验:当=1x -时,()()110x x +-=,=1x -是增根,当2x =时,()()1130x x +-=≠,∴原方程的解为2x =.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题关键.20.2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海沪山风景区(以下分别用A B C D 、、、表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的游客有多少人?(2)将两幅不完整的统计图补充完整;(3)若某游客随机选择A B C D 、、、四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择A 的概率.【答案】(1)600人(2)见解析(3)14【解析】【分析】(1)用选择B 景区的人数除以其人数占比即可求出参与调查的游客人数;(2)先求出选则C 景区的人数和选择A 景区的人数占比,再求出选择C 景区的人数占比,最后补全统计图即可;(3)先画出树状图得到所有等可能性的结果数,然后找到他第一个景区恰好选择A 的结果数,最后依据概率计算公式求解即可.【小问1详解】解:6010%600÷=人,∴本次参加抽样调查的游客有600人;【小问2详解】解:由题意得,选择C 景区的人数为60018060240120---=人,选择A 景区的人数占比为10180%060030%⨯=,∴选择C 景区的人数占比为120100%20%600⨯=补全统计图如下:【小问3详解】解:画树状图如下:由树状图可知,一共有12种等可能性的结果数,其中他第一个景区恰好选择A 的结果数有3种,∴他第一个景区恰好选择A 的概率为31124=.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图和画出树状图是解题的关键.21.超速容易造成交通事故.高速公路管理部门在某隧道内的C E 、两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A D B F 、、、在同一直线上.点C 、点E 到AB 的距离分别为CD EF 、,且7m,895m CD EF CE ===,在C 处测得A 点的俯角为30︒,在E 处测得B 点的俯角为45︒,小型汽车从点A 行驶到点B 所用时间为45s .(1)求,A B 两点之间的距离(结果精确到1m );(2)若该隧道限速80千米/小时,判断小型汽车从点A 行驶到点B 是否超速?并通过计算说明理由.(参考1.7≈≈)【答案】(1)900m(2)小型汽车从点A 行驶到点B 没有超速.【解析】【分析】(1)证明四边形DCEF 为矩形,可得895m CE DF ==,结合30CAD ∠=︒,45EBF ∠=︒,7m CD EF ==,可得tan 30CD AD ==︒,7BF EF ==,再利用线段的和差关系可得答案;(2)先计算小型汽车的速度,再统一单位后进行比较即可.【小问1详解】解:∵点C 、点E 到AB 的距离分别为CD EF 、,∴CD AB ⊥,EF AB ⊥,而CE AB ∥,∴90DCE ∠=︒,∴四边形DCEF 为矩形,∴895m CE DF ==,由题意可得:30CAD ∠=︒,45EBF ∠=︒,7m CD EF ==,∴tan 30CD AD ==︒,7BF EF ==,∴()8957900m AB AF BF AD DF BF =-=+-=+-=【小问2详解】∵小型汽车从点A 行驶到点B 所用时间为45s .∴汽车速度为()90020m/s 45=,∵该隧道限速80千米/小时,∴80km/h ()80100022m/s 3600⨯=≈,∵2022<,∴小型汽车从点A 行驶到点B 没有超速.【点睛】本题考查的是解直角三角形的应用,理解俯角的含义,熟练的运用锐角三角函数解题是关键.22.如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,CAB ACB ∠=∠,过点B 作BE AB ⊥交AC 于点E .(1)求证:AC BD ⊥;(2)若10AB =,16AC =,求OE 的长.【答案】(1)见详解(2)92【解析】【分析】(1)可证AB CB =,从而可证四边形ABCD 是菱形,即可得证;(2)可求6OB =,再证EBO BAO ∽ ,可得EO BO BO AO=,即可求解.【小问1详解】证明:CAB ACB ∠=∠ ,AB CB ∴=,四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,AC BD ∴⊥.【小问2详解】解: 四边形ABCD 是平行四边形,128OA AC ∴==,AC BD ^ ,BE AB ⊥,90AOB BOE ABE ∴∠=∠=∠=︒,OB ∴=6==,90EBO BEO ∠+∠=︒ ,90ABO EBO ∠+∠=︒,BEO ABO ∴∠=∠,EBO BAO ∴∽ ,EO BO BO AO ∴=,668EO ∴=解得:92OE =.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.B 卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.已知2210x x --=,则3231052027x x x -++的值等于_________.【答案】2023【解析】【分析】把2210x x --=化为:221x x =+代入降次,再把221x x -=代入求值即可.【详解】解:由2210x x --=得:221x x =+,221x x -=,3231052027x x x -++()23211052027x x x x =+-++22631052027x x x x =+-++2482027x x =-++()2422027x x =--+412027=-⨯+2023=,故答案为:2023.【点睛】本题考查的是代数式的求值,找到整体进行降次是解题的关键.24.如图,边长为2的等边ABC 的两个顶点A B 、分别在两条射线OM ON 、上滑动,若OM ON ⊥,则OC 的最大值是_________.【答案】11+【解析】【分析】如图所示,取AB 的中点D ,连接OD CD ,,先根据等边三角形的性质和勾股定理求出CD =,再根据直角三角形的性质得到112OD AB ==,再由OC OD CD ≤+可得当O C D 、、三点共线时,OC有最大值,最大值为1+【详解】解:如图所示,取AB 的中点D ,连接OD CD ,,∵ABC 是边长为2的等边三角形,∴2CD AB BC AB ==⊥,,∴1BD AD ==,∴CD ==,∵OM ON ⊥,即90AOB ∠=︒,∴112OD AB ==,∵OC OD CD ≤+,∴当O C D 、、三点共线时,OC 有最大值,最大值为1+故答案为:1+【点睛】本题主要考查了等边三角形的性质,勾股定理,直角三角形斜边上的中线的性质等等,正确作出辅助线确定当O C D 、、三点共线时,OC 有最大值是解题的关键.五、解答题(共4小题,共40分)25.凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.(1)求雷波脐橙和资中血橙每千克各多少元?(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?【答案】(1)雷波脐橙和资中血橙每千克分别为18元,12元.(2)最多能购买雷波脐橙40千克.【解析】【分析】(1)设雷波脐橙和资中血橙每千克分别为x 元,y 元,购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币,再建立方程组即可;(2)设最多能购买雷波脐橙m 千克,根据顾客用不超过1440元购买这两种水果共100千克,再建立不等式即可.【小问1详解】解:设雷波脐橙和资中血橙每千克分别为x 元,y 元,则32782372x y x y +=⎧⎨+=⎩①②,①+②得;55150x y +=,则30x y +=③把③代入①得:18x =,把③代入②得:12y =,∴方程组的解为:1812x y =⎧⎨=⎩,答:雷波脐橙和资中血橙每千克分别为18元,12元.【小问2详解】设最多能购买雷波脐橙m 千克,则()181********m m +-≤,∴6240m ≤,解得:40m ≤,答:最多能购买雷波脐橙40千克.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,确定相等关系是解本题的关键.26.阅读理解题:阅读材料:如图1,四边形ABCD 是矩形,AEF △是等腰直角三角形,记BAE ∠为α、FAD ∠为β,若1tan 2α=,则1tan 3β=.证明:设BE k =,∵1tan 2α=,∴2AB k =,易证()AAS AEB EFC △≌△∴2,EC k CF k ==,∴,3FD k AD k==∴1tan 33DF k AD k β===,若45αβ+=︒时,当1tan 2α=,则1tan 3β=.同理:若45αβ+=︒时,当1tan 3α=,则1tan 2β=.根据上述材料,完成下列问题:如图2,直线39y x =-与反比例函数(0)m y x x =>的图象交于点A ,与x 轴交于点B .将直线AB 绕点A 顺时针旋转45︒后的直线与y 轴交于点E ,过点A 作AM x ⊥轴于点M ,过点A 作AN y ⊥轴于点N ,已知5OA =.(1)求反比例函数的解析式;(2)直接写出tan tan BAM NAE ∠∠、的值;(3)求直线AE 的解析式.【答案】(1)12(0)y x x =>(2)1tan 3BAM ∠=,1tan 2NAE ∠=(3)112y x =+【解析】【分析】(1)首先求出点()3,0B ,然后设(),39A a a -,在Rt AOM △中,利用勾股定理求出4a =,得到()4,3A ,然后代入(0)m y x x=>求解即可;(2)首先根据()4,3A ,()3,0B 得到4MO =,3BO =,求出1MB =,3AM =,然后利用正切值的概念求出1tan 3BM BAM AM ∠==,然后证明出四边形NOMA 是矩形,得到45BAM NAE ∠+∠=︒,然后由1tan 3BAM ∠=即可求出1tan 2NAE ∠=;(3)首先根据矩形的性质得到4AN OM ==,3NO AM ==,然后利用1tan 2NAE ∠=求出2NE =,进而得到()0,1E ,然后设直线AE 的解析式为y kx b =+,利用待定系数法将()0,1E 和()4,3A 代入求解即可.【小问1详解】将0y =代入39y x =-得,3x =,∴()3,0B ,∵直线39y x =-与反比例函数(0)m y x x =>的图象交于点A ,∴设(),39A a a -,∵AM x ⊥,5OA =,∴在Rt AOM △中,222OM AM AO +=,∴()222395a a +-=,∴解得14a =,275a =,∵点A 的横坐标要大于点B 的横坐标,∴275a =应舍去,∴4a =,∴()4,3A ,∴将()4,3A 代入(0)m y x x =>,解得12m =;∴反比例函数的解析式为12(0)y x x =>;【小问2详解】∵()4,3A ,()3,0B ,∴4MO =,3BO =,∴1MB =,3AM =,∵AM x ⊥,∴1tan 3BM BAM AM ∠==,∵AN y ⊥,90NOM ∠=︒,∴四边形NOMA 是矩形,∴90NAM ∠=︒,∵将直线AB 绕点A 顺时针旋转45︒后的直线与y 轴交于点E ,∴45BAE ∠=︒,∴45BAM NAE ∠+∠=︒,∵1tan 3BAM ∠=,∴1tan 2NAE ∠=;【小问3详解】∵四边形NOMA 是矩形,∴4AN OM ==,3NO AM ==,∵AN y ⊥,1tan 2NAE ∠=,∴12NE AN =,即142NE =,∴解得2NE =,∴1OE ON NE =-=,∴()0,1E ,∴设直线AE 的解析式为y kx b =+,∴将()0,1E 和()4,3A 代入得,143b x b =⎧⎨+=⎩,∴解得112b x =⎧⎪⎨=⎪⎩,∴直线AE 的解析式为112y x =+.【点睛】此题考查了反比例函数,一次函数和几何综合题,矩形的性质,解直角三角形,勾股定理等知识,解题的关键是正确理解材料的内容.27.如图,CD 是O 的直径,弦AB CD ⊥,垂足为点F ,点P 是CD 延长线上一点,DE AP ⊥,垂足为点E ,∠∠EAD FAD =.(1)求证:AE 是O 的切线;(2)若4,2PA PD ==,求O 的半径和DE 的长.【答案】(1)证明见解析(2)O 的半径为3,DE 的长为65【解析】【分析】(1)先根据直角三角形的性质可得90FAD ODA ∠+∠=︒,再根据等腰三角形的性质可得OAD ODA ∠=∠,从而可得90OAE ∠=︒,然后根据圆的切线的判定即可得证;(2)设O 的半径为r ,则OA OD r ==,2OP r =+,在Rt OAP △中,利用勾股定理求解即可得;根据相似三角形的判定可得PDE POA ,根据相似三角形的性质即可得.【小问1详解】证明:如图,连接OA ,弦AB CD ⊥,90FAD ODA ∴∠+∠=︒,EAD FAD ∠=∠ ,90EAD ODA ∴∠+∠=︒,OA OD = ,OAD ODA ∠=∠∴,90EAD OAD ∴∠+∠=︒,即90OAE ∠=︒,AE OA ∴⊥,又OA 是O 的半径,AE ∴是O 的切线.【小问2详解】解:如图,连接OA ,设O 的半径为r ,则OA OD r ==,2PD =Q ,2OP r ∴=+,在Rt OAP △中,222OA PA OP +=,即()22242r r +=+,解得3r =,3,5OA OP ∴==,,A DE AP E OA ⊥⊥ ,DE OA ∴∥,PDE POA ∴ ,DE PD OA OP ∴=,即235DE =,解得65DE =,所以O 的半径为3,DE 的长为65.【点睛】本题考查了圆的切线的判定、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识点,熟练掌握圆的切线的判定,相似三角形的判定与性质是解题关键.28.如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.【答案】(1)245y x x =--+(2)①当52m =-时,EF 有最大值,最大值为254;②()38-,或()45-,或)52--【解析】。
2024年四川省凉山州中考英语真题(含解析)

凉山州2024年初中学业水平暨高中阶段学校招生考试试题英语本试卷分为A卷(100分)、B卷(50分),全卷共10页,满分150分,考试时间120分钟。
A卷(共四部分满分100分)第一部分听力(共三节,满分30分)第一节情景反应(共5小题;每小题1.5分,满分7.5分)听下面5个句子,每个句子后有一个小题,从题中所给的A、B、C三个选项中选出最佳应答语,并涂在答题卡上相应的位置。
听完每个句子后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每个句子读两遍。
1.A.I’m fine,thanks.B.I’m12.C.Nice to meet you. 2.A.Good luck!B.Sounds good.C.Thank you. 3.A.No,thanks.B.No problem,Mom.C.Not at all. 4.A.By taking the bus.B.By reading aloud.C.By playing sports. 5.A.Congratulations!B.Don’t worry.C.Sorry to hear that.第二节短对话理解(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并涂在答题卡上相应的位置。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话读两遍。
6.What can Anna play?A.B.C.7.What does the boy want to be when he grows up?A.B.C.8.Where are the two speakers?A.In a school.B.In a restaurant.C.In a store. 9.What time are they going to meet in front of the cinema?A.At6:30.B.At7:00.C.At7:30. 10.Which festival are they talking about?A.The Double Ninth Festival.B.The Dragon Boat Festival.C.The Mid-Autumn Festival.第三节长对话理解和短文理解(共10小题;每小题1.5分,满分15分)听下面几段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并涂在答题卡上相应的位置。
2024年四川省凉山州中考化学真题卷(含答案与解析)_7049

机密★启用前凉山州2024年初中学业水平暨高中阶段学校招生考试试题化学注意事项:1.答题前,考生务必将自己的姓名、座位号、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并在答题卡背面上方填涂座位号,同时检查条形码粘贴是否正确。
2.选择题使用2B铅笔涂在答题卡对应题目标号的位置上;非选择题用0.5毫米黑色墨迹签字笔书写在答题卡对应题目标号的答题区域内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,由监考教师将试题卷、答题卡、草稿纸一并收回。
本试卷为化学、物理合卷。
试卷分为第I卷、第Ⅱ卷,全卷满分130分,考试时间120分钟。
可能用到的相对原子质量:H-1 C-12 N-14 O-16 Mg-24 Al-27 Cl-35.5 Ca-40 Fe-56以下各题计算中均取g=10N/kg,ρ水=1×103kg/m3第I卷选择题(共40分)一、选择题(本大题共20小题,每小题2分,共40分。
每小题只有一个选项符合题意)1. 凉山非遗文化绚烂多彩,彝族刺绣、银饰、漆器、会理绿陶都是凉山非物质文化遗产。
下列过程中明显涉及到化学变化的是A. 用针线制作刺绣B. 用锤子敲打制作银饰C. 将木材制成各种形状的木质漆器胎体D. 用孔雀石配釉烧制绿陶2. 吸烟有害健康,每年的5月31日是“世界无烟日”。
“禁止吸烟”的图标是A. B. C. D.3. 规范操作是化学实验成功的关键。
下列实验操作错误的是A. 稀释浓硫酸B. 检查装置气密性C. 读取液体体积D. 点燃酒精灯4. “见著知微”是化学学科的重要特点之一,下列宏观事实的微观解释错误的是 选项 宏观事实 微观解释A 1滴水中大约有2116710 .个水分子 分子的体积很小B 水结成冰后不再流动 分子停止了运动C 水烧开时,壶盖被顶开 分子间的间隔变大D 氧气可供给呼吸,臭氧却不能分子种类不同,化学性质不同A AB. BC. CD. D5. 维生素C(C 6H 8O 6)主要存在于蔬菜、水果中,它能促进人体生长发育,增强人体对疾病的抵抗力。
四川省凉山州初中数学高中阶段招生统一考试试卷

用心 爱心 专心 1本试卷共10页,分为A 卷(120分)、B 卷(30分),全卷150分,考试时间120分钟。
A 卷又分为第Ι卷和第II 卷。
注意事项1. 第 卷答在题卡上,不能答在试卷上,答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2. 每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
A 卷(共120分)第I 卷(选择题 共48分)注意事项:1.第I 卷答在答题卡上,不能答在试卷上。
答卷前,考生务必将自己的姓名、准考证号、试题科目涂写在答题卡上。
2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。
1. 0.5-的倒数是( )A .2-B .0.5C .2D .0.5- 2. 下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得22a b ->-C .由a b >,得a b ->-D .由a b >,得22a b -<- 3. 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x-=⎧⎪⎨+=⎪⎩ C . 20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩4. 下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C .某彩票中奖率为36%,说明买100张彩票,有36张中奖。
D .打开电视,中央一套正在播放新闻联播。
5. 已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D . 1526. 某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A .()21731%127x += B .()17312%127x -= C .()21731%127x -= D .()21271%173x +=7. 为离家某班学生每天使用零花钱的使用情况,张华随机调查了15名同学,结果如下表:每天使用零花钱(单位:元) 0 1 3 4 5用心 爱心 专心 2关于这15名同同学每天使用的零花钱,下列说法正确的是( )A .众数是5元B .平均数是2.5元C .级差是4元D .中位数是3元 8. 如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513 C .6013 D .75139. 如图,100AOB ∠=,点C 在O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( )A .50B .80或50C .130D .50 或130 10. 方程24321x xx x x ++=++的解为( ) A .124,1x x == B .1217317366x x == C .4x = D .124,1x x ==-11. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( )A .66B .48C .48236D .5712. 二次函数2y ax bx c =++的图像如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图像是( )人数1 3 5 4 2左视图32主视图4俯视图ABOEB 9题图 O yxB O xy O yxO yxO yx用心 爱心 专心 32011年凉山州高中阶段招生统一考试数 学 试 卷第II 卷(非选择题 共72分)注意事项:1.答卷前将密封线内的项目填写清楚,准考证号前7位填在密封线方框内,末两位填在句首方框内。
2024年四川省凉山州中考数学真题试卷及答案解析
凉山州2024年初中学业水平暨高中阶段学校招生考试试题数学A 卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置.1. 下列各数中:,负数有()A. 1个B. 2个C. 3个D. 4个2. 如图,由3个相同的小正方体搭成的几何体的俯视图是()A. B. C. D.3. 下列运算正确的是( )A. B.C.D.4. 一副直角三角板按如图所示的方式摆放,点在的延长线上,当时,的度数为()A. B.C.D.5. 点关于原点对称的点是,则的值是( )A.B. C. D.6. 如图,在中,垂直平分交于点,若的周长为,则()A. B. C. D.7. 匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度随时间变化的大致图象是()A B. C. D.8. 在一次芭蕾舞比赛中,甲,乙两个芭蕾舞团都表演了舞剧《天鹅湖》,每个团参加表演的位女演员身高的折线统计图如下.则甲,乙两团女演员身高的方差大小关系正确的是()A. B. C. D. 无法确定9. 若关于的一元二次方程的一个根是,则的值为()A. 2B.C. 2或D.10. 数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,连接,作的垂直平分线交于点,交于点,测出,则圆形工件的半径为()A. B. C. D.11. 如图,一块面积为的三角形硬纸板(记为)平行于投影面时,在点光的照射下形成的投影是,若,则的面积是()A. B. C. D.12. 抛物线经过三点,则的大小关系正确的是()A. B. C. D.第Ⅱ卷非选择题(共52分)二、填空题(共5小题,每小题4分,共20分)13. 已知,且,则______.14. 方程的解是_______15. 如图,中,是边上的高,是的平分线,则的度数是______.16. 如图,四边形各边中点分别是,若对角线,则四边形的周长是______.17. 如图,一次函数的图象经过两点,交轴于点,则的面积为______.三、解答题(共5小题,共32分)解答应写出文字说明,证明过程或演算步骤.18. 计算:.19. 求不等式的整数解.20. 为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:请根据统计图回答下列问题:(1)本次调查的总人数是______人,估计全校名学生中最喜欢乒乓球项目的约有______人;(2)补全条形统计图;(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.21. 为建设全域旅游西昌,加快旅游产业发展.年月日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为平方米,塔顶金碧辉煌,为“火珠垂莲”窣()堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级()班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上点处,测得塔顶的仰角为,眼睛距离地面,向塔前行,到达点处,测得塔顶的仰角为,求塔高.(参考数据:,结果精确到)22. 如图,正比例函数与反比例函数的图象交于点.(1)求反比例函数的解析式;(2)把直线向上平移3个单位长度与的图象交于点,连接,求的面积.B卷(共50分)四、填空题(共2小题,每小题5分,共10分)23. 已知,则的值为______.24. 如图,的圆心为,半径为,是直线上的一个动点,过点作的切线,切点为,则的最小值为______五、解答题(共4小题,共40分)25. 阅读下面材料,并解决相关问题:下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第行有个点……容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前行的点数之和为______(2)体验:三角点阵中前行的点数之和______(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第排盆的规律摆放而成,则一共能摆放多少排?26. 如图,在菱形中,,是边上一个动点,连接,的垂直平分线交于点,交于点.连接.(1)求证:;(2)求的最小值.27. 如图,是的直径,点在上,平分交于点,过点的直线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)连接并延长,分别交于两点,交于点,若的半径为,求的值.28. 如图,抛物线与直线相交于两点,与轴相交于另一点.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点(不与重合),过点作直线轴于点,交直线于点,当时,求点坐标;(3)抛物线上是否存在点使的面积等于面积的一半?若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案A卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置.1.【答案】C【解析】【分析】本题考查了对正数和负数定义的理解,难度不大,注意0既不是正数也不是负数.根据正数和负数的定义判断即可,注意:0既不是负数也不是正数.解:,是正数;,是负数;,是负数;0既不是正数,也不是负数;,是负数;,是正数;负数有,,,共3个.故选:C.2.【答案】B【解析】【分析】本题考查了简单组合体的三视图,俯视图是从物体的上面看得到的视图.找到从上面看所得到的图形即可.解:从上面可看,是一行两个相邻的正方形.故选:B.3.【答案】A【解析】【分析】本题考查了整式的运算,根据合并同类项法则、积的乘方、同底数幂的除法和乘法分别计算即可判断求解,掌握整式的运算法则是解题的关键.解:.,该选项正确,符合题意;.,该选项错误,不合题意;.,该选项错误,不合题意;.,该选项错误,不合题意;故选:.4.【答案】B【解析】【分析】本题考查平行线的性质,三角形的外角的性质,掌握平行线的性质,是解题的关键.证明,再利用,进行求解即可.解:由题意,得:,∵,∴,∴;故选B.5.【答案】A【解析】【分析】本题考查了关于原点对称的点的坐标特征,代数式求值,根据关于原点对称的点,横纵坐标互为相反数可得,,再代入代数式计算即可求解,掌握关于原点对称的点的坐标特征是解题的关键.解:∵点关于原点对称点是,∴,,∴,故选:.6.【答案】C【解析】【分析】本题考查了线段垂直平分线的的性质,由线段垂直平分线的的性质可得,进而可得的周长,即可求解,掌握线段垂直平分线的的性质是解题的关键.】解:∵垂直平分,∴,∴的周长,故选:.7.【答案】C【解析】【分析】本题考查了函数图象,根据容器最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大即可判断求解,正确识图是解题的关键.解:由容器可知,最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大,所以一开始水面高度上升的很快,然后很慢,最后又上升的更快点,故选:.8.【答案】B【解析】【分析】本题考查了方差,根据折线统计图结合数据波动小者即可判断求解,理解方差的意义是解题的关键.解:由折线统计图可知,甲的数据波动更小,乙的数据波动更大,甲比乙更稳定,∴,故选:.9.【答案】A【解析】【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为.由一元二次方程的定义,可知;一根是,代入可得,即可求答案.解:是关于的一元二次方程,,即由一个根,代入,可得,解之得;由得;故选A10.【答案】C【解析】【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出的长;设圆心为O,连接,在中,可用半径表示出的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.解:∵是线段的垂直平分线,∴直线经过圆心,设圆心,连接.中,,根据勾股定理得:,即:,解得:;故轮子的半径为,故选:C.11.【答案】D【解析】解:∵一块面积为的三角形硬纸板(记为)平行于投影面时,在点光的照射下形成的投影是,,∴,∴位似图形由三角形硬纸板与其灯光照射下的中心投影组成,相似比为,∵三角形硬纸板的面积为,∴,∴的面积为.故选:D.12.【答案】D【解析】【分析】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.根据二次函数的图象与性质可进行求解.解:由抛物线可知:开口向上,对称轴为直线,该二次函数上所有的点满足离对称轴的距离越近,其对应的函数值也就越小,∵,,,而,,,∴点离对称轴最近,点离对称轴最远,∴;故选:D.第Ⅱ卷非选择题(共52分)二、填空题(共5小题,每小题4分,共20分)13.【答案】【解析】【分析】本题考查了因式分解的应用,先把的左边分解因式,再把代入即可求出的值.解:∵,∴,∵,∴.故答案为:.14.【答案】x=9【解析】【分析】观察可得最简公分母是x(x-3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘x(x-3),得3x-9=2x,解得x=9.检验:把x=9代入x(x-3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.15.【答案】##100度【解析】【分析】本题考查了三角形内角和以及外角性质、角平分线的定义.先求出,结合高的定义,得,因为角平分线的定义得,运用三角形的外角性质,即可作答.解:∵,∴,∵是边上的高,∴,∴,∵是的平分线,∴,∴.故答案为:.16.【答案】42【解析】【分析】本题考查的是中点四边形,熟记三角形中位线定理是解题的关键.根据三角形中位线定理分别求出、、、,根据四边形的周长公式计算,得到答案.解:四边形各边中点分别是、、、,、、、分别为、、、的中位线,,,,,四边形的周长为:,故答案为:42.17.【答案】9【解析】【分析】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积.根据点A,B的坐标,利用待定系数法可求出直线的解析式,得出点C的坐标及的长,再利用三角形的面积公式即可求出的面积.解:将代入,得:,解得:,∴直线的解析式为.当时,,解得:,∴点C的坐标为,,∴.故答案为:9.三、解答题(共5小题,共32分)解答应写出文字说明,证明过程或演算步骤.18.【答案】2【解析】【分析】本题考查了实数的混合运算.分别进行零指数幂、负整数指数幂、二次根式及绝对值的运算,然后代入特殊角的三角函数值代入运算即可.解:.19.【答案】【解析】【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将变形为,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.解:由题意得,解①得:,解②得:,∴该不等式组的解集为:,∴整数解为:20.【答案】(1),;(2)补图见解析;(3).【解析】【分析】()用最喜欢足球的学生人数除以其百分比可求出调查的总人数,用乘以最喜欢乒乓球项目的百分比可求出最喜欢乒乓球项目的学生人数;()求出最喜欢篮球项目的学生人数和最喜欢羽毛球项目的学生人数,即可补全条形统计图;()画出树状图,根据树状图即可求解;本题考查了条形统计图和扇形统计图,样本估计总体,用树状图或列表法求概率,看懂统计图及正确画出树状图是解题的关键.小问1解:本次调查的总人数是人,估计全校名学生中最喜欢乒乓球项目的约有人,故答案为:,;小问2解:最喜欢篮球项目的学生有人,∴最喜欢羽毛球项目的学生有人,∴补全条形统计图如下:小问3解:画树状图如下:由树状图可知,共有种等结果,其中抽取的两人恰好是甲和乙的结果有种,∴抽取的两人恰好是甲和乙的概率为.21.【答案】.【解析】【分析】本题考查了解直角三角形的应用仰角俯角问题,设,解直角三角形得到,,再根据可得,解方程求出即可求解,正确解直角三角形是解题的关键.解:由题意可得,,,,,设,在中,,在中,,∵,∴,解得,∴,答:塔高为.22.【答案】(1)(2)6【解析】【分析】(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点坐标,根据平行线可得代入数据计算即可.小问1解:点在正比例函数图象上,,解得,,在反比例函数图象上,,反比例函数解析式为.小问2解:把直线向上平移3个单位得到解析式为,令,则,∴记直线与轴交点坐标为,连接,联立方程组,解得,(舍去),,由题意得:,∴同底等高,.【点拨】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移,三角形的面积,熟练掌握函数的平移法则是关键.B卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.【答案】【解析】【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.将代入,转化为解一元二次方程,,要进行舍解.解:∵,∴,将代入得,,即:,,∴或,∵,∴舍,∴,故答案为:3.24.【答案】【解析】解:记直线与x,y轴分别交于点A,K,连接,当,,当,即,解得:,而∴,∴均是等腰直角三角形,∴,∴,∵与相切,∴,∴,∵,∴当最小时即最小,∴当时,取得最小值,即点P与点K重合,此时最小值为,在中,由勾股定理得:,∴,∴最小值为.【点拨】本题考查了圆的切线的性质,勾股定理,一次函数与坐标轴的交点问题,垂线段最短,正确添加辅助线是解题的关键.五、解答题(共4小题,共40分)25.【答案】(1)36;120;(2)不能(3)一共能摆放20排.【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)根据图形,总结规律,列式计算即可求解;(2)根据前n行的点数和是500,即可得出关于n的一元二次方程,解之即可判断;(2)先得到前n行的点数和是,再根据题意得出关于n的一元二次方程,解之即可得出n的值.小问1解:三角点阵中前8行的点数之和为,前15行的点数之和为,那么,前行的点数之和为;故答案为:36;120;;小问2解:不能,理由如下:由题意得,得,,∴此方程无正整数解,所以三角点阵中前n行的点数和不能是500;故答案为:不能;小问3解:同理,前行的点数之和为,由题意得,得,即,解得或(舍去),∴一共能摆放20排.26.【答案】(1)见详解(2)【解析】【分析】(1)根据菱形的性质证明,再结合是的垂直平分线,即可证明;(2)过点N作于点F,连接,,则,故,此时,在中,进行解直角三角形即可.小问1证明:连接,∵四边形是菱形,∴,,∵,∴,∴,∵是垂直平分线,∴,∴;小问2解:过点N作于点F,连接,∵,∴,∵,∴,当点A.N、F三点共线时,取得最小值,如图:即,∴在中,,∴的最小值为.【点拨】本题考查了菱形的性质,垂直平分线的性质,全等三角形的判定与性质,垂线段最短,解直角三角形,正确添加辅助线是解决本题的关键.27.【答案】(1)见详解(2)【解析】【分析】(1)连接,根据等腰三角形的性质及角平分线得到,根据平行线的性质得,即可证明;(2)连接,先解,求得,,则,,可证明,由,得,故,证明,即可得到.小问1解:连接,∵,∴,∵平分,∴,∴,∴,∴∵,∴,∴,即,∵是的半径∴是的切线;小问2解:连接,∵,∴在中,,由勾股定理得:∴,∵在中,,∴,∵,∴,而,∴,∴,∴,∵,∴,∴,∴,∵,∴,∵,∴,∴,∴.【点拨】本题考查了圆的切线的判定,相似三角形的判定与性质,勾股定理,的直角三角形的性质,等腰三角形的性质,正确添加辅助线是解题的关键.28.【答案】(1)抛物线的解析式为(2)的坐标为(3)的坐标为或或或【解析】【分析】(1)把代入求出,再用待定系数法可得抛物线的解析式为;(2)设,则,,由,可得,解出的值可得的坐标为;(3)过作轴交直线于,求出,知,故,设,则,可得,,根据的面积等于面积的一半,有,可得,即或,解出的值可得答案.小问1解:把代入得:,,把,代入得:,解得,抛物线的解析式为;小问2解:设,则,,,,解得或(此时不在直线上方,舍去);的坐标为;小问3解:抛物线上存在点,使的面积等于面积的一半,理由如下:过作轴交直线于,过点B作,延长交x轴于点F,如图:中,令得,解得或,,,,,,设,则,,∵,的面积等于面积的一半,,,或,解得或,的坐标为或或或.【点拨】本题考查二次函数的图像与性质,涉及待定系数法求函数解析式,抛物线与坐标轴交点问题,解一元二次方程,三角形面积等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.。
2020年四川省凉山州初中毕业、高中阶段招生统一考试试卷含答案
(1) (2) 16 24 9 (3) (4)(2)根据(1)中的结论,写出a b c ,,三者之间的关系表达式.17.(6分)在平面直角坐标系中按下列要求作图. (1)作出三象限中的小鱼关于x 轴的对称图形; (2)将(1)中得到的图形再向右平移6个单位长度.四、(18、19每小题6分,共12分)18.(6分)如图,点E F ,分别是菱形ABCD 中BC CD ,边上的点(E F ,不与B C D ,,重合)在不连辅助线的情况下请添加一个条件,说明AE AF .Oxy第17题图AFDCB第18题图19.(6分)在不透明的口袋中装有大小、质地完全相同的分别标有数字1,2,3的三个小球,随机摸出一个小球(不放回),将小球上的数字作为一个两位数个位上的数字,然后再摸出一个小球将小球上的数字作为这个两位数十位上的数字(利用表格或树状图解答)(1)能组成哪些两位数?(2)小华同学的学号是12,有一次试验中他摸到自己学号的概率是多少?五、(20题8分,21题8分,共16分)20.(8分)如图,A B C,,三个粮仓的位置如图所示,A粮仓在B粮仓北偏东26o,180千米处;C粮仓在B粮仓的正东方,A粮仓的正南方.已知A B,两个粮仓211224x x x x --=÷-- ·············································································································· 1分 12(2)2(1)(1)x x x x x --=⨯-+-····································································································· 3分 21x =+ ····························································································································· 4分 当3x =时,原式21312==+ ··················································· 6分(3)解:①众数为9,中位数为8 ····································· 2分 ②平均分5108948378.7520⨯+⨯+⨯+⨯==分······················ 4分 ③圆心角度数(1254020)36054=---⨯=o o %%%·············· 6分 16.(6分)顶点a 边数b 区域c第1排从左至右为:12 18 7 ········································· 1分 第3排从左至右为:20 30 11 ······································· 2分 第4排从左至右为:24 36 13 ······································· 3分 规律:1b a c =+-或各种正确的等式 ······································································· 6分 17.(6分)四、(18题6分、19题6分,共12分) 18.(6分)20%① 25%40% 第15-3题图。
2024年四川省凉山州初中学业水平暨高中阶段学校招生考试试题数学模拟试题(二)
2024年四川省凉山州初中学业水平暨高中阶段学校招生考试试题数学模拟试题(二)一、单选题1.以下各数是有理数的是( )AB C .27 D .π2.如图,是5个完全相同的小正方体组成的一个几何体,它的主视图是( )A .B .C .D .3.若代数式11x -x 的取值范围是( )A .x ≠1B .x ≥0C .x ≠0D .x ≥0且x ≠1 4.地球上的陆地面积约为149000000平方千米.将149000000用科学记数法表示应为( )A .90.14910⨯B .61.4910⨯C .81.4910⨯D .714.910⨯ 5.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a +b 的值为( )A .﹣4B .4C .﹣2D .26.直角坐标系中,点(3,1)--与点(3,1)-关于( )A .x 轴轴对称B .y 轴轴对称C .原点中心对称D .以上都不对 7.如图,⊙O 的周长等于4πcm ,则它的内接正六边形ABCDEF 的面积是( )AB .C .D .8.若一组数据2,3,4,5,x 的平均数与中位数相等,则实数x 的值不可能是( ) A .6 B .3.5 C .2.5 D .19.下列命题中,是真命题的是( )A .有两边及一角对应相等的两个三角形全等B .不等式320x -+>的最大整数解是1-C .平分弦的直径垂直于弦,并且平分弦所对的两条弧D .对角线互相垂直的平行四边形是菱形10.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( )A .有最大值4mB .有最大值4m -C .有最小值4mD .有最小值4m - 11.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(4,0),(0,2),直线l :y =kx +4与y 轴交于点P ,当直线l 平分矩形OABC 的面积时,k =( )A .﹣1B .﹣3.5C .﹣2.5D .﹣1.512.抛物线y =ax 2+bx +c 的对称轴为直线x =﹣1,部分图象如图所示,下列判断中①abc >0:②b 2﹣4ac >0;③9a ﹣3b +c =0;④若方程ax 2+bx +c =2的两根为x 1,x 2(x 1<x 2),则﹣3<x 1<x 2<1⑤5a ﹣2b +c <0.其中正确的个数有( )A .2B .3C .4D .5二、填空题13.分解因式:32m n m -=.14.如图,把矩形ABCD 纸片沿EF 折叠后,点D ,C 分别落在D ¢,C '的位置.若50AED '∠=︒,则EFC ∠的度数为.15.关于x 的方程ax 2﹣x +1=0有实根,则实数a 的范围为.16.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC .若∠BCD=30°,则⊙O 的半径为.17.如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)三、解答题18.解方程:2111x x x -=-+19.先化简,再求值:2(23)(32)(3)2(4)a b b a a b b a b -++-+-+,其中a b == 20.某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.(1)求考生小红和小强自选项目相同的概率;(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如图:①补全条形统计图;②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.21.如图,在大楼AB 的正前方有一斜坡CD ,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A 、C 、E 在同一直线上.(1)求斜坡CD 的高度DE ;(2)求大楼AB 的高度(结果保留根号)22.如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O e 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是O e 的切线;(2)若30A ∠=︒.3DF =.求CE 的长.四、填空题23.抛物线y =x 2+mx +(m ﹣1)与x 轴交于点A (x 1,0),B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足x 12+x 22+x 1x 2=7,则△ABC 的面积为.24.如图,在Rt ABC ∆中,90C ∠=︒,30ABC ∠=︒,4AC =,点P 是线段AB 上一动点.将ΔABC 绕点C 按顺时针方向旋转,得到11A B C ∆.点E 是1AC 上一点,且12A E =,则PE 长度的最小值为,最大值为.五、解答题25.如图,直线4455y x =-交x 轴于点M ,四边形OMAE 是矩形,S 矩形OMAE =4,反比例函数(0)ky x x =>的图象经过点A ,EA 的延长线交直线4455y x =-于点D .(1)求反比例函数的解析式;(2)若点B在x轴上,且AB=AD,求点B的坐标.AD=,26.社区利用一块矩形空地ABCD建了一个小型停车场,其布局如图所示.已知52mAB=,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x米的道路.已知铺28m花砖的面积为2640m.(1)求道路的宽是多少米?(2)该停车场共有车位50个,据调查分析,当每个车位的月租金为200元时;可全部租出;若每个车位的月租金每上涨5元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为10125元27.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF =4,BE =3,求AD 的长.【拓展提高】(3)如图3,在菱形ABCD 中,E 是AB 上一点,F 是△ABC 内一点,EF ∥AC ,AC =2EF ,∠EDF =12∠BAD ,AE =2,DF =5,求菱形ABCD 的边长.28.如图,抛物线26y ax bx =++经过()2,0A -、()4,0B 两点,与y 轴交于点C ,D 是抛物线上一动点,设点D 的横坐标为()14m m <<,连结,,,AC BC DB DC .(1)求抛物线的函数表达式.(2)当BCD △的面积等于AOC △的面积的34时,求m 的值. (3)当2m =时,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B 、D 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的的坐标;若不存在,请说明理由.。
2023年四川省凉山彝族自治州中考语文真题(含答案)
③到后山要经过一片竹林,竹林里落了一层厚厚的竹叶和笋壳,踩上去嘎吱作响。我满腹疑惑,猜不出父亲究竟要干什么。直到进入山中,父亲站在一棵腰身粗的大树前,压低嗓而对我说,只要咱们把这棵树砍了,拖到集市上卖了,你的学费就有着落了。
2.下列加点词语使用有误的一项是( )
迎着春日的气息,西昌市航天北路的蓝花楹尽情绽放,吸引游客纷至沓来。深深浅浅的紫,把整条街装扮成花的海洋,这巧夺天工的花海,让人叹为观止。
A.绽放B.纷至沓来C.巧夺天工D.叹为观止
3.下列句子中没有语病的一项是( )
A.西昌从“邛海时代”迈入“安宁河时代”,静静的安宁河谷承载了西昌和凉山高质量。
④我大吃一惊。原来,父亲是要“偷”树。在那个年代,没有审批手续,即使自家的树也不可以砍,情节严重的还会被抓起来坐牢。我知道,父亲也是万般无奈。可我绝不接受父亲为了我读书冒这样的险。当时我就哭了,打定主意退学,不再让父母为难。
⑤开学前两天,父亲一进门就喜滋滋地冲我喊:“丫头,你可以上学了。村里出面联系学校,把你的学费全免了……”躺在床上,多日魂不守含的我听完前半部分,瞬间回神,高兴地跳了起来。
要求;请以“吃苦”为话题,自选角度,自定立意,自拟标题,自定文体(诗歌除外),写一篇600至800字的文章。文中不得出现你所在学校的校名,以及教职工、同学和本人的真实姓名。
14.题目:请以“满满的_________”为题,写一篇文章。
要求:①在横线上填上恰当的词语,将题目补充完整;②立意自定,文体自选(诗歌除外);③字数600至800字;④文中不得出现你所在学校的校名,以及教职工、同学和本人的真实姓名。
⑨记得第一年砂梨成熟时,父亲特意开车给我送来一箱梨。当时,我已调到县城工作并安家。我一口咬下去,汁水流溢,甘甜润喉,眯着眼睛回味了好久。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
七、(24 小题 5 分,25 小题 9 分,共 14 分)
24.(5 分)阅读材料,解答下列问题.
E C
第 22 题图
学无 止 境
例:当 a 0 时,如 a = 6 则 a = 6 = 6 ,故此时 a 的绝对值是它本身
当 a = 0 时, a = 0 ,故此时 a 的绝对值是零
当 a 0 时,如 a = −6 则 a = −6 = 6 = −(−6) ,故此时 a 的绝对值是它的相反数
厂的样本方差为 1.02,那么,由此可以推断出生产此类产品,质量比较稳定的是
厂.
13.分式方程
6 −1 =
x2 −1
3 x −1
的解是
.
14.如图, Rt△ABC 中 ACB = 90 , AC = 4 , BC = 3.
f A
将 △ABC 绕 AC 所在的直线 f 旋转一周得到一个旋转体,
该旋转体的侧面积 =
= 2 ········································································································4 分 x +1
当 x = 3 时,原式 = 2 = 1 ··············································6 分 3+1 2
1+
x
1 −
2
x2 2x
−1 −4
,其中,
x
=
3
.
(3)物理兴趣小组 20 位同学在实验操作中的得分情况如下表:
得分(分) 10
9
8
7
人数(人) 5
8
4
3
问:①求这 20 位同学实验操作得分的众数、中位数.
②这 20 位同学实验操作得分的平均分是多少?
③将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?
= −4 + 3 − 3 + 4 +1− 2 + 3 ···········································································5 分
= 2 ·············································································································6 分
学无 止 境
2008 年凉山州初中毕业、高中阶段招生统一考试
数学试卷
本试卷分为 A 卷(100 分),B 卷(20 分),全卷满分 120 分,考试时间 120 分钟.A
卷又分为Ⅰ卷,Ⅱ卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选
出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再
速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才
能安全的回到 B 地?请你说明理由.
北 A
26
西
东
BC
南 第 20 题图
21.(8 分)我州有一种可食用的野生菌,上市时,外商李经理按市场价格 20 元/千克收购了 这种野生菌 1000 千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨 1 元;但冷冻存放这批野生菌时每天需要支出各种费用合计 310 元,而且这类野生菌在冷库中 最多保存 160 元,同时,平均每天有 3 千克的野生菌损坏不能出售.
(1)设 x 到后每千克该野生菌的市场价格为 y 元,试写出 y 与 x 之间的函数关系式.
(2)若存放 x 天后,将这批野生菌一次性出售,设这批野生菌的销售总额为 P 元,试写出 P 与 x 之间的函数关系式. (3)李经理将这批野生茵存放多少天后出售可获得最大利润W 元?
(利润=销售总额-收购成本-各种费用)
(2)解:
1+
x
1 −
2
x2 2x
−1 −4
= x −1 x2 −1 ····························································································1 分 x − 2 2x − 4
= x −1 2(x − 2) ····················································································3 分 x − 2 (x +1)(x −1)
△ABC 的三边,交点分别是 G,F,E 点. GE,CD 的交点为 M ,且 ME = 4 6 , MD : CO = 2 : 5 . (1)求证: GEF = A. (2)求 O 的直径 CD 的长. (3)若 cos B = 0.6 ,以 C 为坐标原点, CA,CB 所在的直线分别为 X 轴和Y 轴,建立 平面直角坐标系,求直线 AB 的函数表达式.
B 卷(共 20 分)
六、填空:(每小题 3 分,共 6 分)
22.菱形 ABCD 中, AE 垂直平分 BC ,垂足为 E , AB = 4cm .
那么,菱形 ABCD 的面积是
,对角线 BD 的长
是
.
B
A D
23.等腰 △ABC 两边的长分别是一元二次方程 x2 − 5x + 6 = 0 的
两个解,则这个等腰三角形的周长是
A. 38.44108 米 B. 3.844108 米 C. 3.844109 米 D. 3.8109 米
5.向上抛掷一枚硬币,落地后正面向上这一事件是( )
A.必然发生 B.不可能发生
C.可能发生也可能不发生
6.如图,由四个棱长为“1”的立方块组成的几何体的左视图是( )
D.以上都对
第 6 题图
A.
BAC = 35 , P 的度数为( )
y A
P
O
BC 第 9 题图
1
0
x
第 10 题图
A. 35
B. 45
C. 60
D. 70
10.已知二次函数 y = ax2 + bx +1 的大致图象如图所示,那么函数 y = ax + b 的图象不经
过( )
A.一象限
B.二象限
C.三象限
D.四象限
第Ⅱ卷(非选择题共 70 分)
13. x = −4
14.47
三、(15 题 18 分,16、17 各 6 分,共 30 分) 15.解答下列各题(每小题 6 分,共 18 分) (1)计算:
解: −22 + (tan 60 −1)
3
+
−
1 2
−2
+
(−)0
−
2
−
3
= −4 + ( 3 −1) 3 + 4 +1− 2 + 3 ·····································································3 分
五、(20 题 8 分,21 题 8 分,共 16 分)
20.(8 分)如图, A,B,C 三个粮仓的位置如图所示, A 粮仓在 B 粮仓北偏东 26 ,180
学无 止 境
千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B 两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的 3 支援 C 粮仓,从 B 粮仓运出该粮仓存
5 粮的 2 支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.
5
( sin 26 = 0.44 , cos 26 = 0.90 , tan 26 = 0.49 )
(1) A,B 两处粮仓原有存粮各多少吨?
(2) C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀
① 25%
20%
40%
第 15-3 题图
16.(6 分)如图所示,图形(1)、(2)、(3)(4)分别由两个相同的正三角形、正方形、正 五边形、正六边形组成.本题中我们探索各图形顶点、边数、区域三者之间的关系.(例我
们规定如图(2)的顶点数为 16;边数为 24,像 A1A , AH 为边, AH 不能再算边,边与 边不能重叠;区域数为 9,它们由八个小三角形区域和中间区域 ABCDEFGH 组成,它们
综合起来一个数的绝对值要分三种情况,即
a a = 0
−a
当a 0 当a = 0 当a 0
这种分析方法涌透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式 a2 的各种展开的情况.
(2)猜想 a2 与 a 的大小关系.
25.(9 分)如图,在 △ABC 中 ACB = 90 , D 是 AB 的中点,以 DC 为直径的 O 交
B
G
F D
M O
C
E
A
第 25 题图
学无 止 境
2008 年凉山州初中毕业、高中阶段招生统一考试
数学参考答案及评分标准
一、选择题(每小题 3 分,共 30 分) 1~5:CDCBC 6~10:BBADA 二、填空题(每小题 3 分,共 12 分)
11. a(b − a)2 或 a(a − b)2
12.甲
相互独立.)
(1)每个图形中各有多少个顶点?多少条边?多少个区域?请将结果填入表格中.