小学数学《祖冲之和圆周率》
【名人故事】圆周率和祖冲之的故事

【名人故事】圆周率和祖冲之的故事圆周率是数学中一个重要的常数,它代表了圆的周长与直径的比值,通常用希腊字母π来表示。
而祖冲之是古代中国著名的数学家,他对圆周率的研究也有着重要的贡献。
下面就让我们来了解一下圆周率和祖冲之的故事。
祖冲之(AD429-500),字鸿渐,号拾遗。
他是中国南北朝时期的数学家,其数学成就在中国古代数学史上占有重要地位。
祖冲之精通数学、天文学和气象学,尤其擅长求近似解的方法,为后世的数学家留下了宝贵的遗产。
祖冲之对圆周率的研究是其数学成就之一。
在《周髀算经》中,祖冲之通过近似取法推算出了π的近似值为3.1416,这是古代对圆周率的较为精确的计算,显示出了祖冲之在数学研究上的高超造诣。
祖冲之通过细致的观察和积累大量的实际数据,得出了圆周率的近似值。
这个成就在当时无疑是非常惊人的,为后世的数学家和科学家奠定了坚实的基础。
祖冲之在解圆周率的过程中提出了一种近似解法,这种方法被后人称为祖冲之算π法。
这种方法通过不断逼近,最终得出了一个比较准确的圆周率近似值,为后世的圆周率研究提供了重要的启示。
祖冲之的工作不仅对中国古代数学有着重大影响,而且对世界数学的发展也起到了推动作用。
他的数学成就被广泛传播,对后代数学家产生了深远的影响。
圆周率是数学中一个非常神奇的常数。
在古希腊时代,人们通过不断测量圆的周长和直径的比值,发现这个比值始终是一个恒定的数。
这个恒定的比值就是圆周率π。
圆周率是一个无限不循环小数,这意味着它的精确值无法被完全表示,只能用近似值来表示。
古希腊有一位著名学者,名叫阿基米德(Archimedes),他是古代数学和物理学的巨匠,也对圆周率做出了重要的贡献。
据说他利用多边形逼近圆的方法,求出了圆的周长和直径的比值,并成功计算出了π的一个近似值。
在近代,计算机的发展为对圆周率的研究提供了巨大的帮助。
通过计算机的高速运算,科学家们能够计算得到圆周率的小数点后数百万位,这对于圆周率的研究提供了前所未有的精度。
祖冲之算出圆周率的故事

祖冲之算出圆周率的故事嘿,你可知道祖冲之呀!那可是咱中国古代超级厉害的数学家呢!祖冲之生活在南北朝那个时候,他呀,就对数学有着一股痴迷劲儿。
就好像咱现在有些人痴迷手机游戏一样,祖冲之对数学那可是全身心投入啊!当时大家都知道圆周率,可那都不准确呀。
祖冲之就不干了,他心想,我得把这圆周率算得更精确才行!于是,他就开启了他的漫漫计算之路。
你想想,那时候可没有计算器啊,全靠他自己一点点地算。
他就像一个不知疲倦的探索者,在数学的海洋里拼命游啊游。
他白天算,晚上算,吃饭的时候可能都在琢磨着那些数字呢!祖冲之不断地尝试各种方法,不断地改进。
这就好比我们爬山,遇到困难的地方,咱就得想办法绕过去或者爬上去。
祖冲之也是这样,遇到难题,绝不退缩,想尽办法去攻克。
经过无数个日夜的努力,祖冲之终于算出了圆周率在 3.1415926 和3.1415927 之间!这是多么了不起的成就啊!这就好像一个运动员打破了世界纪录一样让人惊叹!咱现在用着精确的圆周率,可不能忘了祖冲之的功劳啊!他的努力和坚持,给我们留下了宝贵的财富。
你说,要是祖冲之生活在现在,他看到我们有这么多先进的工具,会不会也很兴奋呢?说不定他会利用这些工具,算出更厉害的东西呢!想想祖冲之,再看看我们自己。
我们在学习和生活中遇到点困难,就想放弃,这怎么能行呢?祖冲之能算出那么精确的圆周率,我们为啥不能努力克服自己的困难呢?所以啊,我们要向祖冲之学习,学习他的执着和坚持。
别小瞧了自己,我们也能做出了不起的事情呢!就像祖冲之算出圆周率一样,只要我们肯努力,没什么是不可能的!难道不是吗?祖冲之的故事,就是激励我们前进的动力。
让我们带着这份动力,勇敢地去追求自己的梦想吧!不管遇到什么困难,都要记得祖冲之的精神,咬牙坚持下去,相信自己一定能成功!。
祖冲之与圆周率

祖冲之与圆周率南北朝的时候,祖冲之为了计算圆周率,他在自己书房的地面画了一个直径1丈的大圆,从这个圆的内接正六边形一直作到12288边形,然后一个一个算出这些多边形的周长。
那时候的数学计算,不是用现在的阿拉伯数字,而是用竹片作的筹码计算。
他夜以继日、成年累月,终于算出了圆的内接正24576边形的周长等于3丈1尺4寸1分5厘9毫2丝6忽,还有余。
因而得出圆周率π的值就在3.1415926与3.1415927之间,准确到小数点后7位,创造了当时世界上的最高水平。
华罗庚,在读完中学后,因为家里贫穷,从此失学了。
他回到家里,在自家的小杂货店做生意,卖点香烟、针线之类的东西,替父亲挑起了养活全家的担子。
然而,华罗庚仍然酷爱数学。
不能上学,就自己想办法学。
一次,他向一位老师借来了几本数学书,一看,便着了魔。
从此,他一边做生意、算帐,一边学数学。
有时看书入了神,人家买东西他也忘了招呼。
傍晚,店铺关门以后,他更是一心一意地在数学王国里尽情漫游。
一年到头,差不多每天都要花十几个小时,钻研那些借来的数学书。
有时睡到半夜,想起一道数学难题的解法,他准会翻身起床,点亮小油灯,把解法记下来。
圆周长公式的推导有许多数学家用尺测量圆的周长和直径,发现在同一个或相等的圆上,周长除以直径都是3.1415926...(即圆周率π),于是,圆的周长公式就有:C(周长)=π(圆周率)×d(直径)由于直径的二分之一是半径,所以圆的周长的公式还有:C=圆周率×2×r(半径)注意:圆周率在计算时一般只采用它的近似值:3.14圆周长面积的推导在硬纸板上画一个圆,把圆分成若干等分,剪开后用这些近似的等腰三角形的小纸片拼一拼,就可以拼成一个近似的平行四边形。
如果分的分数越多,每一份会越细。
拼成的图形就会越接近长方形。
长方形的长等于圆周长的一半,即πr , 宽等于圆的半径 r ,因为长方形的面积 = 长×宽,所以园的面积 =r × r = r²即 s= ∏ r²。
数学家与圆周率的故事

祖冲之是我国伟大的数学家,他把一生的精力都奉献给了圆周率。
五岁的时候,祖冲之的父亲想教他念古文,可他的背诵效率不高,这令父亲十分生气,但父亲不知道的是,祖冲之对数学与天文感兴趣。
一天,老师教大家说:“圆周是直径的三倍。
”祖冲之回到家中。
越想越不对劲。
第二天一大早,他就拿了一根绳子来到路边,这时,来了一辆马车,祖冲之立马跑上去,说:“老爷爷,请让我量一量你的车吧!”老人点点头默认了。
祖冲之先用绳子量了一下车轮又将绳子折成三段,量车轮的直径,经过那么一量,他感到车轮的直径没有三分之一的圆周长。
他又量了不同车子的车轮,得出的结果一模一样,这是为什么呢?经过多年的学习,他得知了另一位伟大数学家刘徽的割圆法,割圆法就是在圆内画出一个正六边形,他的边长等于半径,继续分成12边型,用勾股定理算出他的边长,再24,48……边形,一直分,所得多边形各边长之和是圆周长。
祖冲之的儿子已经十三岁,他当了祖冲之的助手,由于刘徽只求到96边,只得出3.14的结果,祖冲之决定重新算下去。
他准备了许多小竹棍作计算工具,画了个直径一丈的大圆,在圆内画了六边形。
父子俩废寝忘食,刻苦计算了好几天才达到96边,结果比刘徽少了一点点。
儿子对祖冲之说:“我们算得那么仔细,一定错不了,是刘徽错了吧。
”祖冲之摇摇头:“推翻要有依据。
”俩人又重新计算一遍,结果和刘徽一样。
祖冲之一直算到24567边形,知道无法计算,只好停止。
得出的结果是圆周率大于3.141 5926,小于3.1415927。
小学数学理论基础:祖冲之与圆周率

祖冲之与圆周率
《隋书 · 律历志》有如下记载: “宋末,南徐州从事祖冲之更开密法 。 以圆径一亿为丈,圆周盈数三丈一尺四
寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒 二限之间 。 密率:圆径一百一十三,圆周三百五十五 。 约率,圆径七,周二十二 。 ”
祖冲之关于圆周率有两大贡献: ① 求得圆周率:3.1415926<π<3.1415927 ② 得到 π 的两个近似分数:约率为 22/7;密率为 355/113。
问题研究
(1)祖冲之对圆周率的研究有何意义?
感谢观看
本课件中部分所用素材来源于网络,仅供教学使用
圆周率
圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是 一个在数学及物理学中普遍存在的数学常数。它是一个无理数,即无限不 循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。
刘徽与圆周率
刘徽利用“割圆术”把圆内接正多边形的面积一直算到了正3072边形, 并由此而求得了圆周率3.1415和3.1416两个近似数值。这个结果是当时世界 上圆周率计算的最精确的数据。刘徽对“割圆术”非常自信,把它推广到有 关圆形计算的各个方面。
ቤተ መጻሕፍቲ ባይዱ冲之和圆周率
祖冲之使用“缀术”计算圆周率,可惜这种方法早已失传。专家推测“缀术” 类似“割圆术”,通过对正24576边形周长的计算来推导。
得出π的两个分数形式的近似值:
22
355
约率为 7
, 密率为113
。
3,1415926<圆周率<3.1415927 祖冲之是世界上第一个把圆周率的值精确到7位小数的人。这一成就比国外 大约要早1000年。
祖冲之与圆周率
关于圆周率的故事

关于圆周率的故事
今天给你讲个关于圆周率的超有趣故事。
话说很久很久以前,有个叫祖冲之的超级聪明的古人。
那时候大家都对圆这个神秘的图形充满好奇,尤其是想知道圆的周长和直径之间到底有啥关系。
祖冲之啊,就像一个执着的探险家,一头扎进了这个数学谜题里。
他整天就在那算啊算,没有计算器,全靠自己的脑子和纸笔。
周围的人都不太理解他,觉得他就像个怪人,对着那些数字和图形发呆。
可是祖冲之不管这些,他就像着了魔一样。
最后呢,他算出圆周率在3.1415926和3.1415927之间。
这可不得了啊,就好比在一个大雾弥漫的海上,他给大家找到了一座精确的灯塔。
这个圆周率的数值就像一个神奇的密码,打开了很多跟圆有关的数学大门。
再后来呢,圆周率这个家伙可调皮了,全世界的数学家都对它念念不忘。
因为这个圆周率小数点后面的数字啊,就像一串永远也念不完的咒语。
有人为了记住它,还想出了各种各样奇葩的办法。
比如说,有个学生为了在数学竞赛里露一手,就想把圆周率背得滚瓜烂熟。
他编了个超级搞笑的口诀:“山巅一寺一壶酒(3.14159),尔乐苦煞吾(26535)。
”就这么着,靠着这个口诀,他硬是把圆周率背到了小数点后好几十位,把周围的小伙伴都惊得下巴都掉了。
而且啊,圆周率在现代也特别忙。
科学家们用它来计算各种圆形的东西,大到宇宙里的星球轨道,小到一个小小的齿轮。
要是没有圆周率,我们生活中的很多东西可能都要乱套啦。
比如说汽车的轮子可能就做不圆,开起来一颠一颠的,那可太滑稽了。
这就是圆周率的故事,一个小小的数字,却有着大大的魔力。
祖冲之和圆周率的故事

祖冲之和圆周率的故事嘿,你可知道祖冲之呀!那可是咱中国古代超级厉害的一位人物呢!祖冲之呀,就像一个在数学王国里尽情探索的勇士。
他对圆周率的研究,那真叫一个执着和厉害。
想想看啊,那时候可没有咱们现在这么多先进的工具和技术。
祖冲之就靠着自己的智慧和毅力,一点一点地去计算圆周率。
他就像是一个不知疲倦的寻宝人,在数字的海洋里拼命寻找着圆周率的奥秘。
圆周率是什么呢?简单来说,就是那个决定了圆的周长和直径之间关系的神奇数字呀。
你看那一个个圆,从小小的车轮到大大的月亮,都和圆周率有着密切的关系呢。
祖冲之在研究圆周率的过程中,那可是下了大功夫。
他一遍又一遍地计算,不断地改进方法,力求得出更精确的结果。
这就好比一个运动员,不断地训练,就为了在赛场上取得更好的成绩。
你说他为啥要这么拼命呢?这就是祖冲之对知识的渴望呀!他想要解开圆周率的神秘面纱,让人们对这个世界有更深刻的认识。
他的努力可不是白费的哦!他算出的圆周率在当时那可是超级厉害的,比国外的那些数学家都要早好多呢。
这就像咱中国在数学领域打了一场大胜仗,多让人骄傲啊!祖冲之的成就可不只是在圆周率上。
他就像一颗璀璨的星星,照亮了古代数学的天空。
他的研究成果对后来的数学家们产生了深远的影响。
咱想想,如果没有祖冲之这样的人,那数学的发展得慢成啥样呀?那我们现在的生活可能都大不一样了呢。
祖冲之的故事告诉我们,只要有决心和毅力,没有什么事情是做不到的。
就像他能攻克圆周率这个难题一样,我们在生活中遇到困难,也不能轻易放弃呀。
他的精神就像一股暖流,流淌在我们的血液里。
让我们在面对困难时,能想起这位伟大的数学家,鼓起勇气向前冲。
所以呀,我们可得好好记住祖冲之,记住他和圆周率的故事。
这不仅是一段历史,更是激励我们不断前进的动力呢!你说是不是呀?。
数学家祖冲之与圆周率的故事

数学家祖冲之与圆周率的故事“哎呀,这圆怎么这么难画呀!”我一边嘟囔着一边努力地在纸上画着圆。
今天老师在课堂上讲了圆,还提到了圆周率,这可把我给难住了。
回到家我就开始琢磨这圆和圆周率到底是怎么回事呢。
“宝贝,怎么愁眉苦脸的呀?”妈妈走过来关心地问。
“妈妈,老师说圆的周长和直径有个固定的比值叫圆周率,可我不太明白。
”我皱着眉头说。
“哈哈,这你就不知道了吧,在很久很久以前,有个超级厉害的数学家叫祖冲之,就是他发现了圆周率呢。
”妈妈笑着说。
“祖冲之?他好厉害呀!”我惊叹道。
“那当然啦!祖冲之呀,那可是花费了好多好多的精力去研究这个圆周率呢。
他一点点地计算,不断尝试,才得出那么精确的结果。
”妈妈绘声绘色地讲着。
我仿佛看到了祖冲之在昏暗的灯光下,认真计算的样子,他的眼神是那么专注,那么执着。
“哇,他可真有毅力!那他发现圆周率有什么用呀?”我好奇地问。
“用处可大啦!有了圆周率,我们才能更准确地计算圆的周长呀,面积呀,还有好多好多和圆有关的东西呢。
就像你今天画的圆,要是没有圆周率,怎么能知道它的周长和面积呢?”妈妈耐心地解释道。
我点了点头,心里对祖冲之充满了敬佩。
“妈妈,那祖冲之发现圆周率一定很不容易吧?”“那是当然呀,这可不是一般人能做到的呢。
他就像一个勇敢的探险家,在数学的海洋里不断探索,最后找到了这个珍贵的宝藏。
”妈妈说。
我突然觉得自己也应该像祖冲之一样,遇到困难不退缩,努力去探索,去发现。
“妈妈,我以后也要像祖冲之一样厉害!”我坚定地说。
“哈哈,好呀,那你可要加油哦!”妈妈笑着鼓励我。
我知道,成为像祖冲之那样的数学家可不是一件容易的事,但我不怕,我要努力学习,不断进步。
我相信,只要我有决心,有毅力,总有一天我也能在数学的领域里有所发现,有所成就。
难道不是吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•经过不断的反复精确 运算,祖冲之又进一步 得出圆周率在 3.1415926和3.1415927 之间,是当时全世界最 精确的圆周率数值。
祖冲之使用“缀术”计算 圆周率。可惜这种方法早已失 传。据专家推测,“缀术”类 似“割圆术”,通过对正 24576边形周长的计算来推导。 计算相当繁杂,当时还没有算 盘。
祖冲之 和
圆周率
人物简介
祖冲之( 公元429年─公元500年)是 我国杰出的数学家,科学家。南北朝时期 人,他从小就阅读了许多天文、数学方面 的书籍,勤奋好学,刻苦实践,终于使他 成为我国古代杰出的数学家、天文学家。
圆周率,一般以π来表示,是一 个在数学及物理学普遍存在的数学常 数。它定义为圆形之周长与直径之比。 它等于圆形之面积与半径平方之比。 是精确计算圆周长、圆面积、球体积 等几何形状的关键。
祖冲之计算圆周率的故事
“圆周率”是说一个圆的周 长同它的直径有一个固定的比 例。我们的祖先很早就有“径 一周三”的说法,就是说,假 如一个圆的直径是1尺,那它的 周长就是3尺。后来,人们发现 这个说法并不准确。东汉的大 科学家张衡认为应该是3.162。 三国到西晋时期的数学家刘徽 经过计算,求出了3.14的圆周 率,这在当时是最先进的,但 是刘徽只算到这里就没有继续 算。
最后得出了圆周率的两个 分数形式的近似值: 约率: 22/7 , 密率:355/113 , 并且精确地算出圆周率在 3.1415926 和 3.1415927之间。
•在后来的日子里,祖冲之 研究了刘徽的“割圆术”, 他非常钦佩这个科学方法, 但是刘徽的割圆术只得到 96边,只得到了3.14就没 再算下去了。
•祖冲之决心沿着刘徽开创的方 法继续研究下去,他计算了 192边形和384边形,为了求得 更精确的结果。 •当时,数字运算还没有利用纸、 笔和数码进行演算,而是通过 纵横相交的罗列小竹棒,然后 按类似珠算的方法进行计算。
•在他五岁那年的一个晚上, 他一直在想白天老师说的圆 周是直径的三倍,总都睡不 着,他觉得似乎不对。他就 拿了一段母亲上鞋用的绳子 跑去村头的路旁等待过往的 车辆进行测量。
•祖冲之用绳子把车轮量了 一下,又把绳子折成同样 大小的三段,再去量车轮 的直径。
•祖冲之一连量了好几辆车 子的车轮,发现车轮的直 径没有圆周的三分之一长。 他一直在想为什么,并决 定要解开这个谜。