质点动力学
质点动力学

a2 b2
可见,质点的运动轨迹是以
a、b 为半轴的椭圆。对运动方
程求二阶导数,得加速度
13
aaxy
x a 2 cost y b 2 sint
2x 2 y
即
a axi ay j 2r
将上式代入公式中,得力在直角坐标轴上的投影
FFxy
max may
m 2x m 2 y
dv dt
积分。
如力是位置的函数,需进行变量置换
d v v d v , 再分离变量积分。 dt ds
16
[例3] 质量为m的质点沿水平x轴运动,加于质点上的水平为
F F0 cos t ,其中 F0, 均是常数,初始时 x0 0,v0 0 。
求质点运动规律。
解 研究质点在水平方向受力作用。建立质点运动微分方程
再积分一次
19
代入初始条件得 :
c1 v0 cos0 , c2 v0 sin 0 , c3 c4 0
则运动方程为:
则轨迹方程为:
xv0tcos0,yv0tsin0
y
xtg
0
1 2
g
v0
2
x02
c os2
0
1 2
gt
2
代入最高点A处值,得: d y dt
v0
sin 0
gt
0,
即
t v0 sin0
即 F Fxi Fy j m 2r
可见,F和点M的位置矢径r方向相反,F始终指向中心,其
大小与r的大小成正比,称之为向心力。
14
第二类问题:已知作用在质点上的力,求质点的运动(积 分问题)。
已知的作用力可能是常力,也可能是变力。变力可能是时 间、位置、速度或者同时是上述几种变量的函数。 解题步骤如下: ① 正确选择研究对象。 ② 正确进行受力分析,画出受力图。判断力是什么性质的力
大学物理第2章质点动力学

第2章质点动力学2.1 牛顿运动定律一、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改 变这种状态为止。
二、牛顿第二定律物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。
表示为f ma说明:⑵在直角坐标系中,牛顿方程可写成分量式f x ma *, f y ma y , f z ma z 。
⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式f t ma t f n ma n⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。
p mv动量是矢量,方向与速度方向相同。
由于质量是衡量,引入动量后,牛顿方程可写成dv m 一 dt 当 f 0时,r 0,dp 常量,即物体的动量大小和方向均不改变。
此结 论成为质点动量守恒定律三、 牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同 一直线上。
物体同时受几个力f i ,f 2f n 的作用时,合力f 等于这些力的矢量和f n力的叠加原理d pdtf ma说明:作用力和反作用力是属于同一性质的力。
四、国际单位制量纲基本量与基本单位导出量与导出单位五、常见的力力是物体之间的相互作用。
力的基本类型:引力相互作用、电磁相互作用和核力相互作用。
按力的性质来分,常见的力可分为引力、弹性力和摩擦力。
六、牛顿运动定律的应用用牛顿运动定律解题时一般可分为以下几个步骤:隔离物体,受力分析。
建立坐标,列方程。
求解方程。
当力是变力时,用牛顿第二定律得微分方程形式求解。
例题例2-1如下图所示,在倾角为30°的光滑斜面(固定于水平面)上有两物体通过滑轮相连,已知叶3kg, m2 2kg,且滑轮和绳子的质量可忽略,试求每一物体的加速度a及绳子的张力F T(重力加速度g取9.80m • s 2)。
解分别取叶和m2为研究对象,受力分析如上图。
利用牛顿第二定律列方程:「m2g F TYL F T m1gsi n30o m1a绳子张力F T F T代入数据解方程组得加速度a 0.98m • s 2,张力F T 17.64N。
第2章质点和质点系动力学

☆
静止在车厢中的小球受到绳的拉力和重力的作用,
这两个力的合力不为零,小球与车厢一起以加速度运动,
符合牛顿第二定律。
在车厢参考系看来, 相对车厢小球静止,而受到的合力不为零, 这是由于车厢不是惯性系,因此牛顿第二定律不适用。
引入惯性力 (ma0 ) ,
T
拉力、重力、惯性力
这三个力的合力为零,
ma0
m
a0
引入惯性力后
牛顿第二定律
W
适用于车厢
这个非惯性系
等效原理 (阅读)
☆
《大学基础物理学》清华大学出版社(2003)-56页
N
m
N
mg
a
/
m
mg
2.参考系之间加速转动
☆
相对惯性系转动的参考系也不是惯性系。
要在转动参考系中应用牛顿第二定律也要引进惯性力,
但其中的惯性力与加速平动参考系中的惯性力不同。
fd kv
三 惯性力
☆
1.参考系之间加速平动
a K K 系为惯性系,K / 系相对 系作加速平动,加速度为 0
m 若质量为 的质点,在力 F
K a 相对于 系的加速度为 ,相对
的作用下,
K /系的加速度为
a
/
/
a a a0
对于 K 系F,由 于m设a 为惯m性(a系/,牛a顿0 )第二定律是成立
f
R —地球半径
—地球自转的角速度
—物体所在处的纬度
力学第2次课结束
例1
☆
在皮带运输机中, 设砖块与皮带之间的,
静摩擦系数为 s ,
砖块的质量为 m ,
理论力学第10章 质点动力学

y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。
《大学物理》第2章 质点动力学

TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律
质点动力学知识点总结

质点动力学知识点总结1. 引言质点动力学是物理学中研究质点运动规律的分支,它是经典力学的基础。
本文档旨在总结质点动力学的核心知识点,包括牛顿运动定律、动量、动能、势能、功以及守恒定律等。
2. 牛顿运动定律2.1 牛顿第一定律(惯性定律)一个质点若未受外力,将保持静止状态或匀速直线运动。
2.2 牛顿第二定律(动力定律)质点的加速度与作用在其上的合外力成正比,与质点的质量成反比,加速度的方向与合外力的方向相同。
2.3 牛顿第三定律(作用与反作用定律)两个相互作用的质点之间的作用力和反作用力大小相等、方向相反。
3. 动量3.1 定义动量是质点的质量与其速度的乘积,是矢量量,表示为\( \vec{p} = m\vec{v} \)。
3.2 动量守恒定律在一个封闭系统中,若没有外力作用,系统内所有质点的动量之和保持不变。
4. 动能4.1 定义动能是质点由于运动而具有的能量,计算公式为\( K =\frac{1}{2}mv^2 \)。
4.2 动能定理合外力对质点所做的功等于质点动能的变化量。
5. 势能5.1 定义势能是质点由于位置或状态而具有的能量,与参考点的选择有关。
5.2 重力势能在重力场中,质点的重力势能计算公式为\( U = mgh \),其中\( h \)是质点相对于参考点的高度。
6. 功6.1 定义功是力在物体上作用时,由于物体的位移而对物体所做的工作,计算公式为\( W = \vec{F} \cdot \vec{d} \),其中\( \vec{F} \)是力,\( \vec{d} \)是在力的方向上的位移。
6.2 功的守恒在一个封闭系统中,若没有非保守力做功,系统内所有质点的机械能(动能与势能之和)保持不变。
7. 守恒定律7.1 机械能守恒定律在没有非保守力作用的封闭系统中,机械能守恒。
7.2 角动量守恒定律在一个封闭系统中,若没有外力矩作用,系统内所有质点的角动量之和保持不变。
8. 结论质点动力学是理解和描述宏观物体运动的基础。
《理论力学》第九章质点动力学
目
CONTENCT
录
• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω
质点动力学
质点动力学
t t0
Fi
dt
n
mi vi
n
mi vi0
i 1
i 1
其分量式: t t0
Fixdt
mivix
mi
vi
0
x
t t0
Fiydt
miviy
mi
vi
0
y
t t0
Fizdt
miviz
mivi0 z
此式表明,外力矢量和在某一方向的冲量等于 在该方向上质点系动量分量的增量。
1)动量定理说明,质点动量的改变是由外力和 外力作用时间两个因素,即由冲量决定的。
2)冲量的方向不是与动量的方向相同,而是与 动量增量的方向相同。
质点动力学
3) 动量定理 P 是矢量式,其直角坐标
的分量式为:
I Ixi Iy j Izk
I x
t2 t1
Fx
dt
mv2 x
mv1 x
2)若合外力不为 0,但在某个方向上合外力分量 为 0,则在该方向上动量守恒。
ΣFix 0 , ΣFiy 0 , ΣFiz 0 ,
px mi vix C x p y mi viy C y pz mi viz C z
质点动力学
3)自然界中不受外力的物体是没有的,但如果系 统的内力 >> 外力,可近似认为动量守恒。在碰 撞、打击、爆炸等相互作用时间极短的过程中, 往往可忽略外力。
1、恒A 力F直c线os运 动| 的rr |功:F
Δr
r
r
F
F
θ
位移无限小时:dA
r F
drr
Δr
dA F cos drv F cosds = Fτ ds
质点动力学的相关概念
质点的动量定理:质点在运动过程中,所受合外力在给定时间内的冲量等于质点在此时间内动量的增量。
质点系的动量定理:在一段时间内,作用于质点系的外力的矢量和的冲量等于质点系总动量的增量。
动量守恒定律:当系统不受合外力或受合外力的矢量和为零时,系统的总动量不变,即恒矢量==0p p 以及力与位移、力作用点位移的大小等于力的大小功:力对物体所做的功s F , 的乘积。
之间夹角余弦θcos当n 个力同时作用于质点上时,这些力在某一过程中分别对质点做功的代数和,等于这n 个力的合力在同一过程中对质点所做的功。
即n F F F F +++= 21 , ⎰∙=BL A dr F W )(功率:力在单位时间内所做的功瞬时功率:瞬时功率等于力在速度方向上的投影和速度大小的乘积,或者说瞬时功率等于力矢量与速度矢量的标量。
重力弹性力 非保守力:摩擦力万有引力质点的动能定理:合外力对质点所做的功,等于质点动能的增量。
动能反应了运动物体的做功本领。
质点系动能定理:作用于质点系的合力所做的功,等于质点系的动能增量。
(合力是指内力+外力)(质点系的动量定理中的合外力是指物体所受的外力,不包括内力)质点系的动能增量,等于作用于质点系各质点的外力和内力做功之和。
即∑∑∑+=外内W W W i i质点系内所有内力做功之和并不一定为零,因此可以改变系统的总动能。
质点系的功能原理:外力和非保守力所做功之和等于质点系机械能的增量。
E E E E E E E W p k p k p k ∆=+∆=+-+=+∑∑)()(W 1122)(非保内外质点系的机械能守恒定律:仅当外力和非保守内力都不做功或其元功的代数和为零时,质点系内各质点间动能和势能可以相互转化,但它们的总和(即总机械能)保持不变。
机械能守恒定律只适用于惯性参考系,并且物体的位移、速度必须相对同一惯性参考系。
能量守恒定律:对于一个封闭性系统来说,系统内的各种形式的能量可以相互转换,也可以从系统的一部分转移到另一部分,但无论发生任何变换,能量既不能产生也不能消失,能量的总和是一个常量。
20第5章第二十讲 质点动力学
第五章质点动力学动力学的任务•研究物体机械运动一般规律动力学基本线索动力学内容•质点动力学、动力学普遍定理、刚体动力学、动静法、分析力学物体机械运动状态改变量力对物体机械作用量动力学两类问题第一类问题•已知运动,求力第二类问题•已知力,求运动舰载飞机在发动机和弹射器推力作用下从甲板上起飞若已知初速度、飞离甲板的速度,则需要弹射器施加多大推力,或者确定需要多长的跑道。
若已知推力和跑道长度,则需要多大的初速度和多长时间才能达到飞离甲板所需速度。
ABv1v2载人飞船的交会与对接质点动力学(dynamics of a particle)本章研究质点在惯性与非惯性系中的运动微分方程。
1.惯性系质点动力学基本方程2.非惯性系质点动力学基本方程3.地球自转对质点运动的影响1.惯性系质点动力学基本方程质点动力学基本方程(牛顿第二定律)(1683-1727)1. 惯性系质点动力学基本方程•矢量形式•直角坐标形式xy质点运动微分方程∑∑∑===iizi iyi ixF zm F ym F xm1.惯性系质点动力学基本方程•自然坐标形式•极坐标形式?质点运动微分方程∑∑∑===bi ni τi FF sm F s m 02ρ1. 惯性系质点动力学基本方程求解质点动力学问题的过程与步骤大致如下1.确定研究对象,选择适当的坐标系;2.进行受力分析,画受力图;3.进行运动分析,计算运动参数;4.列出质点的运动微分方程,分清是第一类问题还是第二类问题,分别用微分或积分法求解;对第一类问题,需要确定加速度,对第二类问题,加速度方向要和投影轴方向一致,并写出初条件。
5.根据需要对结果进行必要的分析讨论。
【例】圆锥摆。
质量为1kg 的重物,被绳限制在水平面内作圆周运动,成为锥摆形状;绳长l =30cm ,与铅垂线角度θ=60°。
求:速度v 及张力T 的大小。
1. 惯性系质点动力学基本方程G解:以小球为研究的质点,作用力:重力G ,绳子拉力T 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
2
o
由 N-mgcos =m 2
N
R
R 得:N=3mgcos
2
mg
an R 2gcos
20
五. 惯性参考系和非惯性参考系
1.惯性参考系
从运动的描述来说,参考系的选择是任意的。 但应用牛顿定律时,就只能选取惯性参考系。 光滑桌面,车厢A在地面上以加速度a向右运动。
地上甲看,小球m:
ay
(M m)g sin2 M m sin2
mg cos N1 1 m sin2
M
b
y
m
ox
N1
a
(M m)g aM M
N2 1 m sin2
a
M
N2
12
mg sin cos aM M m sin2
a
(M M
m)g sin m sin2
m2a0
,
m2
ao
a2
( m1
m2 )g m1 m2
m1a0
m2g
T ( 2g a0 )m1m2
m1 m2
16
例题1.5 木箱与地面:µ=0.6,h=1.5m, 若人匀速前进,绳长L为多长时最省力?
解 水平方向:Fcos-fs=ma=0 (匀速) 竖直方向:Fsin+N-mg=0 , fs= µN
(2)m下边缘滑到水平面时,M移动的距离;
d a b 1 at 2
cos 2
t 2 2(a b)
a cos
M移动的距离:
s
1 2
aM t 2
m(a b) aM Mm
y b
m
ox
d
a
M
a
13
(3)要m相对M静止,F=?
对m:
x:Nsinθ=ma y:Ncos θ =mg
F=kx=ma,符合牛顿定律。 乙
车内乙看,小球m:
甲
F=kx(因为弹簧确实已伸长), 但a=0。违背牛顿定律。
mk
a
A
21
这个例子说明:相对地面以加速度a 运动的车厢A为参考系,牛顿定律是不成 立的。
牛顿定律成立的参考系称作惯性参考系。
而牛顿定律不成立的参考系称作非惯性系。 一个参考系是不是惯性系,只能由实验确定。
A
o
N
R
得: a=gsin
mg
mgsin m d m d d dt d dt
19
mgsin m d m d d m d m d
dt d dt
d
R d
md 0
mgRsind
2
1 m 2 mgRcos
竖直: Ncos =mg
R N mg
解得
cos
g
2R
h
h
R
Rcos
R
g
2
18
例题1.7 钢球m由静止从A点沿光滑半圆
形槽下滑。求滑到图示位置时钢球对槽的压
力以及钢球的an、a。
解 法向:N-mgcos =man=m 2 (1)
R
切向:mgsin=ma=m
d
dt
(2)
26
如果质点相对非惯性系(盘)运动,除了受到 惯性(离心)力的作用外,还受到一种叫科里奥利 力的惯性力。
可以证明,科里奥利力的计算公式为
Fc 2m
式中为转台的角速度,为质
点相对转台的速度。
m
北半球的河床右岸为什么
受到较厉害的冲刷?赤道的信
风是怎样形成的?这些都是科
里奥利力作用的结果。
G
m1m2 r2
引力常量: G=6.6710-11Nm2/kg2 6
四. 牛顿定律的应用方法
基本方法: 隔离体法 +正交分解
将每个物体从系统中分离出来, 分别加以研 究隔离体法。
而物体间的联系用力来表示。 沿相互垂直的方向(坐标轴方向)应用牛顿第 二定律, 联立求解。
7
例题1.1 要物体m不下滑, 至少a=?(斜面与 物体m间的摩擦系数为)。
解得 a=g.tg θ
(M+m):
N m
F=(M+m)a =(M+m)g.tg θ
F mg
M
y
x
14
例题1.4 轻滑轮,柱m2相对绳以恒定的 加速度ao下滑,求m1 、m2相对地面的加速 度及柱与绳间的摩擦力。
解
m1: m1g -T=m1a1
m2:T- m2g =m2 a2
T即为摩擦力
a1 m1
设非惯性系S相对惯性系S以加速度a作直线运动,
由相对运动有
真实合外力
ams ams
F m ams
amssa
a a
ma
F ma ma
假想: -ma =Fi 惯性力 则在非惯性系S中有:
F Fi ma
惯性力-ma不遵从牛顿第三定律。 24
第2章
质点动力学
Dynamics of a particle
亚里仕多德 伽利略
牛顿
洛仑兹
爱因斯坦
1
§2.1 力的瞬时效应牛顿定律
一. 牛顿三大定律
1.牛顿第一定律(惯性定律) 任何物体都要保持其静止或匀速直线运动状态,直 到外力迫使它改变运动状态为止。
惯性—物体保持原有运动状态不变的性质。 力——物体之间的相互作用,是改变物体运动状态 的原因。
乙
甲
mk
a
A
22
研究地球表面附近(距离不太远)物体 的运动时,地面(或固定在地面上的物体) 就是近似程度相当好的惯性系。 研究大气层和远程导弹的运动,应取地心参考系。 研究天体的运动,应取日心参考系。
惯性系有一个重要性质:一切相对于惯性系作匀 速直线运动的参考系也是惯性系。
23
2.加速平动参考系中的惯性力
画出 =2-1的 矢量三角形,再
解此三角形; 由图可求得
| |=|2-1 |=2 cos30o= 3
于是平均冲力的大小为
2
30o
o
30o
1
F
m t
(2 1 )
3m
t
m
30o 30o 1
2
F(即 )的方向与轨道成30o(竖
直向上),如图所示。
解 平均冲力可视为恒力,由动量定理有
m : I F t m2 m1
平均冲力
这里1
F
m t
( 2
2
1
)
m
30o 30o 1
2
求解(2- 1 )的方法有两个:
三角形法 单位矢量法
32
F
m t
( 2
1 )
(1)三角形法
mg a'
b
y
m
N1
aM M
ox
a
aM M
N2 Mg
a
10
m:
x: N1sin =max y: N1cos -mg=may
M:
x: -N1sin = -MaM y: N2-Mg-N1cos =0
am对地=am对M+aM对地
y
ax=a'cos-aM ay= -a'sin
解得 aM
2.牛顿第二定律
F
dp
d(
m
)
合外力 dt
dt
2
F
d(
m
)
m
d
dm
dt
dt dt
若m=const,则
d
F m ma
dt
牛顿第二定律是:瞬时关系、矢量等式。
Fx max
Fy may Fz maz
3
F ma
自然坐标系中的分量式:
又
F
(3
2t
)i
ma
m
d
1
(3 2t)i dt
0
dt
o
md
m
mo
29
例题2.2 斜面:h=3m、l=5m,摩擦系数
=0.3。m由静止开始下滑,求在水平面上滑
行的距离S=?(取g=10m/s2)
解 1.斜面上: mgsin-mgcos=ma a=gsin-gcos
s
=3.72m/s
30
=0.3,取g=10m/s2
2=3.72m/s
3.在水平面上滑行: a=-g
y
x
m l
h
1
由 2 02 2as s 0 22 22 =2.3m 2a 2g
2
m
s
31
例题2.3 m经时间t、以不变的速率越过一水平
光滑轨道60º的弯角,求轨道作用于质点的平均冲力 的大小。
TT
a柱对地=a柱对绳+a绳对地
m1 m2 ao m2 a2 m1g m2g
即:a2= -a0 + a1
15
a1 m1
m1: m1g -T=m1a1 m2:T- m2g =m2 a2 a柱对地=a柱对绳+a绳对地