最新九年级数学上学期期末考试试题

合集下载

九年级上学期 期末考试数学试题附答案

九年级上学期 期末考试数学试题附答案

姓名 得分 一、选择题(本大题有7小题,每小题3分,共21分.) 1.下列计算正确的是( )A .2-2=0B .3+2= 5C .(-2)2=-2 D .4÷2=2 2.方程(x -3)2=0的根是( )A .x =-3B .x =3C .x =±3D .x = 33.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AE=4, EC=2,则AD ︰DB 的值为 ( ) A .21 B .23 C .32D .2 4.若矩形ABCD 和四边形A 1B 1C 1D 1相似,则四边形A 1B 1C 1D 1一定是( ) A .正方形 B .矩形 C .菱形 D .梯形 5.若二次根式2x -4有意义,则x 的取值范围是 ( ) A .x <2 B .x ≤2 C . x >2 D .x ≥2 6.下列说法正确的是 ( )A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨B .“抛一枚硬币正面朝上的概率为21”表示每抛2次就有一次正面朝上 C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖 D .“抛一枚正方体骰子,朝上的点数为2的概率为61”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在61附近. 7.在平面直角坐标系中,已知点O (0,0),A (2,4).将线段OA 沿x 轴向左平移2个单 位,记点O 、A 的对应点分别为点O 1、A 1,则点O 1,A 1的坐标分别是 ( )A .(0,0),(2,4)B .(0,0),(0,4)C .(2,0),(4,4)D .(-2,0),(0,4)二、填空题(本大题有10小题,每小题3分,共30分) 8. 计算:2×3= . 9. 在一幅洗好的52张扑克牌中(没有大小王),随机地抽取一张牌,则这张牌是红桃K 的概率是 . 10.计算:2cos60°-tan45°= .E DCB A(第3题)B CDA第13题图11.若关于x 的方程x 2=c 有解,则c 的取值范围是 . 12.已知线段a 、b 、c 满足b 是a,c 的比例中项,且b =3,则ac = .13.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长26米,且斜坡AB 的坡度为125,则河堤的高BE 为 米.14.x 2-8x +( )=(x - )2.15.如图2,飞机A 在目标B 的正上方3000米处,飞行员测得地面目标C 的俯角∠DAC =30°,则地面目标BC 的长是 米.16.已知梯形ABCD 的面积是20平方厘米,高是5厘米, 则此梯形中位线的长是 厘米. 17. 若a =23+1,则a 2+2a +2的值是 .三、解答题(本大题有7小题,共69分) 18.(本题满分15分)(1)计算:62-52-5+3 5 . (2)计算:)1(932x xx x +-.(3)解方程:x 2+4x -2=0.19.(满分7分)小李拿到四张大小、质地均相同的卡片,上面分别标有数字1,2,3,4,他将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张. (1)用画树状图的方法,列出小李这两次抽得的卡片上所标数字的所有可能情况;(2)计算小李抽得的两张卡片上的数字之积为奇数的概率是多少?20.(本题满分7分)高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定 价为50元,可售出400个;定价每增加1元,销售量将减少10个。

2024年北京密云区初三九年级上学期期末数学试题和答案

2024年北京密云区初三九年级上学期期末数学试题和答案

北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。

江西省九江市2023-2024学年九年级上学期期末数学试题[答案]

江西省九江市2023-2024学年九年级上学期期末数学试题[答案]

九江市2023-2024学年度上学期期末考试九年级数学试题卷本试卷满分120分,考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.方程2520x x +-=的二次项系数、一次项系数和常数项分别是( )A .0,5,2B .0,5,2-C .1,5,2-D .1,5,22.如图是一根空心方管,它的俯视图是( )A .B .C .D .3.在一个不透明的盒子中装有n 个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n 的值大约为( )A .16B .18C .20D .244.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF =( )A .13B .12C .23D .15.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相垂直D .两组对角分别相等6.如图,在平面直角坐标系中,Rt ABC D 的顶点A ,B 分别在y 轴、x 轴上,2OA =,1OB =,斜边//AC x 轴.若反比例函数(0,0)k y k x x=>>的图象经过AC 的中点D ,则k 的值为( )A .4B .5C .6D .8二、填空题(本大题共有6小题,每小题3分,共18分)7.关于x 的一元二次方程22=0x x m -+的一个根为-1,则m 的值为 .8.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .9.如图,在菱形ABCD 中,5AB =,60ABC Ð=o ,则BD 的长为 .10.如图,在矩形ABCD 中,点E ,F 分别是AD ,BC 边的中点,连接EF ,若矩形ABFE 与矩形ABCD 相似,4AB =,则矩形ABCD 的面积为 .11.如图,是反比例函数y=1x 和y=3x在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,则S △ABC = .12.如图,ABC V 为边长为7cm 的等边三角形,6cm BD =,2cm CE =,P 为BC 上动点,以0.25cm/s 的速度从B 向C 运动,假设P 点运动时间为t 秒,当t = 秒时,BDP△与CPE △相似.三、(本大题共5小题,每小题6分,共30分)13.解一元二次方程:(1)2420x x +-=(2)()2362x x-=-14.小明和小丽在操场上玩耍,小丽突然高兴地对小明说:“我踩到你的‘脑袋’了.”如图即表示此时小明和小丽的位置.(1)请画出此时小丽在阳光下的影子;(2)若已知小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,求小丽的身高.15.宋代数学家杨辉所著《杨辉算法》中有一题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”译文为:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?16.如图,四边形ABCD 为矩形,且有AE DE =.请用无刻度直尺完成下列作图,保留必要的画图痕迹.(1)在图1中求作BC 边的中点F ;(2)在图2中的边BC 上求作点H ,使BG CH =.17.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD ;求证:△ABE ∽△ACD .四、(本大题共3小题,每小题8分,共24分)18.如图,在平行四边形ABCD 中,点E ,F 分别在BC ,AD 上,BE DF =,AC EF =.(1)求证:四边形AECF 是矩形;(2)若2CE BE =且AE BE =,已知2AB =,求AC 的长.19.已知A ,B ,C ,D ,E 五个红色研学基地,某地为了解中学生的意愿,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该地区有1000名中学生参加研学活动,则愿意去A 基地的大约有___________人;(3)甲、乙两所学校计划从A ,B ,C 三个基地中任选一个基地开展研学活动,请利用树状图或表格求两校恰好选取同一个基地的概率.20.如图,在平面直角坐标系xOy 中,O 为坐标原点,直线2y x =+交y 轴于点A ,交x 轴于点B ,与双曲线()0k y k x=¹在一,三象限分别交于C ,D 两点,且AB AC BD ==,连接CO ,DO .(1)求k 的值;(2)求CDO V 的面积.五、(本大题共2小题,每小题9分,共18分)21.已知关于x 的一元二次方程()()220a c x bx a c +++-=,其中a 、b 、c 分别为ABC V 三边的长.(1)如果=1x -是方程的根,试判断ABC V 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC V 的形状,并说明理由;(3)如果3a =,4b =,2c =,求这个一元二次方程的根.22.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点M 从点C 出发,以2cm/s 的速度沿CA 向点A 匀速运动,点N 从点B 出发,以1cm/s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一点也随即停止运动.(1)经过几秒后,△MCN 的面积等于△ABC 面积的25?(2)经过几秒,△MCN 与△ABC 相似?六、(本题共1小题,共12分)23.[模型探究]Ð=,对角线AC、BD相交于点O.在线段AO上任取一点如图1,菱形ABCD中,ABC a=,则P(端点除外),连接PD、PB.Q为BA延长线上一点,且有PQ PBÐ=__________(用a表(1)PD_________PQ(用>、<、=填写两者的数量关系),DPQ示).[模型应用](2)如图2,当60Ð=o,其他条件不变.ABCV为等边三角形;①连接DQ,运用(1)中的结论证明PDQ②试探究AQ与CP的数量关系,并说明理由.[迁移应用]当90Ð=o,其他条件不变.探究AQ与OP的数量关系,并说明理由.ABC【分析】本题考查了一元二次方程的一般形式,注意找各项的系数时,要带着前面的符号.根据一元二次方程的一般形式得出答案即可.【详解】解:方程2520x x +-=的二次项系数、一次项系数和常数项分别是1,5,2-,故选:C .2.C【分析】根据从上面往下看得到的图形是俯视图,可得答案.【详解】解:如图所示,俯视图为:故选C .【点睛】本题考查了三视图,解题的关键是注意看到的线用实线表示,看不到的线用虚线表示.3.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,100%=20%4n´,解得:20n =,经检验20n =是原方程的根,故C 正确.故选:C .【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4.B【分析】直接根据平行线分线段成比例定理求解.【详解】解:∵a ∥b ∥c ,∴12DE AB EF BC ==.故选:B .【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成5.B【分析】矩形的对角线互相平分且相等,菱形的对角线互相平分,互相垂直,并且每一条对角线平分一组对角,据此解答.【详解】A 、是菱形的性质,是矩形的性质,故本选项不符合题意;B 、是矩形的性质,不是菱形的性质,故本选项符合题意;C 、是菱形的性质,不是矩形的性质,故本选项不符合题意;D 、矩形、菱形的对角都相等,故本选项不符合题意;故选:B .【点睛】此题考查矩形的性质,菱形的性质,熟记各自的性质特征是解题的关键.6.B【分析】作CE x ^轴于E ,根据作图即可得出2OA CE ==.又易证OAB CBE Ð=Ð,即证明AOB BEC D D ∽,得出BE CE OA OB=,从而求出BE 的长,即得到C 点坐标,进而得出D 点坐标.将D 点坐标代入反比例函数解析式,求出k 即可.【详解】解:作CE x ^轴于E ,//AC x Q 轴,2OA =,1OB =,2OA CE \==,90ABO CBE OAB ABO Ð+Ð=°=Ð+ÐQ ,OAB CBE \Ð=Ð,AOB BEC Ð=ÐQ ,AOB BEC \D D ∽,\BE CE OA OB=,即221BE =,4BE \=,5OE \=,Q 点D 是AC 的中点,5(2D \,2).Q 反比例函数(0,0)k y k x x=>>的图象经过点D ,5252k \=´=.故选:B .【点睛】本题考查相似三角形的判定和性质,反比例函数图象上的点的坐标特征.作出常用的辅助线是解答本题的关键.7.-3【分析】把x =-1代入原方程,解关于m 的一元一次方程即可.【详解】∵关于x 的一元二次方程22=0x x m -+的一个根为-1,∴2(1)2(1)=0m --´-+,解得m =-3,故答案为:-3.【点睛】本题考查了一元二次方程根的定义即使得一元二次方程左右两边相等的未知数的值,正确理解定义,灵活代入计算是解题的关键.8.59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.9.【分析】本题主要考查了菱形的性质以及含特殊角的三角函数的计算.由四边形ABCD 为菱形,60ABC Ð=o ,可得出1302ABO ABC =Ð=а,AC BD ^,BO DO =,进一步可求出cos BO ABO ABÐ=,则根据特殊三角函数可求出BO 以及BD .【详解】解:设AC 与BD 交于点O ,如下图:∵四边形ABCD 为菱形,60ABC Ð=o ∴1302ABO ABC =Ð=а,AC BD ^,BO DO =,在Rt AOB V 中,cos Ð∴cos 5BO AB ABO =×Ð=,∴22BD BO ===故答案为:.10.【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:设AE =x ,则AD =2AE =2x ,∵矩形ABFE 与矩形ABCD 相似,∴AE AB AB AD=,即442x x =,解得,x 1=2x =-舍),∴AD =2x =,∴矩形ABCD 的面积为AB •AD ==,故答案为:.【点睛】考查了相似多边形的性质,解题的关键是根据相似多边形的性质列出比例式,难度不大.11.1【分析】设A 点的纵坐标是m ,则B 的纵坐标是m ,代入解析式即可求得A 、B 的横坐标,则AB 的长度即可求得,然后根据三角形的面积公式即可求解.【详解】设A 点的纵坐标是m ,则B 的纵坐标是m ,把y m =代入1y x =得:1x m =,把y m =代入3y x =得:3x m=,则312AB m m m =-=,则1212ABC S m mV =´×=.故答案为:1.【点睛】本题考查了反比例函数的比列系数的意义,正确设出A 的纵坐标,表示出AB 的长是关键.12.12或16或21【分析】本题主要考查了相似三角形的性质和判定,等边三角形的性质,先根据等边三角形的性质得60B C Ð=Ð=°,再分BD BP CP CE =和B D B P C E C P=两种情况求出答案即可.【详解】∵ABC V 是等边三角形,∴60B C Ð=Ð=°,7cm BC =,∴=0.25cm B P t ,()=-70.25cm C P t .当BD BP CP CE =时,BDP CPE ∽△△,即60.2570.252t t =-,解得12t =或16t =;当B D B PC E C P =时,P BDP CE △△∽,即60.25270.25t t=-,解得21t =.∴12t =或16或21.故答案为:12或16或21.13.(1)12x =,22x =(2)13x =,21x =【分析】(1)由配方法解方程即可得出答案;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:2420x x +-=,242x x +=,24424x x ++=+,()226x +=,2x +=.∴12x =,22x =;(2)()2362x x -=-,()()2323x x -=-,()()23230x x -+-=,()()310x x --=,∴30x -=或 10x -=,∴13x =,21x =.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.14.(1)图形见解析;(2)1.4 m .【详解】试题分析:(1)利用阳光是平行投影进而得出小丽在阳光下的影子进而得出答案;(2)利用相同时刻身高与影子成正比进而得出即可.试题解析:(1)如图,线段CA 即为此时小丽在阳光下的影子.(2)∵小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,设小丽的身高为x m ,∴1.6=2 1.75x ,解得x =1.4.答:小丽的身高为1.4 m .15.长比宽多12步.【分析】选择合适的未知数,利用矩形这个桥梁构造一元二次方程求解即可.【详解】解:设矩形的长为x 步,则宽为60x -()步,根据题意,得(60)864x x -=.解得 136x =,224x =(舍去)\当36x =时,6024x -=,362412-=.答:长比宽多12步.【点睛】本题考查了一元二次方程与几何图形的关系,熟练运用一元二次方程解决几何图形的面积是解题的关键.16.(1)见解析(2)见解析【分析】本题主要考查了矩形的性质,线段垂直平分线的性质和判定:(1)连接,AC BD ,过,AC BD 的交点与点E 作直线,交BC 于点F ,即可;(2)方法一:连接AG ,并延长AG 交EF 于点P ,连接DP 交BC 于点H ,即可;方法二:连接AH ,交EF 于点Q ,连接DQ ,并延长DQ 交BC 于点H ,即可;【详解】(1)解:如图,点P 即为所求;(2)解:如图,点H即为所求.17.见解析【分析】根据角平分线的定义可得∠BAD=∠CAD,根据BE=BD,由等边对等角可得∠BED =∠BDE,根据邻补角可得∠AEB=∠ADC,即可证明△ABE∽△ACD.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵BE=BD,∴∠BED=∠BDE,∴∠AEB=∠ADC,∴△ABE∽△ACD.【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.18.(1)见解析=即可证明出四边形【分析】(1)首先证明四边形AECF是平行四边形,然后结合AC EFAECF 是矩形;(2)首先根据勾股定理得到AE =2CE BE ==,然后利用勾股定理求解即可.【详解】(1)证明:在ABCD Y 中AD BC \=,AD BC ∥,BE DF =Q ,AD DF BC BE \-=-,即AF EC =,\四边形AECF 是平行四边形,AC EF =Q ,\四边形AECF 是矩形;(2)∵四边形AECF 是矩形∴90AEC Ð=°∴90AEB Ð=°∵AE BE =,2AB =∴222AE BE AB +=,即2222AE =解得AE =∴BE AE ==∴2CE BE ==∵90AEC Ð=°∴AC ==【点睛】本题考查了矩形的判定与性质,平行四边形的判定、勾股定理,熟练掌握矩形的判定与性质是解题关键.19.(1)见详解(2)14.4°(3)13【分析】本题主要考查了条形统计图和扇形统计图的相关知识以及用树状图或列表法求概率.(1)先根据扇形统计图以及条形图中选择C 基地的人数以及占比求出抽取学生的总人数,然后再求出选择B 基地的人数即可补全条形统计图.(2)直接用360°乘以选择D 基地人数得占比即可求出D 所在的扇形的圆心角的度数,用总体乘以选项A 基地的占比即可推知整体.(3)列出树状图或表格然后用概率公式即可求出两校恰好选取同一个基地的概率.【详解】(1)本次抽取的学生有:1428%50¸=(人),其中选择B 的学生有:5010142816----=(人),补全的条形统计图如右图所示;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为:236014.450°´=°,该市有1000名中学生参加研学活动,愿意去A 基地的大约有:10100020050´=(人),(3)树状图如下所示:由上可得,一共有9种等可能性,其中两校恰好选取同一个基地的可能性有3种,\两校恰好选取同一个基地的概率为3193=.20.(1)8k =(2)6【分析】本题考查了反比例函数与一次函数的交点问题,(1)过点C 作CH x ^轴于点H ,则OA CH ∥,先求出点A ,B 的坐标,再根据题意表示出点C 的坐标,再根据待定系数法求解即可;(2)联立两个解析式,求出点D 的坐标,再由三角形面积公式求解即可;熟练掌握知识点并添加适当的辅助线是解题的关键.【详解】(1)过点C 作CH x ^轴于点H ,则OA CH ∥,2y x =+Q 与坐标轴交于A ,B 两点,()0,2A \,()2,0B -,则2OA =,2OB =,12AB BC =Q,又OA CH ∥,12BA AO BO BC CH BH \===4BH \=,4CH =,∴2OH =,()2,4C \,Q 点C 在双曲线()0k y k x=¹上,42k \=,∴8k =;(2)令82x x =+,解得24x y =ìí=î或42x y =-ìí=-î,∴()4,2D --,()1112246222CDO AOC AOD C D S S S OA y OA y \=+=×+×=´´+=V V V .21.(1)ABC V 是等腰三角形;理由见解析(2)(3)1x =2x =【分析】(1)把=1x -代入原方程,可得到a b 、的数量关系,即可判断ABC V 的形状;(2)根据方程有两个相等的实数根得到()()()2Δ240b a c a c =-+-=,从而得到222a b c =+,由勾股定理的逆定理即可得到答案;(3)把3a =,4b =,2c =代入原方程,利用公式法解方程即可.【详解】(1)解:ABC V 是等腰三角形,理由如下:Q =1x -是方程的根,()()()()21210a c b a c \+´-+´-+-=,20a c b a c \+-+-=,0a b \-=,即a b =,ABC \V 是等腰三角形;(2)解:ABC V 是直角三角形,理由如下:Q 方程有两个相等的实数根,()()()2Δ240b a c a c \=-+-=,2224440b a c +-\=,222a b c \=+,ABC \V 是直角三角形;(3)解:将3a =,4b =,2c =代入方程得:25810x x ++=,,∴1x ==【点睛】本题考查了一元二次方程的解、勾股定理的逆定理、一元二次方程的根的判别式、等腰三角形的判定、解一元二次方程,熟练掌握以上知识点是解此题的关键.22.(1)4秒;(2)167或4013秒【分析】(1)分别表示出线段MC 和线段CN 的长后利用S △MCN =25S △ABC 列出方程求解;(2)设运动时间为t s ,△MCN 与△ABC 相似,当△MCN 与△ABC 相似时,则有MC NC BC AC =或MC NC AC BC=,分别代入可得到关于t 的方程,可求得t 的值.【详解】解:(1)设经过x 秒,△MCN 的面积等于△ABC 面积的25,则有MC =2x ,NC =8-x ,∴12×2x (8-x )=12×8×10×25,解得x 1=x 2=4,答:经过4秒后,△MCN 的面积等于△ABC 面积的25;(2)设经过t 秒,△MCN 与△ABC 相似,∵∠C =∠C ,∴可分为两种情况:①MC NC BC AC =,即28810t t -=,解得t =167;②MC NC AC BC =,即28108t t -=,解得t =4013.答:经过167或4013秒,△MCN 与△ABC 相似.【点睛】本题考查一元二次方程的应用,相似三角形的判定与性质,三角形的面积,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(1)=;a ;(2)①证明见解析;②AQ CP =,证明见解析;(3)AQ =,证明见解析;【分析】(1)利用菱形性质,线段垂直平分线的性质、等腰三角形的性质可知PD PB =,继而得到本题答案;(2)①利用含60°的等腰三角形即为等边三角形判定即可;②利用全等三角形判定及性质可证;(3)利用相似三角形判定及性质即可求出.【详解】解:(1)∵四边形ABCD 是菱形,ABC a Ð=,∴AC BD ^,DO BO =,12ABO CBO a Ð=Ð=,∴AC 垂直平分BD ,∴PD PB =,∵PQ PB =,∴PD PQ =,∴PDB PBD PQB PBQ Ð=Ð=Ð=Ð,∴()11801802QPB PQB PBQ DPB a Ð=°-Ð+Ð=°-=Ð,∴13603602(180)2DPQ QPB DPB a a Ð=°-Ð-Ð=°-°-=,综上所述:PD PQ =,DPQ a Ð=;(2)①证明:由(1)得,PQ PD =,60DPQ Ð=°,DPQ \△为等边三角形;②AQ CP =,,证明:设1ADP Ð=Ð,60ABC Ð=°Q ,60ADC \Ð=°,601ADQ CDP \Ð=°-Ð=Ð,又DQ DP =Q ,DA DC =,()QDA PDC SAS \V V ≌,AQ CP \=;(3)AQ =,理由如下:连接DQ ,即DPQ V 、ADO △为等腰直角三角形,,证明:设2QDA Ð=Ð,3PDO Ð=Ð,由题意,四边形ABCD 是正方形,则45ADO Ð=°,由(1)知,90DPQ ABC Ð=Ð=°,PD PQ =,则45QDP Ð=°,24513\Ð=°-Ð=Ð,答案第15页,共15页又::DQ DP DA DO ==Q ,QDA PDO \△∽△,:AQ OP \=,即:AQ =.【点睛】本题考查菱形性质,正方形的判定与性质,三角形内角和定理,等腰三角形的判定与性质,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形判定及性质,熟练掌握相关知识的联系与运用是解答的关键.。

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。

2023—-2024学年上学期九年级期末考试数学试卷

2023—-2024学年上学期九年级期末考试数学试卷

准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。

江苏省盐城市盐都区2023-2024学年九年级上学期期末数学试题(含答案)

2023/2024学年度第一学期期末学业质量检测九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分。

3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程属于一元二次方程的是()A. B. C. D.2.二次函数的顶点坐标是( )A. B. C. D.3.已知的半径为4,点到圆心的距离为4.5,则点与的位置关系是( )A.在圆内B.在圆上C.在圆外D.无法确定4.学校组织才艺表演比赛,前5名获奖.有11位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这11名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数5.已知与分别为方程的两根,则的值等于( )A. B.2C.D.6.如图,点、、在上,,则的度数是( )A. B. C. D.7.如图,下列条件中不能判定的是()A.B. C. D.321x x+=210x x +-=30x -=140x x+-=2(2)3y x =+-(2,3)-(2,3)--(2,3)(2,3)-O P O P O P P P 1x 2x 2230x x +-=12x x +2-32-32A B C O 30ACB ︒∠=AOB ∠30︒40︒60︒65︒ACD ABC △∽△AB ADBC CD=ADC ACB ∠=∠ACD B ∠=∠2AC AD AB=⋅8.设,,是抛物线上的三点,,,的大小关系为( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.在比例尺为的扬州旅游地图上,某条道路的长为,则这条道路实际长________.10.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.11.如图,四边形是的内接四边形,的半径为2,,则的长为________.12.如图,在中,中线、相交于点,,则的长为________.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是,则蝴蝶身体的长度为________(结果保留根号)。

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。

辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末数学试题(含解析)

....A .2B .45.若x =﹣1是方程x 2+x +m =A .﹣1B .06.如图,反比例函数的图象经过A .120mm B .30mmC .75k y x=A .C .9.如图,正方形ABCD 的对角线作ON ⊥OM ,交CD 于点N A .C .2150216x ⨯=2150150216x +=0c <<0a b c -+12.如图,E是正方形ABCD的边BCABCD AD AB,:三、解答题(本题共8小题,共过程)16.计算(1)计算:0(3)2cos30π--︒(1)请在图中画出路灯灯泡出画法);(2)经测量米,度的长.20.数学活动小组欲测量山坡上一棵大树得大树底端C 的仰角为,测得山坡坡角2OB =BF OP 53︒CBM ∠(1)设点的坐标为,求反比例函数的解析式;(2)若,求直线的解析式.22.问题情境数学活动课上,学习小组进行探究活动,老师给出如下问题:在中,,垂足为,且,点是边上一动点(点不与点连接,过点作交线段于点.各小组在探究过程中提出了以下问题:(1)“智慧小组”提出问题:M (),m n 92AN =MN ABC V CD AB ⊥D AD BD >E AC E DE C CF DE ⊥AD F四边形是正方形,是射线上的动点,点在线段的延长线上,且,连接,将线段绕点顺时针旋转得到,连接,设,四边形的面积为(可等于0).(1)如图①,当点由点运动到点过程中,发现是关于的二次函数,并绘制成如图②所示的图象,抛物线经过原点且顶点为,请根据图象信息,回答下列问题:①正方形的边长为___________(直接填空);②求关于的函数关系式;(2)如图③,当点在线段的延长线上运动时,求关于的函数关系式;(3)若在射线上从下至上依次存在不同位置的两个点,对应的四边形的面积与四边形的面积相等,当时,求四边形的面积.参考答案与解析1.B 【分析】根据左视图是从左边得到的图形进行解答即可.【详解】从左边看,为一个长方形,中间有两条横线,如下图所示:,故选B .【点睛】本题考查了三视图的知识,左视图是从左边看到的视图,要注意长方形被横向分成ABCD E AB F DA AF AE =ED ED E 90︒EG EF BF BG 、、AE x =EFBG y x y ,E A B y x ()24,ABCD y x E AB y x AB 12E E ,1E FBG 2E FBG 122BE BE -=1E FBG【详解】∴,DF AD =∵,,,,,,()4,2A -2AE ∴=4OE =AE CF ∥ AOE COF ∴∽△△C AE OE O CF OF OA ∴==42由折叠与对应易知:∵∴,即又∵x=时,可获得利润最大A A '90EAO AEO ∠+∠=AEO AGD ∠=∠ADG FHE ∠=∠=当∠MDE=90°时,如图2,∴,∵∠DBC=∠C=∠E ,∠BMF=∠∴∠BFM=∠MDE=90°,【点睛】本题考查了勾股定理、直角三角形的性质、折叠的性质、三角形的内角和定理以及155544BM =-=(2)∵∴,∴,∴,MO OE AB OE ⊥⊥AB OP ∥POF ABF V V ∽13AB BF BF OP OF BF OB ===+由(1)知;,,,DCE FBC △∽△∴BF CF CD DE=BF CF = 2CD DE ∴==此时,,,,,,EF CD ∥3BD = 4CD =CD AB ⊥225BC BD CD ∴=+=90B BCD ACD ∠=︒-∠=∠ BDC ∠,,,,,,CF DE ⊥ CD AB ⊥90CDG GDF DFG ∴∠=︒-∠=∠EFG DFG ∴∠=∠90DGF EGF ∠=︒=∠ GF GF =,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=90DEA EDA ∠+∠= EDA GEH ∴∠=∠EG ED = DAE ∠=,,,,,,设,则,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=︒90DEA EDA ∠+∠=︒ EDA GEH ∴∠=∠EG ED = DAE GHE ∠=∠=()AAS DAE GEH ∴V V ≌1AE m =14BE m =-122BE BE -= 22BE m ∴=-设,则,,,,在中,令得:在中,令得:1AE n =14BE n =-122BE BE -= 22BE n ∴=-224(2)6AE AB BE n n ∴=+=+-=-24(04)y x x x =-+≤≤x n =y 四边形24(4)y x x x =->6x n =-y 四边形。

河南省南阳市淅川县2023-2024学年九年级上学期期末考试数学试题[答案]

2023年秋期九年级期终质量评估数学试卷注意事项:1.本试卷分试题卷和答题卡两部分.试题卷共8页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、考号、考场、座位号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列计算正确的是( )A .0=B .+=CD )26-=-2.下列说法错误的是( )A .“水涨船高”是必然事件B .“水中捞月”是不可能事件C .“了解一批节能灯管的使用寿命” 最适合用全面调查D .“调查将发射的气象卫星的零部件质量”最适合用全面调查3.关于x 的一元二次方程232302x x -+=根的情况,下列说法中正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定4.在平面直角坐标系中,将二次函数221y x x =+-的图象向右平移2个单位长度,再向上平移1个单位长度,所得函数的解析式为( )A .()233y x =+-B .()211y x =--C .()231y x -=+D .()213y x =--5.如图,点A 、B 、C 在O e 上,BC OA ∥,连接BO 并延长,交O e 于点D ,连接AC 、DC 、若18A Ð=°,则D Ð的大小为.( )A .18°B .36°C .54°D .68°6.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是( )A .14B .13C .12D .237.如图,ABC V 与DEF V 是位似图形,点O 是位似中心.若()2,1A -,()3,3B -,DE D 的坐标为( )A .33,2æö-ç÷èøB .33,2æöç÷èøC .3,32æöç÷èøD .3,32æö-ç÷èø8.如图,四边形ABCD 是一张矩形纸片.将其按如图所示的方式折叠:使DA 边落在DC 边上,点A 落在点H 处,折痕为DE ;使CB 边落在CD 边上,点B 落在点G 处,折痕为CF .若矩形HEFG 与原矩形ABCD 相似,1AD =,则CD 的长为( )A 1B 1-C 1D 19.如图,在Rt ABC △中,90ACB Ð=°,10AB =,6BC =.点F 是AB 中点,连接CF ,把线段CF 沿射线BC 方向平移到DE ,点D 在AC 上.则线段CF 在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是( )A .16,6B .18,18C .16.12D .12,1610.如图,抛物线2y ax bx c =++与x 轴相交于点()()2,0,6,0A B -,与y 轴相交于点C ,小红同学得出了以下结论:①240b ac ->;②40a b +=;③当0y >时,26x -<<;④0a b c ++<.其中正确的个数为( )A .4B .3C .2D .13分,共15分)11x 的取值范围是 .12.如图,在4×4正方形网格中,点A ,B ,C 为网格交点,AD BC ^,垂足为D ,则tan BAD Ð的值为 .13.如图,在ABC V 中,O 是AB 边上的点,以O 为圆心,OB 为半径的O e 与AC 相切于点D ,BD 平分ABC Ð,AD =,12AB =,CD 的长是 .14.如图,在扇形AOB 中,∠AOB=90°,OA=4,以OB 为直径作半圆,圆心为点C ,过点C 作OA 的平行线分别交两弧点D 、E ,则阴影部分的面积为 .15.如图,在直角△ABC 中,∠C =90°,AC =6,BC =8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ = .三、解答题(共75分)16(1)(2)()1tan 60sin 451-°-°--(3)解方程:2-+=.x x251017.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x(单位:分)进行统计:七年级86947984719076839087八年级88769078879375878779整理如下:年级平均数中位数众数方差七年级84a9044.4八年级8487b36.6根据以上信息,回答下列问题:a_______,b=________.(1)填空:=A同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.18.为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD°»°»°»)的长.(结果精确到0.1米;参考数据:sin160.28,cos160.96,tan160.2919.掷实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示、掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3. 5m处.(1)求y 关于x 的函数表达式:(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m 时,即可得满分10分,该男生在此项考试中能否得满分,请说明理由.20.如图,锐角ABC V 内接于O e ,射线BE 经过圆心O 并交O e 于点D ,连结AD ,CD ,BC 与AD 的延长线交于点F ,DF 平分CDE Ð.(1)求证:AB AC =.(2)若1tan 2ABD Ð=,O e DF 的长.21.某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y (件)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示:销售单价x /元…121314…每天销售数量y /件…363432…(1)直接写出y 与x 之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w (元),当销售单价为多少元时,每天获利最大?最大利润是多少元?22.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C ,且3OC OB =,点M 是抛物线上一点,且位于抛物线对称轴的左侧,过点M 作MN x ∥轴交抛物线于点N .(1)求抛物线的函数关系式;(2)若点M 沿抛物线向下移动,使得89MN ££,求点M 的纵坐标M y 的取值范围;(3)若点P 是抛物线上对称轴右侧任意一点,点P 与点A 的纵坐标的差的绝对值不超过3,请直接写出点P 的横坐标P x 的取值范围.23.我们在没有量角器或三角尺的情况下,用折叠特殊矩形纸片的方法进行如下操作也可以得到几个相似的含有30°角的直角三角形.实践操作第一步:如图①,矩形纸片ABCD 的边AB =ABCD 对折,使点D 与点A 重合,点C 与点B 重合,折痕为EF ,然后展开,EF 与CA 交于点H .第二步:如图②,将矩形纸片ABCD 沿过点C 的直线再次折叠,使CD 落在对角线CA 上,点D 的对应点D ¢恰好与点H 重合,折痕为CG ,将矩形纸片展平,连接GH .问题解决(1)在图②中,sin ACB Ð=______,EG CG=______.(2)在图②中,2CH CG =×______,从图②中选择一条线段填在空白处,并证明你的结论;拓展延伸(3)将上面的矩形纸片ABCD 沿过点C 的直线折叠,点D 的对应点D ¢落在矩形的内部或一边上.设DCD a ¢Ð=,若090a °<£°,连接D A ¢,D A ¢的长度为m ,则m 的取值范围是______.1.D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A. )1=,故该选项不正确,不符合题意;B. +=C.=D. )26-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.2.C【分析】本题考查了必然事件的定义,全面调查与抽样调查的意义.一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.直接利用必然事件的定义以及全面调查与抽样调查的意义判断各项即可.【详解】解:A .“水涨船高”是必然事件,故A 选项不符合题意;B .“水中捞月”是不可能事件,故B 选项不符合题意;C .“了解一批节能灯管的使用寿命” 最适合用抽样调查,原说法错误,故C 选项符合题意;D .“调查将发射的气象卫星的零部件质量”最适合用全面调查,故D 选项不符合题意;故选:C .3.C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:232302x x -+=,其中2a =,3b =-,32c =,∴()23Δ342302=--´´=-<,∴方程没有实数根.故选:C .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若24<0b ac D =-,则方程没有实数根.4.B【分析】主要考查了函数图象的平移,先将二次函数解析式化为顶点式,再直接运用平移规律“左加右减,上加下减”解答.【详解】将221y x x =+-化为顶点式为:()=+-2y x 12,将二次函数()=+-2y x 12的图象向右平移2个单位长度,再向上平移1个单位长度,所得函数的解析式为()21221y x =+--+,即()211y x =--.故选:B .5.C【分析】本题考查圆周角定理,平行线的性质.利用平行线的性质求出18ACB Ð=°,再利用圆周角定理求出36AOB Ð=°,利用平行线的性质可得36B Ð=°,再证明90DCB Ð=°,进而可得结论.【详解】解:AO BC Q ∥,18A Ð=°,18ACB OAC \Ð=Ð=°,CBO AOB Ð=Ð,236AOB ACB \Ð=Ð=°,36CBO AOB \Ð=Ð=°,BD Q 是直径,90DCB \Ð=°,903654D \Ð=°-°=°,故选:C .6.C【分析】采用树状图法,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A ,B 两位同学座位相邻的概率是61122= .故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.7.A【分析】本题主要考查了位似三角形,勾股定理.先求出AB ==据ABC V 与DEF V 是位似图形,点O 为位似中心,可得相似比为3:2DE AB ==,再根据点()2,1A -与点D 为对应点,且两个点在原点的两侧,即可作答.【详解】∵()2,1A -,()3,3B -,∴AB ==∵ABC V 与DEF V 是位似图形,点O 为位似中心,∴ABC DEF ∽△△,点()2,1A -与点D 为对应点,∴相似比为:3:2DE AB ==,∵()2,1A -,点()2,1A -与点D 为对应点,且两个点在原点的两侧,即3232æö-´-=ç÷èø,21332æö´=ç÷ø-è-,∴点D 的坐标为33,2æö-ç÷èø.故选:A .8.C【分析】先根据折叠的性质与矩形性质,求得1DH CG ==,设CD 的长为x ,则2HG x =-,再根据相似多边形性质得出EH HG CD AD =,即121x x -=,求解即可.【详解】解:,由折叠可得:DH AD =,CG BC =,∵矩形ABCD ,∴1AD BC ==,∴1DH CG ==,设CD 的长为x ,则2HG x =-,∵矩形HEFG ,∴1EH =,∵矩形HEFG 与原矩形ABCD 相似,∴EH HG CD AD =,即121x x -=,解得:1x =(负值不符合题意,舍去)∴1CD =,故选:C .【点睛】本题考查矩形的折叠问题,相似多边形的性质,熟练掌握矩形的性质和相似多边形的性质是解题的关键.9.C【分析】先论证四边形CFDE 是平行四边形,再分别求出CF 、CD 、DF ,继而用平行四边形的周长公式和面积公式求解即可.【详解】由平移的性质可知:,DF CE DF CE ∥=,∴四边形CFDE 是平行四边形,在Rt ABC △中,90ACB Ð=°,10AB =,6BC =,∴AC 8===在Rt ABC △中,90ACB Ð=°,10AB =,点F 是AB 中点∴152CF AB ==∵DF CE ∥,点F 是AB 中点∴12AD AF AC AB ==,18090CDF ABC Ð=°-Ð=°,∴点D 是AC 的中点,∴142==CD AC ∵D 是AC 的中点,点F 是AB 中点,∴DF 是Rt ABC △的中位线,∴132DF BC ==∴四边形CFDE 的周长为:()()221356DF CF +=´+=,四边形CFDE 的面积为:3412DF CD ´=´=.故选:C .【点睛】本题考查平移的性质,平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半,平行线分线段成比例,三角形中位线定理等知识,推导四边形CFDE 是平行四边形和DF 是Rt ABC △的中位线是解题的关键.10.B【分析】根据二次函数的图像与性质,逐一判断即可.【详解】解:∵抛物线2y ax bx c =++与x 轴交于点A ()2,0-、B ()6,0,∴抛物线对应的一元二次方程20ax bx c ++=有两个不相等的实数根,即24b ac =-△>0,故①正确;对称轴为6222b x a -=-=,整理得4a +b =0,故②正确;由图像可知,当y >0时,即图像在x 轴上方时,x <-2或x >6,故③错误,由图像可知,当x =1时,0y a b c =++<,故④正确.∴正确的有①②④,故选:B .【点睛】本题考查二次函数的性质与一元二次方程的关系,熟练掌握相关知识是解题的关键.11.5x ³-且0x ¹##0x ¹且5x ³-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵有意义,∴50x +³且0x ¹,∴5x ³-且0x ¹,故答案为:5x ³-且0x ¹.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.12.34【分析】本题考查了锐角三角函数的定义以及勾股定理,解题的关键熟记三角函数的定义并灵活运用.先求出BAD CBE Ð=Ð,然后利用利用tan tan CE BAD CBE BEÐÐ==解题即可.【详解】解:如图,∵AD BC ^,∴90BAD ABC Ð+Ð=°,又∵90CBE ABC Ð+Ð=°,∴BAD CBE Ð=Ð,∴3tan tan 4CE BAD CBE BE ÐÐ===,故答案为:34.13.【分析】本题考查了切线的性质,解直角三角形,平行线的判定与性质等知识,根据相切可得90ADO Ð=°,再根据特殊角的正切值可得30A Ð=°,即可得60AOD Ð=°,再证明OD BC ∥,即可得90C ADO Ð=Ð=°,1302CBD ABC Ð=Ð=°,问题随之得解.【详解】O Qe 与AC 相切于点D ,\^AC OD ,90ADO \Ð=°,AD =Q ,tan OD A AD \==,30A \Ð=°,即60AOD Ð=°,BD Q 平分ABC Ð,OBD CBD \Ð=Ð,OB OD =Q ,OBD ODB \Ð=Ð,ODB CBD \Ð=Ð,OD BC \∥,90C ADO \Ð=Ð=°,60ABC \Ð=°,即1302CBD ABC Ð=Ð=°,∵30A Ð=°\162BC AB ==,∵30CBD Ð=°,tan 306CD BC \=×°==14.53π﹣【分析】根据题意和图形,作出合适的辅助线,即可求得阴影部分的面积.【详解】解:连接OE ,如图,∵CE ∥OA ,∴∠BCE=90°,∵OE=4,OC=2,∴∴∠CEO=30°,∠BOE=60°,∴S 阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =2604360p ´´ ﹣12 ﹣2902360p ´´=53π﹣故答案为53π﹣【点睛】本题考查扇形面积的计算、等边三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.154或307【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;由相似三角形的性质列比例式求解即可.【详解】解:∵∠C=90°,AC=6,BC=8,∴10AB==,①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴BQ PQ BA AC=,∴10106x x-=,∴x=154,∴AQ=154.②当AQ=PQ,∠PQB=90°时,如图2,设AQ=PQ=y.∵∠PQB=∠C=90°,∠B=∠B,∴△BQP∽△BCA,∴PQ BQ AC BC=,∴1068y y-=,∴y =307.综上所述,满足条件的AQ 的值为154或307.【点睛】本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.16.(1)(2)(3),2x =【分析】本题考查了二次根式的乘除运算,含三角函数的运算,解一元二次方程等知识,(1)根据二次根式的乘除运算法则计算即可;(2)代入特殊角的三角函数值,再计算即可;(3【详解】(1==(2()1tan 60sin 451-°-°--)11-=+--1=1=+;(3)22510x x -+=,∵2a =,=5b -,1c =,∴()22Δ4542117b ac =-=--´´=,∴x =∴1x 17.(1)85,87,七;(2)220(3)八年级,理由见解析【分析】(1)根据中位数和众数的定义即可求出答案;(2)分别求出七、八年级优秀的比例,再乘以总人数即可;(3)两组数据的平均数相同,通过方差的大小直接比较即可.【详解】(1)解:把七年级10名学生的测试成绩排好顺序为:71,76,79,83,84,86,87,90,90,94,根据中位数的定义可知,该组数据的中位数为8486852a +==,八年级10名学生的成绩中87分的最多有3人,所以众数87b =,A 同学得了86分大于85分,位于年级中等偏上水平,由此可判断他是七年级的学生;故答案为:85,87,七;(2)562002002201010´+´=(人),答:该校这两个年级测试成绩达到“优秀”的学生总人数为220人;(3)我认为八年级的学生掌握国家安全知识的总体水平较好,理由:因为七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,所以八年级的学生掌握防震减灾科普知识的总体水平较好.【点睛】本题考查中位数、众数、方差的意义和计算方法以及用样本估计总体,理解各个概念的内涵和计算方法是解题的关键.18.2.2米【分析】过点A 作AG BC ^于点G ,AF CE ^于点F ,则四边形AFCG 是矩形,在Rt ABG △中,求得,BG AG ,进而求得,,CG AF DF ,根据CD CF DF =-,即可求解.【详解】解:如图所示,过点A 作AG BC ^于点G ,AF CE ^于点F ,则四边形AFCG 是矩形,依题意, 16BAG Ð=°,5AB =(米)在Rt ABG △中,sin 5sin1650.28 1.4GB AB BAG =´Ð=´°»´=(米),cos1650.96 4.8AG AB =´°»´=(米),则 4.8CF AG ==(米)∵4BC =(米)∴4 1.4 2.6AF CG BC BG ==-=-=(米)∵45ADF Ð=°,∴ 2.6DF AF ==(米)∴ 4.8 2.6 2.2CD CF DF =-=-=(米).【点睛】本题考查了解直角三角形的应用,添加辅助线构造直角三角形是解题的关键.19.(1)2010819...y x x =-++(2)该男生在此项考试中能得满分.【分析】(1)已知顶点坐标为(4,3.5),设成顶点式2435().y a x =-+,将(0,1.9)代入求出a 的值,即可求出函数表达式.(2)根据(1)中的表达式,求出0y =时x 的值,即D 点的坐标,则可知OD 的长,再与9.7作比较,即可判断是否得满分.【详解】(1)设2435().y a x =-+将(0,1.9)代入得163519..a +=解得0.1a =-201435.().y x \=--+2010819...x x =-++(2)当0y =时,20108190...x x -++=2x4x ===14240x x ==<(舍去)257324935..,=<Q57.>497.\+>∴该男生在此项考试中能得满分.【点睛】本题主要考查了求二次函数表达式,及二次函数的实际应用,熟练掌握求二次函数表达式式是解题的关键.20.(1)见解析(2)6【分析】(1)根据圆内接四边形的性质可得CDF ABC Ð=Ð,再结合圆周角定理以及角平分线的性质可得A ABC CB =Ð∠,问题即可得证;(2)先得出90BAD Ð=°,再结合1tan 2AD ABD ABÐ==,勾股定理可得2AD =,4AB =;结合(1)证明BAD FAB V V ∽,即可求出8AF =,问题随之得解.【详解】(1)证明:Q 四边形ABCD 为O e 的内接四边形,CDF ABC \Ð=Ð,EDF ADB Ð=ÐQ ,ADB ACB Ð=Ð,EDF ACB \Ð=Ð,DF Q 平分CDE Ð,CDF EDF \Ð=Ð,ABC ACB \Ð=Ð,AB AC \=;(2)由题意可得,BD 是O e 的直径,90BAD \Ð=°,1tan 2AD ABD AB \Ð==,即12AD AB =,又O QeBD \=又∵222BD AD BA =+,2AD \=,4AB =,由 (1)可知,ADB ACB ABC Ð=Ð=Ð,BAD FAB Ð=Ð,BAD FAB \V V ∽,\AB AD AF AB =,\424AF =,8AF \=,826DF AF AD \=-=-=,DF \的长为6.【点睛】本题主要考查了圆内接四边形的性质,三角函数,圆周角定理,相似三角形的判定与性质,等角对等边,勾股定理等知识,熟练掌握圆内接四边形的性质,相似三角形的判定与性质是解答本题的关键.21.(1)260y x =-+(2)18元(3)19元,198元【分析】(1)利用待定系数法求解即可;(2)根据题意可列出关于x 的一元二次方程,解出x 的值,结合x 的取值范围求解即可;(3)根据题意可列出w 与x 的函数关系式,再根据二次函数的性质求解即可.【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+¹,由所给表格可知:36123613k b k b=+ìí=+î,解得:260k b =-ìí=î,故y 与x 的函数关系式为260y x =-+;(2)解:根据题意得:()()10260192x x --+=,解得:x x 121822==,.又∵1019x ££,∴18x =,答:销售单价应为18元.(3)解:()()()210260220200w x x x =--+=--+,∵20a =-<,∴抛物线开口向下.∵对称轴为直线20x =,∴当1019x ££时,w 随x 的增大而增大,∴当19x =时,w 有最大值,max 198W =.答:当销售单价为19元时,每天获利最大,最大利润是198元.【点睛】本题考查一次函数、二次函数的实际应用,一元二次方程的实际应用.理解题意,找出等量关系,列出等式是解题关键.22.(1)223y x x =--+(2)65124M y -££-(3)01p x ££-【分析】本题考查二次函数的图象及性质、待定系数法求二次函数解析式,熟练掌握二次函数的图象及性质,数形结合以及分类讨论思想是解题的关键.(1)用待定系数法求函数的解析式即可;(2)由抛物线的对称轴为直线=1x -,89MN ££,可得点N 的横坐标的取值范围为94112N x -££-,即732N x ££,由于当732N x ££时,y 随x 的增大而减小,求出72x =时,27765()23224y =--´+=-,当3x =时,2323312y =--´+=-.最后求解即可;(3)将3y =代入223y x x =--+得:2323x x =--+,解得:10x =,22x =-,将=3y -代入223y x x =--+得:2323x x -=--+,解得:1211x x =--=-+P x 的取值即可.【详解】(1)解: (0,3)C Q ,3OC \=.又3OC OB =Q ,1OB =∴,(1,0)B \.(1,0)B Q ,(0,3)C 为抛物线2y x bx c =-++上的点,\将(1,0)B ,(0,3)C 代入,得103b c c -++=ìí=î,解得23b c =-ìí=î,\抛物线的解析式为223y x x =--+.(2)Q 抛物线的对称轴为直线=1x -,89MN ££,\点N 的横坐标的取值范围为94112N x -££-,即732N x ££,当732N x ££时,y 随x 的增大而减小,当72x =时,27765()23224y =--´+=-,当3x =时,2323312y =--´+=-.\点N 的纵坐标N y 的取值范围为65124N y -££-.M N y y =Q ,\点M 的纵坐标M y 的取值范围为65124M y -££-.(3)Q 点P 与点A 的纵坐标的差的绝对值不超过3,\将3y =代入223y x x =--+得:2323x x =--+,解得:10x =,22x =-,将=3y -代入223y x x =--+得:2323x x -=--+,解得:1211x x =-=-P \点横坐标P x 的取值范围是:12P x -££-或01P x ££-+Q 点P 是抛物线上对称轴右侧任意一点,P \点横坐标P x 的取值范围是: 01P x ££-23.(1)12,14;(2)AE (答案不唯一),证明见解析;(33m £<【分析】(1)根据矩形的性质,结合折叠知识,得出HC DC ==AEH CFH V V ≌,得出AH CH ==,得出AC =sin ACB Ð;设DG GH x ==,则32GE x =-,在Rt GEH V 中,根据勾股定理,列出关于x 的方程,解方程得出x 的值,求出,GE CG ,即可得出答案;(2)根据1sin 2ACB Ð=,得出30ACB Ð=°,根据90DCB Ð=°,得出60DCA Ð=°,根据折叠得出1302DCG GCH DCH Ð=Ð=Ð=°,即可得出GCH HCF Ð=Ð,从而可以证明GCH HCF V V ∽,根据相似三角形的性质,即可得出结论;(3)先根据折叠确定点D ¢的轨迹,然后根据其轨迹找出D A ¢的最大值和最小值,即可确定m 的取值范围.【详解】解:(1)∵四边形ABCD 为矩形,∴DC AB ==,90ADC Ð=°,∵点D 的对应点D ¢恰好与点H 重合,∴HC DC ==∵矩形纸片ABCD 对折,使点D 与点A 重合,点C 与点B 重合,折痕为EF ,然后展开,EF 与CA 交于点H ,∴AE CF =,90AEH CFH Ð=Ð=°,AHE CHF Ð=Ð,∴AEH CFH V V ≌,∴AH CH ==,12EH HF EF ===即AC =∴1sin 2AB ACB AC Ð===;在Rt ACD △中,3AD ===,根据折叠可知,DG GH =,1322DE AE AD ===,设DG GH x ==,32GE x =-,在Rt GEH V 中,222GH GE EH =+,即22232x x æö=-+ç÷èø,解得:1x =,∴31122GE =-=,2CG ===,∴11224EG CG ==;故答案为:12;14.(2)∵1sin 2ACB Ð=,∴30ACB Ð=°,∵90DCB Ð=°,∴903060DCA Ð=°-°=°,根据折叠可知,1302DCG GCH DCH Ð=Ð=Ð=°,∴GCH HCF Ð=Ð,∵90GHC HFC Ð=Ð=°,∴GCH HCF V V ∽,∴CG CH CH CF=,即2CH CG CF =×,∵CF BF AE DE ===,∴空白处可以填AE 或CF 或BF 或DE .故答案为:AE 或CF 或BF 或DE (填其中任意一条即可).(3)∵在将上面的矩形纸片ABCD 沿过点C 的直线折叠,点D 的对应点D ¢在以点C 为圆心,以CD 为半径的圆上,∴当点D ¢在AC 上时,D A ¢最小,即D A ¢的最小值为AH ,∴m ³,∵点D ¢落在矩形的内部或一边上,∴当点D ¢在点D 时,D A ¢最大,∵090a °<£°,∴D A ¢最大无法取到最大值3,m<,∴3综上分析可知,m3£<.m3£<.m【点睛】本题主要考查了矩形的折叠问题,熟练掌握矩形的性质、三角函数的定义、三角形全等的判定和性质,三角形相似的判定和性质,勾股定理的应用,根据折叠得出D¢的轨迹,是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】
1.在Rt △ABC 中,∠C =90°,如果AC =4,BC=3,那么∠A 的正切值为( )
(A )43
;(B )3
4;(C )53;(D )5
4.
2.把抛物线2x y =向右平移1个单位后得到的抛物线是( ) (A )12+=x y ; (B )12-=x y ;(C )2)1(+=x y ;(D )2)1(-=x y . 3.下列各组图形一定相似的是( )
(A )两个直角三角形;(B )两个等边三角形;(C )两个菱形;(D )两个矩形.
4.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =2,BD =3,那么由下列条件能判断DE ∥BC 的是( )
(第4题图)
A D E B
C
(A )
32=BC DE ;(B )52=BC DE ;C )32=AC AE ;(D )5
2
=AC AE .
5.已知e →
为单位向量,a =-3e →
,那么下列结论中错误..的是() (A )a ∥e →
;(B )3a =;(C )a 与e →
方向相同;(D )a 与e →
方向相
反.
6.如图,在△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC ,EF ∥
CD 交AB 于F ,那么下列比例式中正确的是( ) (A )
BC DE DF AF = ; (B )DF AF
DB DF =
; (C )BC DE CD EF = ; (D )AB
AD
BD AF =
. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.已知3
4=b
a ,那么
b
b
a -=_____. 8.在比例尺为1︰50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实 际距离是___________千米. 9.在Rt △ABC 中,∠C =90°,如果sinA =5
2
,BC=4,那么AB=________. 10.已知线段AB =2cm ,点C 在线段AB 上,且AC 2=BC ·AB ,则
AC 的长___________cm .
11.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
12.如果点()14,A y -、()23,B y -是二次函数22+y x k =(k 是常数)图像
上的两点,那么1y _______2y .(填“>”、“<”或“=”)
13.小明沿坡比为1︰3的山坡向上走了100米.那么他升高了______米.
(第6题图)
F
E D C
B
A
14.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、
C 、E 和B 、
D 、F ,如果AC =3,C
E =5,D
F =4,那么BD =_______.
15.如图,已知△ABC ,D 、E 分别是边AB 、AC 上的点,且
1
3
AD AE AB AC ==.
设AB a =,DE b =,那么AC =______________.
(用向量a 、b 表示)
16.如图,已知△ABC ,D 、E 分别是边BA 、CA 延长线上的点,且
D E ∥
B C .如果
3
5
DE BC =,CE=4,那么AE 的长为_______. 17.如图,已知△ABC ,AB =6,AC =5,D 是边AB
的中点,E 是边AC 上一点,∠ADE =∠C ,∠BAC 的平分线分别交DE 、
BC 于点F 、G ,
那么AF AG
的值为_______.
18.如图,在直角坐标平面xoy 中,点A 坐标为(3,
2),∠AOB =90°,∠OAB =30°,AB 与x 轴交于点C ,那么AC :BC 的值为______.
(第18题图)
a b
c
A B C
D
E
F m
n
(第14题图)
(第17题图)
G
F E D
C
B A
(第16题图)
C B
A D E
A
(第15题图)
三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)
将二次函数2241y x x =+-的解析式化为()k m x a y ++=2的形式,并
指出该函数图像的开口方向、顶点坐标和对称轴.
20.(本题满分10分)
如图,已知△ABC 中,AB =AC =5,cos A =5
3
.求底边BC 的长.
21.(本题满分10分)
如图,在△ABC 中,D 、E 分别是边AB 、AC 上的点,DE ∥BC , 点F 在线段DE 上,过点F 作FG ∥AB 、FH ∥AC 分别交B C 于 点G 、H ,如果BG ︰GH ︰HC =2︰4︰3.求
FGH
ADE
S S ∆∆的值. 22.(本题满分10分)
某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为
31°,AB=5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长.
(参考数据:sin580.85︒=,cos580.53︒=,tan58 1.60︒=,
sin310.52︒=,cos310.86︒=,tan310.60︒=.)
C B
A (第20题图)
(第22题图)
B A
M N P
广告牌
(第21题图) H
G
F E D B
C
A
23.(本题满分12分,第(1)小题5分,第(2)小题7分)
已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC ·CE=AD ·BC . (1)求证:∠DCA=∠EBC ;
(2)延长BE 交AD 于F ,求证:AB 2=AF ·AD.
24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)
如图,抛物线c bx x y ++-=2
2
1经过点A
(﹣2,0),点B (0,4).
(1)求这条抛物线的表达式; (2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标; (3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.
25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)
如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E .
(第23题图)
E
D
C
B
A (第
24题图)
(1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD ,且CE =2,ED =3,求线段PD 的长.
(备用图2)
A B C D (备用图1)
A B
C D (第25题图)
A B
P D E。

相关文档
最新文档