光学第一章习题及答案解析

合集下载

第一章光的干涉习题和答案解析

第一章光的干涉习题和答案解析

λdr y 0=∆第一章 光的干涉●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得:cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.式: 解:(1)由公得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m.解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.941/A A V A A ∴===≈+5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

工程光学基础 习题参考答案-第一章_02

工程光学基础 习题参考答案-第一章_02

光线入射到玻璃球表面一部分反射回 空气中,另一部分经过折射入射到玻璃球 内部。根据折射定律 n' SinI ' = nSinI (1-2) 有: 折射角 I ' = 30 o 光线通过玻璃球以 30 o 入射到玻璃球 后表面再次发生反射和折射,根据公式 (1-2)可得折射角 I ' ' = 60 o 以此类推,其传播情况如图所示: 16、一束平行细 一束平行细光束入射到一半径 r=30mm、折射率 n=1.5 的玻璃球上, 的玻璃球上,求其会 聚点的位置。 聚点的位置。如果在凸面上镀反射膜, 如果在凸面上镀反射膜,其会聚点应该在何处? 其会聚点应该在何处?如果凹面镀反射 膜,则反射光束在玻璃中的会聚点又在何处? 则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后, 反射光束经前表面折射后,会聚 点又在何处? 点又在何处?说明各会聚点的虚实。 说明各会聚点的虚实。 解: (1)求入射光线经前表面折射后的会聚点 n' n n'− n 根据公式 − = (1-20)得: l' l r 1 .5 1 1 .5 − 1 − = ⇒ l ' = 90mm l' − ∞ 30 该像点在玻璃球后表面以后 30mm 处,再经后表面折射,此时将前表面成 的像作为后表面的物再次在后表面成 像,各项参数为物距 l=(90-60)=30mm, 折 射 面 半 径 r=-30mm , 物 方 折 射 率 n=1.5,像方折射率 n’=1。同理根据公式(1-20)有: 1 1 .5 1 − 1 .5 − = ⇒ l ' ' = 15mm l ' ' 30 − 30 所以,最终光线会聚到玻璃球后表面之后 15mm 处。 (2)求当凸面上镀反射膜,其会聚点位置 1 1 2 根据公式 + = (1-30)得: l' l r 1 1 2 + = ⇒ l ' = 15mm l ' − ∞ 30 所以,其成像在反射面之后 15mm 处,为虚象。 (3)求凹面镀反射膜,反射光束在玻璃中的会聚点位置 平行细光束经凸面折射成像后再经凹面镀的反射膜反射成像, 利用第一步中 结果可得对于凹面镀的反射膜反射成像其物距 l=(90-60)=30mm ,折射面半径 r=-30mm,根据公式(1-30)得: 1 1 2 + = ⇒ l ' = −10mm l ' 30 − 30

光学原子物理习题解答

光学原子物理习题解答

光学原⼦物理习题解答光学习题答案第⼀章:光的⼲涉 1、在杨⽒双缝实验中,设两缝之间的距离为0.2mm ,在距双缝1m 远的屏上观察⼲涉条纹,若⼊射光是波长为400nm ⾄760nm 的⽩光,问屏上离零级明纹20mm 处,哪些波长的光最⼤限度地加强?解:已知:0.2d mm =, 1D m =, 20l mm =依公式:五种波长的光在所给观察点最⼤限度地加强。

2、在图⽰的双缝⼲涉实验中,若⽤薄玻璃⽚(折射率1 1.4n =)覆盖缝S 1 ,⽤同样厚度的玻璃⽚(但折射率2 1.7n =)覆盖缝S 2 ,将使屏上原来未放玻璃时的中央明条纹所在处O 变为第五级明纹,设单⾊波长480nm λ=,求玻璃⽚的厚度d (可认为光线垂直穿过玻璃⽚)34104000104009444.485007571.46666.7dl k Ddk l mm nmDk nm k nm k nm k nm k nmδλλλλλλλ-==∴==?===========11111故:od屏 O解:原来,210r r δ=-= 覆盖玻璃后,221121821()()5()558.010r n d d r n d d n n d d mn n δλλλ-=+--+-=∴-===?- 3、在双缝⼲涉实验中,单⾊光源S 0到两缝S 1和S 2的距离分别为12l l 和,并且123l l λ=-,λ为⼊射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D ,如图,求:(1)零级明纹到屏幕中央O 点的距离。

(2)相邻明条纹的距离。

解:(1)如图,设0p 为零级明纹中⼼,则:21022112112021()()03()/3/r r d p o D l r l r r r l l p o D r r d D dλλ-≈+-+=∴-=-==-=(2)在屏上距0点为x 处,光程差 /3dx D δλ≈- 明纹条件 (1,2,3)k k δλ=± = (3)/kx k D d λλ=±+在此处令K=0,即为(1)的结果,相邻明条纹间距1/k k x x x D d λ+?=-=4、⽩光垂直照射到空⽓中⼀厚度为43.810e nm =?的肥皂泡上,肥皂膜的折射率 1.33n =,在可见光范围内44(4.0107.610)?-,那些波长的光在反射中增强?解:若光在反射中增强,则其波长应满⾜条件12(1,2,)2ne k k λλ+= =即 4/(21)ne k λ=- 在可见光范围内,有42424/(21) 6.7391034/(21) 4.40310k ne k nm k ne k nmλλ3= =-=?= =-=?5、单⾊光垂直照射在厚度均匀的薄油膜上(n=1.3),油膜覆盖在玻璃板上(n=1.5),若单⾊光的波长可有光源连续可调,并观察到500nm 与700nm 这两个波长的单⾊光在反射中消失,求油膜的最⼩厚度?解:有题意有:2(1/2)(1/2)2(1/2)500(1/2)700nd k k d nk k λλ=++∴='∴+=+min min 5/277/23,2(31/2)5006732 1.3k k k k d nm'+=+'∴==+∴==?即 56、两块平板玻璃,⼀端接触,另⼀端⽤纸⽚隔开,形成空⽓劈尖,⽤波长为λ的单⾊光垂直照射,观察透射光的⼲涉条纹。

物理光学第一章 习题

物理光学第一章 习题

1.9 球面电磁波的电场E是r和t的函数,其中r 是一定点到波源的距离,t是时间。 (1)写出与球面波相应的波动方程的形式; (2)写出波动方程的解。
1. 9 解:球坐标系中:
2 1 2 E 1 E 1 E 2 E 2 r 2 sin 2 2 r r r r sin r sin 2
sinsinsin50sin0511153072sincos2sincos06651335sinsin2sincos2sincos07051414sincossincos14光矢量垂直于入射面和平行于入射面的两束等强度的线偏振光以50度角入射到一块平行平板玻璃上试比较两者透射光的强度
第一章 光的电磁理论 习题
By 0,
Bz 0
由麦克斯韦方程得:
B E t
分量式为:
i E x Ex
j y Ey
k z Ez
Ez E y Ex Ez E y Ex ( )i ( )j ( )k y z z x x y Bx By Bz i j k t t t
由题意球面电磁波的电场E是r和t的函数:
1 2 E 2 E 2 E 1 2 E 2 r rE 2 2 r r r r r r r r
2
则球坐标系下的波动方程为:
1 2 1 2 E rE 2 2 2 r r v t 2 2 1 rE rE 2 2 r v t 2
1.1 一个平面电磁波可以表示为
14 z Ex 0, Ey 2cos 2 10 t , Ex 0 c 2
求: (1)该电磁波的频率、波长、振幅和原点的初 位相为多少? (2)波的传播和电矢量的振动各沿什么方向? (3)写出与电场相联系的磁感应强度的表达式。

《光学教程》课后习题解答

《光学教程》课后习题解答

《光学教程》(XX)习题解答第一章光的干涉1、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为的XX投射到此双缝上, 两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:l8^ 500 10 — 0.409cmd 0.022改用700 10^ = 0.573cm0.022两种光第二级亮纹位置的距离为::y =2 :y2 -2 y =0.328cm2、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P点离中央亮纹为问两束光在P点的相位差是多少?⑶求P点的光强度和中央点的强度之比。

解:⑴⑵由光程差公式、.二 a - R 二 d si n r - d —r o⑶中央点强度:P 点光强为:3、把折射率为的玻璃片插入杨氏实验的一束光路中, 光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已 知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:n -1 d =55 丸5_7_6Ad6 10=6 10 m =6 10 cm(n —1 ) 0.527.y4、波长为的单色平行光射在间距为的双缝上。

通过其中一个缝的能 量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和 条纹的可见度。

解:由干涉条纹可见度定义:由题意,设,即代入上式得5、波长为的光源与菲涅耳双镜的相交棱之间距离为, 棱到光屏间的 距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹 角。

解:XX 耳双镜干涉条纹间距公式r L _ 20 180 2r y 2 200. 1L y =r L2r si n0. 0035180…smo.0035—60「26、在题1.6图所示的xx 镜实验中,光源S 到观察屏的距离为,到 xx 镜面的垂直距离为。

xx 镜长,置于光源和屏之间的中央。

工程光学习题解答(第1章)

工程光学习题解答(第1章)

第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用.答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律。

应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量。

(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播.说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。

2.已知真空中的光速c≈3×108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1。

65)、加拿大树胶(n=1.526)、金刚石(n=2。

417)等介质中的光速。

解:v=c/n(1)光在水中的速度:v=3×108/1。

333=2。

25×108 m/s(2)光在冕牌玻璃中的速度:v=3×108/1。

51=1。

99×108 m/s(3)光在火石玻璃中的速度:v=3×108/1。

65=1.82×108 m/s(4)光在加拿大树胶中的速度:v=3×108/1。

526=1。

97×108 m/s(5)光在金刚石中的速度:v=3×108/2。

417=1。

24×108 m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。

那时候的玻璃极不均匀,多泡沫。

除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。

3.一物体经针孔相机在屏上成像的大小为60mm,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离.解:⇒l=300mm4.一厚度为200mm的平行平板玻璃(设n=1。

5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。

光学课后习题解答

光学课后习题解答
4汽1.5x 1.2汉1% CrC
当j=9时,
扎一—3/8 nm
19
所以,在390~760nm的可见光中,从玻璃片上反射最强的光波波长为
423.5 nm,480 nm,553.8 nm,654.5 nm.
12.迈克耳孙干涉仪的反射镜M2移动0.25mm时,看到条纹移过的数目为909个,设光为垂直入射,求所
17.9cm,纸厚0.036mm,求光波的波长。
11.波长为400Ll760nm的可见光正射在一块厚度为1.2×10-6m,折射率为1.5玻璃片上,试问从玻璃片反
射的光中哪些波长的光最强.
解:依题意,反射光最强即为增反膜的相长干涉,则有:
=2n2d =(2j1)-
4n2d2j 1
,=4n2d = 4 1.5 1.2 10^ = 7200nm
用光源的波长。
解:根据课本59页公式可知,迈克耳孙干涉仪移动每一条条纹相当h的变化为:
现因
N =909所对应的h为
2 0.25
909
13.迈克耳孙干涉仪平面镜的面积为4×4c∏t观察到该镜上有20个条纹。当入射光的波长为589nm时,
两镜面之间的夹角为多大?
解:因为S
又因为
所以
2
解:
Δ)
(1)由公式

/ =扎
d
A「0
-y二
50__5_2
6.4 10 =8.0 10 cm

d
=0.4
(2)由课本第
20页图1-2
的几何关系可知
r2-r1dsid tan "^=0.04^=0.8 10
2222八'
I=AA22 A1A2cos=4A CoS
(3)由公式2得

物理光学第一章习题解答

物理光学第一章习题解答

1 2 90
在下表面反射时,易知 4 1 , 3 2 因此 3 4 90 ,满足全偏振条件,亦发生全 偏振
13. 光束垂直入射到45°直角棱镜的一个侧面,并经斜 面反射后有第二个侧面射出(如图),若入射光强为I0, 求从棱镜透过的出射光强I?设棱镜的折射率为1.52,且 不考虑棱镜的吸收。
n2 cos 2 4sin 2 2 cos 2 1 s 0.823 2 n1 cos 1 sin (1 2 ) n2 cos 2 4sin 2 2 cos 2 1 p 0.99 2 2 n1 cos 1 sin (1 2 ) cos (1 2 )
解: E ( z ) 1, z 1 0, 其他
A(k)=


f ( z )e
ikz
dz e
L
L
ikz
1 ikz e ik 2L
L L
2 sin kL k
sin sin kL 2L 2L 2 L kL
2 L 2 L sin c
物理光学第一章习题解答
8. 太阳光(自然光)以60°角入射到窗玻璃(n=1.5) 上,试求太阳光的透射比。
分析:直接利用折射定律(P302)和透射比公式(P307)
解: 由 1 60, n1 1, n2 1.5, n1 sin 1 n2 sin 2
可得 2 35.26
由弦长计算公式,得 N A 2 R sin 2
A0 2 R sin
因此

2
N sin 2 A A0 sin 2 N sin 2 35. 试求如图所示的矩形脉冲的傅里叶变换,并绘出其 频谱图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1127、在调整迈克尔逊干涉仪得过程中,在视场中发现有条纹不断陷入,这说明等效空气膜得厚度在_______变小___________。
1128、调整好迈克尔逊干涉仪,使M1与M2严格垂直得条件下,干涉条纹将就是一组同心圆环。当移动动镜使等效薄膜厚度连续增大,则视场中观察到干涉条纹从中心__涌出_______,条纹间距___变大____________。
1119、通常牛顿环仪就是用平凸透镜与平板玻璃接触而成,若平凸透镜得球面改为______圆锥_______面,则可观察到等距同心圆环。
1120、在牛顿环中,将该装置下面得平板玻璃慢慢向下移动,则干涉条纹向环心缩小___________。
1121、牛顿环就是一组内疏外密得,明暗相间得同心圆环,暗环半径与_其干涉级得二分之一次方__________成正比。
1108、在杨氏双缝干涉实验中,缝距为d,缝屏距为D,屏上干涉条纹得间距为Δy。现将缝距减小一半,则干涉条纹得间距为。
1109、在杨氏双缝干涉实验中,用一薄云母片盖住实验装置得上缝,则屏上得干涉条纹要向_上移_____移动,干涉条纹得间距不变_____。
1110、在杨氏双缝干涉实验中,得到干涉条纹得得间距为Δy,现将该装置移入水中,(n=3/4),则此时干涉条纹得焦距为。
1116、波长为λ得单色光垂直照射劈角为α得劈形膜,用波长为得单色光垂直照射,则在干涉膜面上干涉条纹得间距为________________。
1117、空气中折射率为n,劈角为α得劈形膜,用波长为λ得单色光垂直折射,则在干涉膜面上干涉条纹得间距为____________。
1118、由平板玻璃与平凸透镜构成得牛顿环仪,置于空气中,用单色光垂直入射,在反射方向观察,环心就是__暗得_________,在透射方向观察,环心就是_____亮得_____。
物理与机电工程学院2011级应用物理班
姓名:罗勇学号:20114052016
第一章习题
一、填空题:
1001.光得相干条件为两波频率相等、相位差始终不变与传播方向不相互垂直。
1015、迈克尔逊干涉仪得反射镜M2移动0、25mm时,瞧到条纹移动得数目为1000个,若光为垂直入射,则所用得光源得波长为_500nm。
1039,光在媒介中通过一段几何路程相应得光程等于折射率与__路程_得乘积。
1089、振幅分别为A1与A2得两相干光同时传播到p点,两振动得相位差为ΔΦ。则p点得光强I=
1090、强度分别为与得两相干光波迭加后得最大光强=。
1091、强度分别为I1与I2得两相干光波迭加后得最小光强=。
1092、振幅分别为A1与A2得两相干光波迭加后得最大光强=。
1113、在玻璃(n0=1、50)表面镀一层MgF2(n=1、38)薄膜,以增加对波长为λ得光得反射,膜得最小厚度为______________。
1114、在玻璃(n=1、50)表面上镀一层ZnS(n0=2、35),以增加对波长为λ得光得反射,这样得膜称之为高反膜,其最小厚度为。
1115、单色光垂直照射由两块平板玻璃构成得空气劈,当把下面一块平板玻璃缓慢向下平移时,则干涉条纹___下移_______,ຫໍສະໝຸດ 暗条纹间隔____不变_______。
1122、用波长为λ得单色光产生牛顿环干涉图样,现将该装置从空气移入水中(折射率为n),则对应同一级干涉条纹得半径将就是原条纹半径得_____________倍。
1123、当牛顿环装置中得平凸透镜与平板玻璃之间充以某种液体时,原来第10个亮环得直径由1、4 cm变为1、27 cm,则这种液体得折射率为______1、10___________。
1098、两相干光得强度分别为I1与I2,则干涉条纹得可见度v=。
1099、两相干光得振幅分别为A1与A2,当它们得振幅都增大一倍时,干涉条纹得可见度为不变。
1100、两相干光得强度分别为I1与I2,当它们得强度都增大一倍时,干涉条纹得可见度不变。
1101、振幅比为1/2得相干光波,它们所产生得干涉条纹得可见度V=。
1102、光强比为1/2得相干光波,它们所产生得干涉条纹得可见度V=。
1103、在杨氏双缝干涉实验中,缝距为d,缝屏距为D,屏上任意一点p到屏中心p点得距离为y,则从双缝所发光波到达p点得光程差为。
1104、在杨氏双缝干涉实验中,缝距为d,缝屏距为D,波长为λ,屏上任意一点p到屏中心p0点得距离为y,则从双缝所发光波到达p点得相位差为
1093、振幅分别为A1与A2得两相干光波迭加后得最小光强=。
1094、两束相干光叠加时,光程差为λ/2时,相位差=。
1095、两相干光波在考察点产生相消干涉得条件就是光程差为半波长得倍,相位差为π得倍。
1096、两相干光波在考察点产生相长干涉得条件就是光程差为波长得倍,相位差为π得倍。
1097、两相干光得振幅分别为A1与A2,则干涉条纹得可见度v=。
1124、在迈克尔逊干涉仪中,当观察到圆环形干涉条纹时,这就是属于___等倾_________干涉。
1125、在迈克尔逊干涉仪实验中,当M1与M2垂直时,可观察到一组明暗相间得同心圆环状干涉条纹,环心级次_最高_______,环缘级次_最低_______。
1126、观察迈克尔逊干涉仪得等倾圆环形条纹,当等效空气薄膜得厚度增大时,圆环形条纹____沿法线放向外扩大_________________。
1111、用波长为500 nm得单色光照射杨氏双缝,入用折射率为1、5得透明薄片覆盖下缝,发现原来第五条移至中央零级处,则该透明片得厚度为_______________。
1112、增透膜就是用氟化镁(n=1、38)镀在玻璃表面形成得,当波长为λ得单色光从空气垂直入射到增透膜表面就是,膜得最小厚度为_____________。
1105、在杨氏双缝干涉实验中,缝距为d,缝屏距为D,波长为λ,屏上任意一点p到对称轴与光屏得交点p0得距离为y,设通过每个缝得光强就是I0,则屏上任一点得光强I=。
1106、在杨氏双缝干涉实验中,缝距为d,缝屏距为D,入射光得强度为I0,波长为λ,则观察屏上相邻明条纹得距离为。
1107、波长为600nm得红光透射于间距为0、02cm得双缝上,在距离1m处得光屏上形成干涉条纹,则相邻明条纹得间距为__3_mm。
相关文档
最新文档