9九分子进化与分子改造

合集下载

分子进化

分子进化
基因组大小的变化是由非基因的DNA含量变化引起的。
9
2.3 核酸序列 二种:简单序列:结构基因的组成部分;
重复序列:包含调节基因的顺序。 序列变化:替换、插入、缺失 在不同生物中,核酸序列的差异能反映它们之间
亲缘关系的远近。 同源基因而言,亲缘关系越近,序列差异越小。 核酸序列变化的速率在同一基因中的不同区域是有
3
经历两个阶段: 60年代,蛋白质序列分析和电泳技术的引入,对不同生物
的蛋白质结构进行比较,分析它们之间的差别及差别性质。 发现特定蛋白质的氨基酸替换速度是基本恒定的。
分子钟;分子进化的中性学说 80年代,RFLP,PCR等,对不同生物的基因进行分析比较,
并对DNA序列进行比对,找出差异,以探究不同物种在进 化上的渊源与联系。基因的进化速度是稳定的。
19
不破坏分子的现有结构和功能的突变发生的频 率较高。
例如,基因的内含子、假基因、卫星DNA等的 替换速率远高于基因的外显子;密码子第三位 碱基的替换率远高于第一、二位碱基。 —— 3 > 1 > 2
20
4.3 新基因常来源于原有基因的重复。
基因重复在生物进化和新基因产生中起创造性的 作用。同一基因存在着两个拷贝,使一个拷贝 可积累突变并最终以一个新基因的姿态出现, 而另一个拷贝则保留物种在过渡时期生存所需 的老功能。
33
建立分子钟的步骤
⑴ 选择所要比较的生物大分子种类:根据具体的研究目的和 已掌握的资料,选择进化速率相对恒定、速率大小合适、 在要比较的所有物种中都存在的生物大分子。
⑵ 选择所要比较的物种,确定各个比较组合及其所代表的进 化事件。
⑶ 获得要比较的物种的生物大分子一级结构信息;从古生物 学和地质年代学资料中获得每一个比较组合所代表的进化 事件发生的地质时间的数据。

分子进化与基因组学综述

分子进化与基因组学综述

我看分子进化与基因组学综述自达尔文时代起,许多生物学家都有一个梦想,那便是重建地球上所有生命的进化历史并以系统树的形式描述这部历史(Haeckel 1866)。

理想的途径应该是利用化石证据,但是化石是如此的零散且不完整,致使大多数研究者转向比较形态学和比较生理学的方法。

通过后两条途径,经典进化学家已得出有机体进化历史的主要框架。

然而,形态和生理性状的进化如此复杂,以致不可能产生一幅进化历史的清晰图象。

不同学者重建的系统树在细节上几乎总是可争议的。

分子生物学的进展大大地改变了这种局面。

由于所有生物的蓝图都用DNA (在某些病毒中则用RNA)来书写,因而人们可以通过比较DNA来研究它们的进化关系。

分子途径较经典的形态学和生理学途径有如下优点。

首先,DNA仅由4种碱基组成,即:腺嘌呤(A)、胸腺嘧啶(T)、胞核嘧啶(C)和鸟嘌呤(G)。

所有生物,不论是细菌、植物和动物中的DNA均由这四种碱基组成。

因而,可用它们比较所有有机体的进化关系。

这在经典进化研究方法中是不可能做到的。

其次,DNA的进化演变或多或少是有规律的,因而能用数学模型来描述其变化并可比较亲缘关系较远的生物间的DNA。

形态性状的进化演变,即使在一段较短的进化时间,也是极其复杂的。

因而,形态的系统发育研究必然会有各种各样的假设,但这些假设往往难以令人信服。

第三,所有生物的基因组都是由长长的核酸序列组成,比形态性状包含的系统发育信息要多得多。

鉴于上述原因,分子系统学有望澄清生命系统树中多处对于经典途径来说极为棘手的问题。

欲估计核苷酸替代数,必须应用核苷酸替代的数学模型。

为此,许多学者提出了不同的替代模型。

Jukes和Cantor方法一个最简单的核苷酸替代模型由Jukes和Cantor(1969)提出。

该模型假定任一位点的核苷酸替代都是以相同频率发生的,且每一位点的核苷酸每年(或以任何其他时间单位)以α概率演变为其它三种核苷酸中的一种(表3.2A)。

第四章 分子进化概述

第四章 分子进化概述

七腮鳗(lamprey)
基因重复形成 、链
Pd
链 以灵长类为例: 人 vs 树鼩(tree shrew):
naa = 146,daa = 26,pd = 26/146 = 0.178
Kaa = 0.196
链:(灵长类)
树鼩(tree shrew) 棕狐猴 (brown lemur) 蜘蛛猴 (spider monkey) 日本猴 (Japanese monkey)
• 功能的约束造成不同的基因突变速率不一样
• 功能重要的部分变化会影响其功能,大多数的变 化均受负选择的作用
• 功能不很重要的部分变化多,不影响功能,被随 机保留
NOTE: 其观点后来略有改变
20世纪80年代,承认正选择,只不过认为其比例较小
六. 分子进化的主要研究内容
1. 经典进化与分子进化研究的比较: (1)经典进化主要以形态特征为主:
不可能!
2. 解释:
• 存在很多选择上中性的等位基因,它们的频率由突 变率和遗传漂移(genetic drift)而定。 1968年 Kimura 提出了“中性理论” (neutral mutation – random drift) 蛋白质的多态性是由选择上中性或接近中性的等位基因 被遗传漂变随机固定的。 固定(fixation): 种群中同一代的所有个体共享一种 突变的等位基因。 中性的等位基因被固定的概率为该基因的频率
naa:所比较序列的氨基酸数目
daa:所比较两个序列中差异的氨基酸数目
pd:两个序列氨基酸相差的程度(percentage of amino
acid difference, pd = daa / naa
T:两个同源序列分歧的时间
序列一:CHSACKSCACTYSIPAKCFCTDIND-FCYEPC 序列二:CHSACKSCACTFSIPAECFCGDIDDGFCYKPC

分子进化和分子系统学(转载)

分子进化和分子系统学(转载)

分⼦进化和分⼦系统学(转载)分⼦进化和分⼦系统学12.1 概念 分⼦进化⼀词有两层含义。

从⽣命历史看,在前⽣命的化学进化阶段(细胞⽣命出现之前),进化主要表现在分⼦层次上,即表现在⽣物分⼦的起源和进化上。

换⾔之,从时序上说,分⼦进化是⽣物进化的初始阶段。

但从另⼀⾓度来看,在细胞⽣命出现之后,进化发⽣在⽣物分⼦、细胞、组织、器官、⽣物个体、种群等各个组织层次上,分⼦进化是⽣物分⼦层次上的进化。

换⾔之,从组织层次上说,分⼦进化是⽣物组织的基础层次的进化。

我们通常所说的分⼦进化就是指后者。

前者通常被称为前⽣命的化学(分⼦)进化。

⼀般⽽⾔,对⾃然现象的认识过程是从⼈类感官所及的层次开始,逐步向微观和宏观两个⽅向扩展。

向微观领域的探索往往出于寻找“深层原因”的动机。

对进化原因和进化机制的探索,最终必然深⼊到分⼦层次。

向宏观领域探索则是相反的过程,即⽤已知的低组织层次的知识去认识和解释⾼组织层次现象。

如今,科学家们发现,不同层次的现象遵循不同的规律和不同的法则。

低层次的规律并不完全适⽤于⾼层次,⽤⾼层次的规律解释低层次现象也往往⾏不通。

因此,本章讨论的分⼦进化规律和分⼦进化的理论基本上只适⽤于分⼦进化。

12.2 ⽣物⼤分⼦进化的特点 在⽣物⼤分⼦的层次上来观察进化改变时,我们看到的是⼀个很不同于表型进化的过程。

根据分⼦进化研究的权威之⼀⽊村(Kimura,1989)的总结,分⼦进化有两个显著特点,即进化速率相对恒定和进化的保守性。

1.⽣物⼤分⼦进化速率相对恒定 如果以核酸和蛋⽩质的⼀级结构的改变,即分⼦序列中的核苷酸或氨基酸的替换数作为进化改变量的测度,进化时间以年为单位,那么⽣物⼤分⼦随时间的改变(即分⼦进化速率)就像“物理学的振荡现象”⼀样,⼏乎是恒定的。

通过⽐较不同物种同类(同源的)⼤分⼦的⼀级结构,可以计算出该类分⼦的进化速率。

对于某类蛋⽩质分⼦或某个基因(或核酸序列)来说,其分⼦进化速率可表⽰为氨基酸或核苷酸的每个位点每年的替换数,即 上式中的K是分⼦进化速率(每个氨基酸位点每年的替换数);d是氨基酸或核苷酸替换数⽬;N是⼤分⼦结构单元(氨基酸或核苷酸)总数; t是所⽐较的⼤分⼦发⽣分异的时间, 2t代表进化时间,进化经历的时间是分异时间的2倍。

分子进化和系统发育的研究及其应用

分子进化和系统发育的研究及其应用

分子进化和系统发育的研究及其应用进化是生物学的核心概念之一,分子进化是现代进化生物学的重要组成部分,而分子系统发育则是分子进化研究的一项重要应用。

本文将从分子进化的基本原理出发,介绍分子系统发育的原理、方法与应用,并探讨其在不同领域中的意义。

一、分子进化的基本原理分子进化是基于DNA/RNA序列或蛋白质序列的进化研究分支。

基因等遗传物质包含了生物过去和现在的大部分信息,通过比较彼此的差异,就能推导出它们之间的进化关系。

分子进化的基本原理在于遗传突变的随机性和累积性。

在生物个体复制时,遗传物质会随机地产生突变,这些突变可以累积,最终就会形成差异。

这些差异可以代表生物的基因型和表型的演化历史。

二、分子系统发育的原理分子系统发育是根据生物体DNA/RNA序列或蛋白质序列的变化,推断生物之间的进化关系和亲缘关系的科学。

生物之间的相似性是由共同的祖先所造成的,相似性越大,共同祖先的距离就越近。

分子系统发育利用各个物种之间的序列差异,通过复杂的计算机分析推断各个物种之间的进化关系及其进化时间。

分子系统发育中通常用到的基本原理之一是“钟模型”,即基因变异率(即分子钟)是在所有物种中大致相同的。

换句话说,如果我们确定了一组基因序列的共同祖先时间,我们就可以根据不同物种间的分子差异推定这些物种的进化时间。

三、分子系统发育的方法分子系统发育研究通常使用序列比对、物种树构建、分支支持度评估和模型选择等方法。

下面简要介绍每种方法的基本原理:1. 序列比对序列比对是分子系统发育分析的基础之一,其目的是从一组相关序列中确定基因组中位点、简化不必要的信息,减小计算量。

序列比对中使用的最常用算法是 Needleman-Wunsch(NW)算法和Smith-Waterman(SW)算法。

这些算法旨在寻找两个(或多个)序列之间的最长公共子序列(LCS),并且可以计算序列间的“匹配”和“不匹配”得分。

2. 物种树构建分子系统发育分析的主要目的是构建物种树,物种树是表示生物之间进化关系的分枝图。

分子进化的概念、理论和方法

分子进化的概念、理论和方法
进化时 , 一般 都是 指 后一层 意思 。
分子进化的证据
血 红蛋 白是“ 子进化” 分 中研究得 比较 深人 的一 种
分子。高等脊椎动物的血红蛋白是由两条。 链和两条 6 1链聚合而成的四聚体,其中。链由 11 4 个氨基酸构 成。已对许多脊推动物的a 链进行过比较〔’发现人 ‘, 。 与鳌鱼有7 个氨基酸不同,人与鲤鱼有“ 个氨基酸 4 不同, 人与牛有 1 7个氨基酸不同。从古生物学和比较 解剖学研究获知, 三者中人与鳌鱼的亲缘关系最远, 与 牛的亲缘关系最近。可见, 生物从同一祖先分歧进化
Evo u in l to 斗I
生 ,9 密码子 变换 。 A A 与 A G 都是 L s的密 4种 A A y
中性突变
产生突 变的 D A 变化 方式 有 4 N 种, 即 核 营 酸 的替换 、 缺失 、 附加和倒位 , 而最 常发 生的是 核昔酸 替
码子 , 这种密码 子变 换并不 引起 氨基酸 替换 , 称同义突
U A !_ / UAA -
\U j

UA G
c } _ A G U 护-A > G
G 户
_U _、 l UC - A 气厂> UG
、 尹 G
U (、 UG u( , A Au -
\c /

UG人
c I AG- G } UA A
G 声
_/ 、 _U
、 / C
U {_ 卜 > A A- UG
重 要作 用 ,并与 进化 速 率有关 。
分ห้องสมุดไป่ตู้进化的学说
达尔文的伟大功绩就是建立了生物进化的自然选 择学说。将达尔文的自然选择和孟德尔的遗传学综合 在一起, 就成了综合进化学说, 又称新达尔文主义( 综 合进化论者有时又被称为群体遗传学派) 由于 F- 。 i

分子进化与分子改造课件

分子进化与分子改造课件

序列比较 源于同一祖先DNA/氨基酸序列的两
条DNA/氨基酸序列,考察二者的差异。

序列差异

分子进化 以累计在DNA/氨基酸分子上的历史
信息为基础研究分子水平的生物进化过程和机制。
进化过程中分子突变的痕迹。
分子系统发育学(Molecular Phylogenetics)
分子系统学(Molecular

生物大分子进化速率相对恒定

随时间的改变主要表现为核苷酸、蛋白质一级结构的改变

不同物种同源大分子的分子进化速率大体相同,例如人与马的血
红蛋白氨基酸序列差异0.8×10-9/AA.a,人与鲤鱼0.6×10-9/AA.a

分子进化速率远远比表型进化速率稳定
生物大分子进化保守

功能重要的大分子在进化速率上明显低于那些功能不重要的
的进化速率r(t)

6、由此可以推断未知进化事件的发生时间
分子进化与分子改造课件

关于分子钟的讨论和争议
1、对长期进化而言,不存在以恒定速率替换的生物大分
子一级结构(基因功能的改变、基因数目的增加)
2、不存在通用的分子钟
3、争议

分子钟的准确性

中性理论(分子钟成立的基础)
分子进化与分子改造课件
分子进化与分子改造课件
分子进化与分子改造课件
三、分子钟

根据分子系统学研究与古生物学资料相结合,建立推论生
物进化事件发生的时间表。
假定分子进化速率r恒定,则分子进化改变量(替代数目
或替代率)与进化时间成正比。以两条序列为例:
d=2rt
其中,t是进化时间,d是这两条序列每个位点的替代数目

第十章 分子进化和分子系统学

第十章 分子进化和分子系统学
1973年木村资生讨论了这一情况,如 下表。
表:血红蛋白不同部位氨基酸的替换率
区域 血红蛋白α链 血红蛋白β链
表面
1.35
2.73
血红素结合部 0.65
0.236
由以上的例子可以看出,不同的蛋
白质分子其进化速度不同,即使是同一
种蛋白质分子其不同的区域或不同的
氨基酸进化的速度也不同。进化特点是
越重要的分子、分子中越重要的部位或
第二个是组蛋白H4,它在核内和 DNA结合,对遗传信息的贮存具有十分 重要的作用,是一种特殊化的蛋白质, 在漫长的进化过程中几乎不允许它发生 变化,所以它是一个非常保守的蛋白质。
第三个是血红蛋白,它的分子结构已 经非常清楚,它有几个螺旋状的区域和非 螺旋状的区域,分子的内部是疏水氨基酸, 这些氨基酸非常保守,特别是和血红素结 合的氨基酸,它们对血红蛋白的功能具有 重要的作用,它的变化将使其功能发生变 化甚至丧失,所以它们保守。而血红蛋白 表面的氨基酸对血红蛋白机能的影响相对 较小,所以容易发生变化。
的两个物种的分歧年数和蛋白质氨基酸的
差异,就可以计算出该蛋白质的进化速率。 如人和鲨鱼的分歧年数为4.2X108年,血
红蛋白α链差异Kaa为0.76,Kaa=0.76 /2 X 4.2X10-8 = 0.9X10-9。用同样的方
法对人和鲤鱼的血红蛋白α链进行比较计 算,进化速率为0.6X10-9。
通过以上分析结果,不难看出,蛋白质是
Mross G.A.(1967)通过对偶蹄类的血纤蛋白肽A 和B的氨基酸序列、氨基酸替换的频度进行了研 究,发现氨基酸的替换在分子内部的分布是不 均衡的,变化较快的氨基酸的分布比较集中, 变化较慢的氨基酸的分布比较分散。其中变化 最快的是血纤蛋白肽A的第12到19位,肽B的第18 到21位的氨基酸,这些部位和偶蹄类的适应进 化有着密切的关系。血凝酶是由血凝蛋白原切 除血纤蛋白肽后形成的,A链的切点在N端第一 个Arg处。第4位和第5位的Gly非常保守,不发生 变化或几乎不发生变化,第2位的Pro也非常保 守,而第12、13和14位变化就非常大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档