酶的定向进化
酶定向进化技术

酶定向进化技术1. 酶定向进化技术是一种通过人工控制酶的进化,使其在某些特定条件下表现出更高的催化活性和特异性的方法。
2. 在酶定向进化技术中,通过利用基因突变、重组等方法构建大量突变体库,然后在特定条件下筛选具有更高催化活性的突变体。
3. 酶定向进化技术的优点在于可以迅速地获得高效的酶催化体系,从而为化学制造和生命科学研究提供了强有力的工具。
4. 酶定向进化技术主要分为三个步骤:突变体库构建、筛选特异性突变体和进一步优化突变体。
5. 突变体库构建是酶定向进化技术的第一步,它通常通过基因突变或重组等方法构建,目的是产生大量具有不同变异的突变体。
6. 筛选特异性突变体是酶定向进化技术的第二步,它通常通过高通量筛选等方法,鉴定突变体的催化效率和特异性。
7. 进一步优化突变体是酶定向进化技术的最后一步,在此步骤中,通过多轮筛选和优化,获得具有更高活性和更好特异性的突变体。
8. 酶定向进化技术的应用非常广泛,可以用于生命科学研究和工业应用,如药物合成、环保和食品加工等。
9. 酶定向进化技术的成功需要一个高质量的突变体库,包括突变类型的多样性,覆盖面积的广度和深度以及可操作性的高效性。
10. 在酶定向进化技术中,通过融合多个酶的结构域,可以产生具有更高催化效率和特异性的新型酶。
11. 酶定向进化技术是一种可持续的策略,能够减少化学过程中的有害废物生成并提高反应选择性。
12. 在酶定向进化技术中,可以通过分析突变位点的二级结构和空间位阻来预测突变体的稳定性和催化效率。
13. 酶定向进化技术的关键是筛选合适的突变体,并对其结构进行深入的理解,从而在优化突变体的过程中提高筛选效率和提高酶的活性和特异性。
14. 酶定向进化技术的优化和改进取决于序列、结构和动力学等因素的综合作用,需要深入理解酶的结构和催化机制。
15. 酶定向进化技术的突变体需要在反应活性和稳定性之间寻求平衡,因此需要进行多轮的优化和筛选。
16. 酶定向进化技术可以应用于合成酶、流体催化、控制酶功能和抗体结构工程等方面。
酶的定向进化

流式细胞计数法 细胞经荧光染色后,通过高速流动系统,排 成单行,逐个通过流式细胞计数仪进行测定。
酶检测
通过酶促反应的特征 加入底物显色 荧光共振能量转移 同位素标记底物 通过检测底物消耗或产物生成进行终点检测
信号探测
分光光度计和荧光酶标仪 气相色谱和高效液相色谱 质谱和核磁
外显子改组
外显子改组(exon shuffling类似于DNA改 组,与但与其不同,它是靠同一种分子间内 含子的同源性带动,而DNA改组不受任何限 制,发生在整个基因片段上。
注:改造幅度小但更实际
外显子改组(exon shuffling)〔16,17〕 类似于DNA改组,两者都是在各自含突变的 片段间进行交换,前者尤其适用于真核生物. 在自然界中, 不同分子的内含子间发生同源重 组, 导致不同外显子的结合, 是产生新蛋白质 的有效途径之一. 与DNA改组不同,外显子改 组是靠同一种分子间内含子的同源性带动, 而 DNA改组不受任何限制, 发生在整个基因片段 上. 外显子改组可用于获得各种大小的随机肽 库.
酶工程课件 5 第八章_酶定向进化

44/169
8.2.2 基因体外随机突变方法--易错PCR技术
易错PCR应用实例
Chen.K和Arnold采用易错PCR对枯草杆菌蛋白酶进行了 体外进化研究。他们通过降低反应体系中dATP的浓度,对 编码该酶从第49位氨基酸到C端的DNA片段进行易错 PCR,经筛选得到的几个突变株在高浓度的二甲基甲酰胺 (DMF)中酶活性明显提高,其中突变体PC3在60%的DMF 中,酶活力是野生型的256倍。将PC3再进行两个循环的定 向进化,得到的突变体酶活力比PC3还要高3倍。
7/169
生物的自然进化
➢进化过程:
突变→自然选择→遗传后代
➢进化结果:
基因多样性: 为完成同一功能所表现出的 多个 基因或同一个基因(同源性)
代谢途径的多样性: 同样产物,多条途径 代谢产物的多样性: 同一底物,不同产物
8/169
如何利用相对简单快速的方法对天然 酶的改造或构建新的非天然酶?
5/169
天然酶的局限性
酶催化的精确性和有效性常常不能很好地满足 酶学研究和工业化应用的要求 稳定性差 活性低使催化效率很低 缺乏有商业价值的催化功能
天然酶的局限性源于酶的自然进化过程。
6/169
现代生物工程对酶的要求
1、能具备长期稳定性和活性 2、能适用于水及非水相环境 3、能接受不同的底物甚至是自然界不存在的合成底物 4、进一步增强酶对多种底物的分解能力
用于突变后的分子群,起着选择某一方向的进化而排 除其他方向突变的作用,整个进化过程完全是在人为 控制下进行的
酶定向进化 诺贝尔

酶定向进化与诺贝尔奖引言酶定向进化是一种通过人工选择和改造酶的方法,以达到特定的催化活性和特异性。
这一领域的研究为生物技术和医药领域带来了巨大的突破,因其重要性而获得了2018年度诺贝尔化学奖。
本文将详细介绍酶定向进化的原理、应用以及相关的诺贝尔奖背景。
酶定向进化原理酶是一类生物催化剂,能够加速特定化学反应的速率。
然而,自然界存在的酶并不能满足所有工业和医药领域对催化活性和特异性的要求。
因此,科学家开始尝试通过人工选择和改造酶来达到所需目标。
1. 随机突变随机突变是酶定向进化中最常用的方法之一。
科学家通过引入随机突变(如错误复制或DNA损伤)来产生大量具有不同特征的变异体。
2. 活性筛选在获得了大量变异体后,科学家需要进行筛选以找到具有所需催化活性的酶。
通常,这是通过将变异体与目标底物反应,并使用高通量筛选技术来检测产生的产物。
3. 逐步优化在第一轮筛选后,科学家通常会选择具有较高活性的变异体进行进一步改进。
这可以通过随机突变和筛选的多轮循环来实现,以逐步提高酶的催化效率和特异性。
酶定向进化的应用1. 生物燃料生产酶定向进化在生物燃料生产中发挥着重要作用。
通过改造酶,科学家们能够提高生物燃料的产量和质量。
例如,利用酶定向进化技术可以改良木质纤维素降解酶,从而提高生物质能源转化效率。
2. 药物合成药物合成过程中需要复杂的催化反应。
酶定向进化可以帮助科学家设计出更有效、特异性更好的催化剂,从而加速药物合成过程并提高产品纯度。
3. 环境保护酶定向进化还可以应用于环境保护领域。
通过改变酶的特异性,科学家们可以开发出对特定有害物质具有高效降解能力的酶。
这为环境污染物的清除提供了新的解决方案。
诺贝尔奖背景2018年度诺贝尔化学奖授予了三位科学家弗朗西斯·阿诺德、乔治·史密斯和格雷戈里·温特尔,以表彰他们在酶定向进化领域的杰出贡献。
弗朗西斯·阿诺德是第五位获得诺贝尔化学奖的女性科学家,她通过引入DNA重组技术来改造酶,并成功应用于生物燃料生产和药物合成等领域。
酶的定向进化

谢谢!
酶定向进化的基本过程 随机突变、构建突变基因、定向选择常用的随机突变方法
1 易错PCR技术(error-prone PCR )
2 DNA重排技术(DNA shuffling)
交错延伸PCR技术(StEP)
随机引物体外重组技术(RPR)
3 基因家族重排技术(DNA family shuffling)
常用的高通量筛选技术 1 平板筛选法 2 荧光筛选法 3 噬菌体表面展示法 4 细胞表面展示法 5 核糖体表面展示法
实验 基于易错PCR的黄曲霉毒素解毒酶体外分子 定向进化 结果 突变酶A1773:耐高温70℃ 突变酶A1476:pH4.0稳定性 突变酶A2863:pH4.0和pH7.5稳定性
易错PCR技术
易错PCR反应体系(20 μL): 10×PCR 缓冲液2μL dATP (10 mmol/L) 和dGTP (10 mmol/L) 各0.4 μ L ,dCTP (10 mmol/L) 和dTTP (10 mmol/L) 各2 μL 模板pKLAC1- adtz 0.2 μ L 上下游引物 (10 μmol/L) 各0.6 μ L MgCl2 (25 mmol/L) 4.4 μ L MnCl2 (2 mmol/L) 0 、0.8、2 、4 、6 、8 μ L Taq DNA 聚合酶0.2 μ L ddH2O 8、6 、4 、2 、NotⅠ 载体:大肠杆菌-酿酒酵母穿梭分泌表达载体 pYES2∕CT∕α-factor(简写为pYCα) 连接酶:T4DNA连接酶 宿主菌:大肠杆菌DH5α感受态细胞 酿酒酵母S.cerevis过氧化物酶(HRP)-隐性亮绿 (RBG)系统
第八章 酶的定向进化

定向进化与自然进化的异同 点
定向进化的实质是达尔文进化论在分子水平上的延伸 和应用。 定向进化是在体外模拟突变、重组和选择的自然进化, 使进化朝着人们需要的方向发展。 两者的不同:
•进化动力不同: 保守突变 非保守取代;
•进化方向不同: 适应突变的积累;
•进化速度不同: 非常漫长
•
只需几年、甚至几天; 超越生物学意义的要
定向进化的应用
目标酶
卡那霉素核苷基 转移酶 枯草杆菌蛋白酶
所需功能
热稳定性 作用于有机溶 剂 作用于新底物 有机溶剂中的 底物特异性和 活性
方法
定位诱变+选择 易错PCR+选择
结果
在60-50℃酶半衰期 增加200倍 在60%二甲基亚砜主 仆女冠活力增强170 倍 对cefotaxime的抗性 增加32000倍 活力增加60-150倍
• 优点:简便,随机的定向进化
DNA 重组技术(DNA Shuffling)
1. DNaseI产生随机片段;2. 随机片段变性;3. 随机片段复性; 4. 延伸 反复重复2-4步后,可获得全长DNA片段
• DNA改组具有以下有用的特征: • ①它可以利用现存的有力突变,快速积累不同的 有利突变; • ②重组可伴随点突变同时发生; • ③可以删除个体中的有害突变和中性突变。 • 缺点:DNA改组过程中伴随的较高待点突变频率 会严重阻碍正突变组合的发现。由于绝大多数突 变是有害的,有利突变的重组和稀少有利点突变 会被有害突变的负背景所掩盖。
生物多样性:整个生态系统中的生物
什么是定向进化技术
• 概念提出: • 1993年,美国科学家Arnold F H首先提出 酶分子的定向进化的概念,并用于天然酶 的改造或构建新的非天然酶。
酶的定向进化的方法

酶的定向进化的方法酶是生物体内一类重要的催化剂,可加速生物体内化学反应的速率。
然而,自然界中存在的酶并不能完全满足人类的需求,因此科学家研究出了一种方法,即酶的定向进化,通过改变酶的结构和功能,使其具有更广泛的应用价值。
酶的定向进化是一种通过人工手段,模拟自然界的进化过程,从而改变酶的特性和功能的方法。
这种方法通过遗传学和分子生物学的手段,使酶在短时间内经历大量的变异和选择,从而获得新的性状和功能。
酶的定向进化主要包括以下几个步骤。
首先,选择一个目标酶,确定欲改变的特性和功能。
然后,通过基因工程的手段,产生一系列具有随机变异的酶库。
接下来,利用高通量筛选技术,对酶库进行筛选,选择出具有目标特性和功能的酶。
最后,对筛选出的酶进行进一步的优化和改良,以获得更理想的酶。
酶的定向进化的关键在于变异和选择。
变异是指通过基因工程手段,对酶的基因进行随机的改变,从而改变酶的结构和功能。
变异可以通过多种方法实现,如DNA重组、突变和错配PCR等。
选择是指通过对酶的筛选和评价,选择具有目标特性和功能的酶。
选择可以通过高通量筛选技术和活性测定等方法实现。
酶的定向进化可以用于改变酶的催化活性、底物特异性、热稳定性、耐酸碱性等特性。
例如,科学家可以通过酶的定向进化,使其在高温环境下仍能保持稳定的催化活性,从而应用于工业生产中。
此外,酶的定向进化还可以改变酶的底物特异性,使其能催化更多种类的化学反应,从而实现新药物的合成和有机合成的高效转化。
酶的定向进化在生物技术和工业生产中具有广泛的应用前景。
通过酶的定向进化,科学家可以设计和合成出具有特定功能和特性的酶,用于生物催化、药物合成、环境修复等领域。
此外,酶的定向进化还可以用于改良已有酶的性能,提高其催化效率和稳定性。
然而,酶的定向进化也存在一些挑战和限制。
首先,酶的定向进化是一项复杂而耗时的过程,需要经过多个步骤和多轮筛选。
其次,酶的定向进化的成功率并不高,往往需要大量的实验和尝试。
酶工程5 第八章_酶定向进化

Stemmer将DNA改组方法引用到酶分子定向进化中,
他用β内酰胺酶作为模型分子,对其正向突变库进行DNA改组,以逐 渐增加头孢氨00倍的突变体。
酶工程5 第八章_酶定向进化
主要内容
第一节 酶定向进化介绍 第二节 酶基因体外随机突变 第三节 酶突变基因的定向选择 第四节 酶分子定向进化的应用
2/169
第一节 酶定向进化介绍
3/169
获得具有新功能和特性的酶的途径 (1) 从大量未知的生物种系中寻找
(2) 改造现有已知的酶。
4/169
22/169
定向进化研究的历史
1 萌芽阶段
首先在分子水平上进行改造单一分子的是Sol Spiegelman。在20世纪60年代,利用RNA噬菌体 Q进行的试验, 证明达尔文的自然选择也可在非细 胞体进行.
23/169
2 奠基阶段
1981年,Hall B G等报道了他们定向改变了大肠杆 菌K12中的第二半乳糖苷酶的底物专一性,开发出对 几种糖苷键有水解能力的酶。
天然酶的作用
生物体系之所以能够相对独立地存在于自然界中, 并维持其独立性和生命的延续性,都是因为生物体内 的一系列酶在发挥着作用。
酶保证了生物体内组成生命活动的大量生化反应得 以按照预定的方向有序、精确而顺利地进行,几乎所 有生物的生理现象都与酶的作用紧密相关,可以这样 说,没有酶的存在,就没有生物体的一切生命活动。
HallB G等利用lacz缺陷型的菌株为宿主菌,分别在含有某种碳源的培养 基上培养.从酶的自发突变库中筛选出分别可以水解半乳糖、乳果糖、乳 糖酸的突变酶,而野生型的酶不能水解这些底物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于比色法和荧光检测的高通量筛选
得的少量突变累积而产
生重要的有益突变。
DNA改组技术(DNA shuffling)
又称有性PCR,指DNA分子的体外重组,是基因在分子 水平上进行有性重组。 通过改变单个基因(或基因家族)原有的核苷酸序列, 创造新基因,并赋予表达产物以新功能。 分子种
单个基因的DNA改组
从突变体基因库中分离出来 的DNA片段用脱氧核糖核酸 酶I随机切割
酶活力检测
反应产物显色
pH指示剂显色 对硝基苯酚和伞形酮衍生物等显色底物 分光光度计和荧光酶标仪
通过检测底物消耗或产物生成进行终点检测 GC/HPLC,使用较短的柱子以缩短分析时间 同位素标记底物 质谱 热力学红外检测
噬菌体显示筛选模式
噬菌体表面展 示技术是 Smith 等建立 的一种利用大 肠杆菌丝状单 链 DNA 噬菌体 为载体,在重 组噬菌体颗粒 表面展示外源 多肽分子的展 示技术
定向进化
在实验室中模仿自然进化的关键步骤:突变、 重组和筛选,在较短时间内完成漫长的自然进 化过程,有效改造蛋白质,使之适于人类的需 要。
定向进化与自然进化的差别
定向进化的一般过程
对酶实现定向进化的意义
酶作为生物催化剂其专一性和高效性是一般催化剂所不能比拟的, 但是天然酶的许多性质不适应工业生产的条件。 选择特殊环境,利用酶定向进化技术重新设计及改进酶分子的结 构和性质,可以逐步接近和满足将酶催化用于工业生产的需要。
pH指示剂显色高通量筛选
产物显色筛选
巨大芽 孢杆菌P 450 BM-3,最适 底物为C 12 C 18 的脂肪酸, 对短链烷烃 羟化活力较 低 两轮易 错PCR,最 佳突变酶的 比活提高了 5倍
Adv. Synth. Catal., 2001, 343: 601-606
荧光产物筛选
通过定向进化,将P450cam的萘羟化活力提高20倍 野生型酶以O 2 为氧化剂,需要NADPH,而突变酶以H 2 O 为氧化剂,无须辅酶
多样性的产生
随机诱变
定向诱变
重组
定向进化的策略
无性进化
易错PCR、化学诱变剂介导的随机诱变、由致突变菌株 产生的随机突变
有性进化
DNA改组技术、随机引物体外重组法、交错延伸法
返回
易错PCR(error-prone PCR)
一种相对简单、快速廉 价的随机突变方法。 通过改变PCR反应条件, 使扩增的基因出现少量 碱基错配,从而导致目 的基因的随机突变。 关键是控制DNA的突变频 率。
突变体基因的构建策略
DNA随机酶切片段拼接
单链DNA随机拼接 (提高不同亲代基因的同源片段重 组形成嵌合体基因的效率) 限制性酶切片段随机拼接 (防止PCR扩增产生相同的 亲代基因)构建突变基因的载体系统Λ噬菌体载体系统
基因构建中最早使用插入片段的装载容量分子定向进化的历史
Sol Spiegelman在20世纪60年 代利用RNA噬菌体Q进行实验, 是第一次在分子水平上定向改 造单一分子。
1981年,B.G.Hall等定向改变E.coli K12中ebg酶的底物 专一性,开发出对几种糖苷键有水解能力的酶。 1993年,Arnold研究组提出易错PCR的方法。 1994年,Stemmer将DNA重组方法引用到酶分子的定 向进化中。 1999年,Stemmer等把DNA改组延伸到族改组。
酶分子的定向进化
从一个或多个已经存在的亲本酶(天然的或者 人为获得的)出发,经过基因的突变和重组, 构建一个人工突变酶库,通过筛选最终获得预 先期望的具有某些特性的进化酶。
定向进化=随机突变+正向重组+选择(或筛选)
定向进化的过程
酶定向进化通常分3步进行:
通过随机突变和(或)基因体外重组这个过程可 影响定向进化成功与否 的关键 采用的定向筛选方法必须灵敏,且应与目的性质相关 借助检测仪器易实现高通量筛选
定向进化的筛选
活体筛选法-基于表形观察的筛选
基于基因编码蛋白质的检测筛选表达 筛选方法根据各个蛋白质的性质而设 计的, 因此,不具有通用性。
噬菌体显示法;细胞表面显示法(细菌、 纤毛外操作简便,载体本身的设之处在于:
靶序列长度一般在0.5-1.0kb,应用范围有限;
中性突变较多;且较为耗时、费力 获得的DNA序列中碱基的转换高于颠换。此法突变具有
一定的密码偏向性。
连续易错PCR(Sequential error-prone PCR)
该方法是将一次PCR 扩增得到的有益突变基 因作为下一次PCR扩增的 模板,连续反复进行随 机诱变,使得每一次获
酶的定向进化
Directed enzyme evolution
达尔文与进化论
达尔文在《物种起源》 中提出以自然选择为基 础的进化学说,成为生 物学史上的一个转折点。
自然进化
环境压力下物种朝着适应生存环境的方向发展
漫长时间里通过DNA复制发生突变或通过重组, 产生了遗传多样性
自发、非常缓慢、自然选择 人为引发、较短时间、人为选择?
定向进化的筛选
突变体基因筛选能否成功的关键是将 基因的表型和能通过定量表征的筛选 手段紧密联系。 为加快分离目的基因的过程,已建立 起多种在基因发现上具有“高通量”性 能的筛选方法。
高通量筛选技术
突变微生物分离
琼脂板涂布法 在特殊条件下培养突变菌, 通过宿主菌的生长情况、培养基颜色、特定 反应的出现等判断是否具有目的基因。 微球细胞固定法 与数字成像系统结合,将 单个细胞附着在单个固体珠上,突变体进行 分离和筛选。 流式细胞计数法 细胞经荧光染色后,通过 高速流动系统,排成单行,逐个通过流式细 胞计数仪进行测定。
得到的随机片段经过不加引 物的多次PCR循环
在PCR循环过程中,随机片段 之间互为模板和引物进行扩 增,直到获得全长的基因, 这导致来自不同基因片段之 间的重组
DNA改组与常规定向进化的比较
基因家族改组技术(family shuffling)
DNA改组原理
1. DNaseI产生随机片段;2. 随机片段变性;3. 随机片段复性; 4.延伸 反复重复 2 - 4 步后,可获得全长DNA片段
随机引物体外重组法(RPR)
单链DNA为模板 随机序列引物
交错延伸原理
采用基因家族的改组效果明 显高于单个基因的改组效果。
特点
改组基的筛选容量相适应