中考前18题训练(三)

合集下载

中考总复习专项训练题(三)(改错专练)

中考总复习专项训练题(三)(改错专练)

Jim was too frightened not to move.The snake 8.________
A B C D
6.You can sing in English,and so does he.
A B C D
7.Why not ask for help when you are with trouble?
A B C D
8.Ann didn't know how work out the problem in class.
the school,opened the door and went in the 7.________
classroom.That was nice and warm there 8.________
but Miss Jones was happy.But a small boy looked at her for a few 9.________
C D
25.How proudly they were when they heard the good news!
A B C D
26.It took the boy one and a half hour to fall asleep last night.
A B C D
A B C D
23.I hope my son to get on well with his classmates.
A B C D
24.—How did you come here this morning?
A B
—I came here by Mr Smith's car.

中考数学平面直角坐标系专题训练题

中考数学平面直角坐标系专题训练题

中考复习数学专题训练:《平面直角坐标系》解答题专项培优(三)1.已知平面直角坐标系中有一点P(2m+1,m﹣3).(1)若点P在第四象限,求m的取值范围;(2)若点P到y轴的距离为3,求点P的坐标.2.已知:点P(2﹣a,3),且点P到x轴、y轴的距离相等.求:点P的坐标.3.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为;(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.4.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.5.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.6.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右……的方向依次不断移动,每次移动一个单位长度,其行走路线如图.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A n的坐标(n是4的倍数);(3)写出A 2016和点A 2017的坐标,并指出蚂蚁从点A 2016到点A 2017的移动方向.7.综合与实践问题背景:(1)已知A (1,2),B (3,2),C (1,﹣1),D (﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB 和CD 中点P 1、P 2,然后写出它们的坐标,则P 1 ,P 2 .探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x 1,y 1),(x 2,y 2),则线段的中点坐标为 .拓展应用:(3)利用上述规律解决下列问题:已知三点E (﹣1,2),F (3,1),G (1,4),第四个点H (x ,y )与点E 、点F 、点G 中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H 的坐标.8.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A 1的坐标为(2,2)、A 2的坐标为(5,2)(1)A 3的坐标为 ,A n 的坐标(用n 的代数式表示)为 .(2)2020米长的护栏,需要两种正方形各多少个?9.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A 4 ,A 8 ;(2)写出点A 4n 的坐标(n 为正整数) ;(3)蚂蚁从点A 2014到点A 2017的移动方向 .10.如图,在直角坐标系的坐标轴上按如下规律取点:A 1在x 轴正半轴上,A 2在y 轴正半轴上,A 3在x 轴负半轴上,A 4在y 轴负半轴上,A 5在x 轴正半轴上,…,且OA 1+1=OA 2,OA 2+1=OA 3,OA 3+1=OA 4…,设A 1,A 2,A 3,A 4…,有坐标分别为(a 1,0),(0,a 2),(a 3,0),(0,a 4)…,s n =a 1+a 2+a 3+…+a n .(1)当a 1=1时,求a 5的值;(2)若s 7=1,求a 1的值;(3)当a 1=1时,直接写出用含k (k 为正整数)的式子表示x 轴负半轴上所取点坐标.11.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B )位置的坐标;(2)若体育馆位置坐标为C (﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积.12.国庆假期期间,笑笑所在的学习小组组织了到方特梦幻王国的游园活动,笑笑和乐乐对着景区示意图(如图所示)讨论景点位置:(图中小正方形边长代表100m)笑笑说:“西游传说坐标(300,300).”乐乐说:“华夏五千年坐标(﹣100,﹣400).”若他们二人所说的位置都正确(1)在图中建立适当的平面直角坐标系xOy;(2)用坐标描述其他地点的位置.13.如图所示的是某市市政府周边的一些建筑,以市政府为坐标原点,建立平面直角坐标系(每个小方格的边长为1).(1)请写出商会大厦和医院的坐标;(2)王老师在市政府办完事情后,沿(2,0)→(2,﹣1)→(2,﹣3)→(0,﹣3)→(0,﹣1)→(﹣2,﹣1)的路线逛了一下,然后到汽车站坐车回家,写出他路上经过的地方.14.如图(小方格的边长为1),这是某市部分简图.(1)请你根据下列条件建立平面直角坐标系(在图中直接画出):①火车站为原点;②宾馆的坐标为(2,2).(2)市场、超市的坐标分别为、;(3)请将体育场、宾馆和火车站看作三点,用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,再画出平移后的△A′B′C′(在图中直接画出);(4)根据坐标情况,求△ABC的面积.15.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m 长)(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市、医院的坐标.16.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.17.在平面直角坐标系xOy中,对任意两点P1(x1,y1),P2(x2,y2),如果|x1﹣x2|+|y1﹣y2|=d,则称P1与P2互为“d﹣距点”.例如:点P1(3,6),p2(1,7),由d=|3﹣1|+|6﹣7|=3,可得P1与P2互为“3﹣距点”.(1)在点D(﹣2,﹣2),E(5,﹣1),F(0,4)中,原点O的“4﹣距点”是(填字母);(2)已知点A(2,1),点B(0,b),过点B平行于x轴的直线l.①当b=3时,直线l上的点A的“2﹣距点”的坐标为;②若直线l上存在点A的“2﹣距点”,在坐标系中画出这些A的“2﹣距点”组成的图形,并写出b的取值范围.18.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.19.如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB∥CD.(1)求证:∠ABO+∠CDO=90°;(2)如图2,BM平分∠ABO交x轴于点M,DN平分∠CDO交y轴于点N,求∠BMO+∠OND 的值.20.在平面直角坐标系中,已知点M (m ﹣1,2m +3).(1)若点M 在y 轴上,求m 的值.(2)若点N (﹣3,2),且直线MN ∥y 轴,求线段MN 的长.21.阅读一段文字,再回答下列问题:已知在平面内两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则该两点间距离公式为P 1P 2=,同时,当两点在同一坐标轴上或所在直线平行于x 轴、平行于y 轴时,两点间的距离公式可化简成|x 1﹣x 2|和|y 1﹣y 2|(1)若已知两点A (3,3),B (﹣2,﹣1),试求A ,B 两点间的距离;(2)已知点M ,N 在平行于y 轴的直线上,点M 的纵坐标为7,点N 的纵坐标为﹣2,试求M ,N 两点间的距离;(3)已知一个三角形各顶点的坐标为A (﹣1,),B (,),C (,),你能判定这三点是否共线?若共线请说明理由,若不共线请求出图形的面积.22.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y |.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.23.在平面直角坐标系中,有A (﹣2,a +1),B (a ﹣1,4),C (b ﹣2,b )三点.(1)当AB ∥x 轴时,求A 、B 两点间的距离;(2)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.24.在平面直角坐标系中,有A (﹣2,a +2),B (a ﹣3,4)C (b ﹣4,b )三点.(1)当AB ∥x 轴时,求A 、B 两点间的距离;(2)当CD ⊥x 轴于点D ,且CD =3时,求点C 的坐标.25.如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB 或DE 的长度,显然是转化为求Rt △ABC 或Rt △DEF 的斜边长.下面:以求DE 为例来说明如何解决:从坐标系中发现:D (﹣7,5),E (4,﹣3).所以DF =|5﹣(﹣3)|=8,EF =|4﹣(﹣7)|=11,所以由勾股定理可得:DE ==. 下面请你参与:(1)在图①中:AC = ,BC = ,AB = .(2)在图②中:设A (x 1,y 1),B (x 2,y 2),试用x 1,x 2,y 1,y 2表示AC = ,BC = ,AB = .(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A (2,1),B (4,3),C 为坐标轴上的点,且使得△ABC 是以AB 为底边的等腰三角形.请求出C 点的坐标.参考答案1.解:(1)由题知,解得:﹣<m <3;(2)由题知|2m +1|=3,解得m =1或m =﹣2.当m =1时,得P (3,﹣2);当m =﹣2时,得P (﹣3,﹣5).综上,点P 的坐标为(3,﹣2)或(﹣3,﹣5).2.解:∵点P(2﹣a,3)到x轴、y轴的距离相等.∴|2﹣a|=3,∴2﹣a=±3,∴a=5或a=﹣1,∴点P的坐标(﹣3,3)或(3,3).3.解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(2,﹣1);(3)∵点P(m﹣1,2m)的“﹣3级关联点”为P′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),①P′位于x轴上,∴m﹣1+(﹣3)×2m=0,解得:m=,∴﹣3(m﹣1)+2m=4,∴P′(4,0).②P′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴P′(0,﹣16).综上所述,点P′的坐标为(4,0)或(0,﹣16).4.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P 到两坐标轴的距离相等,∴|8﹣2m |=|m ﹣1|,∴8﹣2m =m ﹣1或8﹣2m =1﹣m ,解得:m =3或m =7,∴P (2,2)或(﹣6,6).5.解:(1)由题意得:m ﹣1=0,解得:m =1;(2)由题意得:m ﹣1=2m +3,解得:m =﹣4.6.解:(1)∵蚂蚁每次移动1个单位,∴OA 1=1,OA 3=1,OA 12=6,∴A 1(0,1),A 3(1,0),A 12(6,0);故答案为:0,1;1,0,6,0;(2)根据(1)OA n =n ÷2=,∴点A 4n 的坐标(,0);(3)∵2016÷4=504,∴从点A 2016到点A 2018的移动方向:点A 2016在x 轴上,向上移动一个到A 2017,∴A 2016(1008,0),A 2017(1008,1).7.解:(1)如图:A (1,2),B (3,2),C (1,﹣1),D (﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB 和CD 中点P 1、P 2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.故答案为:.(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,)、(2,)、(0,3)∴①HG过EF中点(1,)时,=1,=解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,)时,=2,=解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,=0,=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).8.解:(1)∵A1的坐标为(2,2)、A2的坐标为(5,2),∴A1,A2,A3,…,A n各点的纵坐标均为2,∵小正方形的边长为1,∴A1,A2,A3,…,A n各点的横坐标依次大3,∴A3(5+3,2),A n(,2),即A3(8,2),A n(3n﹣1,2),故答案为(8,2);(3n﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.9.解:(1)由图可知,A4,A8,A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A 4(2,0),A 8(4,0),故答案为:(2,0);(4,0);(2)根据(1)OA 4n =4n ÷2=2n ,∴点A 4n 的坐标(2n ,0);故答案为:(2n ,0);(3)∵2014÷4=503…2,∴2014除以4余数为2,∴从点A 2014到点A 2017的移动方向与从点A 2到A 5的方向一致为:向下,向右,再向上. 故答案为:向下,向右,再向上.10.解:(1)当a 1=1时,a 2=1+1=2,a 3=﹣(2+1)=﹣3,a 4=﹣(3+1)=﹣4,a 5=4+1=5;(2)∵a 2=a 1+1,a 3=﹣(a 1+2),a 4=﹣(a 1+3),a 5=a 1+4,a 6=a 1+5,a 7=﹣(a 1+6), ∴s 7=a 1+a 2+…+a 7=a 1﹣1,当s 7=1时,则a 1﹣1=1,∴a 1=2;(3)∵当a 1=1时,则a 3=﹣3,a 7=﹣7,a 11=﹣11,…∴a 4k ﹣1=﹣(4k ﹣1)=﹣4k +1∴A 4k ﹣1(﹣4k +1,0).11.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.12.解:(1)如图所示:(2)太空飞梭(0,0),秦岭历险(0,400),魔幻城堡(400,﹣200),南门(0,﹣500),丛林飞龙(﹣200,﹣100).13.解:(1)由图可得:商会大厦的坐标为(﹣1,2),医院的坐标为(3,1).(2)路上经过的地方为:大剧院,体育公园,购物广场.14.解:(1)如图,(2)市场的坐标为(4,3),超市的坐标为(2,﹣3);(3)如图;(4)△ABC面积=3×6﹣×2×2﹣×4×3﹣×1×6=18﹣2﹣6﹣3=7.故答案为(4,3),(2,﹣3).15.解:(1)建立平面直角坐标系如图所示;(2)市场(400,300),医院(﹣200,﹣200),超市(200,﹣300).16.解:(1)①∵点A (﹣3,1)到x 、y 轴的距离中最大值为3,∴与A 点是“等距点”的点是E 、F .②当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A 符合“等距点”的是(﹣3,3).故答案为①E 、F ;②(﹣3,3);(2)T 1(﹣1,﹣k ﹣3),T 2(4,4k ﹣3)两点为“等距点”,①若|4k ﹣3|≤4时,则4=﹣k ﹣3或﹣4=﹣k ﹣3解得k =﹣7(舍去)或k =1.②若|4k ﹣3|>4时,则|4k ﹣3|=|﹣k ﹣3|解得k =2或k =0(舍去).根据“等距点”的定义知,k =1或k =2符合题意.即k 的值是1或2.17.解:(1)∵|﹣2﹣0|+|﹣2﹣0|=4,|5﹣0|+|﹣1﹣0|=6,|0﹣0|+|4﹣0|=4, ∴原点O 的“4﹣距点”是点D 、点F .故答案为:D 、F ;(2)①∵点B (0,b ),l 为过点B 平行于x 轴的直线,∴当b =3时,l 为直线y =3,设直线l 上的点A (2,1)的“2﹣距点”的坐标为(x ,3),则有:|2﹣x |+|1﹣3|=2,解得:x =2,∴直线l 上的点A (2,1)的“2﹣距点”的坐标为(2,3);故答案为:(2,3);②由①知当直线l经过点(2,3)时,b=3;∵A(2,1),l为过点B平行于x轴的直线,∴当直线l经过点(2,﹣1)时,b=﹣1,∴若直线l上存在点A的“2﹣距点”,则b的取值范围是﹣1≤b≤3.如图所示:18.解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣2a<0,∴a=±3,且a>2,∴a=3.∴4﹣2a=﹣2,M(0,﹣2);(2)∵a=3,∴(2﹣a)2020+1=(2﹣3)2020+1=1+1=2;(3)∵直线MN∥x轴,M(0,﹣2),∴设N(x,﹣2),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣2)或(﹣4,﹣2).19.(1)证明:∵AB∥CD,∴∠ABO=∠DCO,∵∠DCO+∠CDO=90°;∴∠ABO+∠CDO=90°;(2)∵BM平分∠ABO,DN平分∠CDO,∴∠MBO=∠ABO,∠NDO=∠CDO,∴∠MBO+∠NDO=(∠ABO+∠CDO)=45°,∴∠BMO+∠OND=135°.20.解:(1)由题意得:m﹣1=0,解得:m=1;(2)∵点N(﹣3,2),且直线MN∥y轴,∴m﹣1=﹣3,解得m=﹣2.∴M(﹣3,﹣1),∴MN=2﹣(﹣1)=3.21.解:(1)∵点A(3,3),B(﹣2,﹣1),∴AB==,即A,B两点间的距离是;(2)∵点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为﹣2,∴MN=|﹣2﹣7|=9,即M,N两点间的距离是9;(3)这三点不共线,该三角形为直角三角形.理由:∵一个三角形各顶点的坐标为A(﹣1,),B(,),C(,),∴AB==,AC==,BC==,∵AB2+AC2=()2+()2=()2=BC2,∴△ABC是直角三角形,=AB•AC=××=.∴S△ABC22.解:(1)A,B两点间的距离==4;(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE==5,DF==5,EF==6,∴DE=DF,∴△DEF为等腰三角形.23.解:(1)∵AB∥x轴,∴A、B两点的纵坐标相同.∴a+1=4,解得a=3.∴A、B两点间的距离是|(a﹣1)+2|=|3﹣1+2|=4.(2)∵CD⊥x轴,∴C、D两点的横坐标相同.∴D(b﹣2,0).∵CD=1,∴|b|=1,解得b=±1.当b=1时,点C的坐标是(﹣1,1).当b=﹣1时,点C的坐标是(﹣3,﹣1).24.解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.解:(1)AC=4,BC=3,AB==5;(2)结合图形可得:AC=y1﹣y2,BC=x1﹣x2,AB=.(3)若点C在x轴上,设点C的坐标为(x,0),则AC=BC,即=,解得:x=5,即点C的坐标为(5,0);若点C在y轴上,设点C的坐标为(0,y),则AC=BC,即=,解得:y=5,即点C的坐标为(0,5).综上可得点C的坐标为(5,0)或(0,5).故答案为:4,3,5;y1﹣y2,x1﹣x2,A.。

2020海南省化学中考18题

2020海南省化学中考18题

2020海南省化学中考18题一、选择题1.空气是一种宝贵的自然资源,下列气体不可直接从空气分离获得的是()A.用作医疗急救的氧气B.用作焊接保护气的稀有气体C.用作食品防腐剂的氮气D.用作清洁燃料的氢气【解析】选D。

分离液态空气的方法可以得到氧气、氮气和少量的稀有气体;空气中几乎不含氢气,不可直接从空气中分离获得。

2.下列物质性质的描述中,属于化学性质的是()A.甲烷可以在空气中燃烧B.金属汞常温下是液体C.高锰酸钾是紫黑色固体D.银具有良好的延展性【解析】选A。

甲烷的可燃性属于化学性质;物质的状态、颜色、延展性都属于物理性质。

3.下列物质中属于氧化物的是()A.Ca(C1O3)2 B.Zn(OH)2 C.MnO2 D.O2【解析】选C。

氧化物是由两种元素组成,其中一种是氧元素的化合物。

A属于盐,B属于碱,D属于单质。

4.下列服装面料中属于有机合成材料的是()A.蚕丝B.棉布C.羊毛D.涤纶【解析】选D。

蚕丝、棉布和羊毛都是天然纤维,涤纶属于有机合成材料。

5.下列说法正确的是()A.铝是人类最早利用的金属材料B.铜是目前世界年产量最高的金属C.大多数金属元素在自然界中以单质形式存在D.日常使用的金属材料大多数是合金【解析】选D。

人类最早利用的金属材料是铜;铁丝目前世界年产量最高的金属;少数金属元素如金、银在自然界中以单质形式存在,大多数以化合物的形式存在。

6.化石燃料是不可再生的能源,下列不属于化石燃料的是()A.煤B.石油C.乙醇D.天然气【解析】选C。

化石燃料包括煤、石油和天然气。

7.有一些物质,它们中的一些原子集团常作为一个整体参加反应,下列物质中含有原子集团的是()A.NaCl B.NaNO3 C.CaCl2 D.KCl【解析】选B。

硝酸钠是由钠离子和硝酸根离子构成,硝酸根是原子团。

8.下列各种物质中,氯元素化合价最高的是()A.NaClO4 B.HCl C.NaClO D.ClO2【解析】选A。

(完整版)重庆中考数学第18题专题训练(含答案),推荐文档

(完整版)重庆中考数学第18题专题训练(含答案),推荐文档

重庆中考18题专题训练1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa-+-+=去分母,()()604060406040x a xb x b xa -+=-+去括号得:2400606024004040a xa xb b bx xa-+=-+移项得:6060404024002400xa xb bx xa b a-++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。

解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨., =, 解得x=240.故答案为:240.,由①得,则有:,两式相除得:,商品的销售利润率变成了 .(2)某商品现在的进价便宜20% ,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为 。

上海中考数学第18题专项训练

上海中考数学第18题专项训练

上海中考数学第18题专项训练(含答案)1.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .2.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图所示)把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两 点的距离为_ __1,5_____.△ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =___80,120______.4.如图所示,Rt ABC V 中,90C ∠=︒,1BC =,30A ∠=︒, 点D 为边AC 上的一动点,将ABD V 沿直线BD 翻折,点A 落 在点E 处,如果DE AD ⊥时,那么DE图C B D5.如图4,⊙A 、⊙B 的圆心A 、B 都在直线L 上,⊙A 的半径为1cm ,⊙B 的半径为2cm ,圆心距AB=6cm. 现⊙A 沿直线L 以每秒1cm 的速度 向右移动,设运动时间为t秒,写出两圆相交时,t 的取值范围: 3<t<5或7<t<9 .6.在Rt △ABC 中,∠C=90º ,BC =4 ,AC=3,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么A A '7. 已知平行四边形ABCD 中,点E 是BC 的中点,在直线BA 上截取2BF AF =,EF 交BD 于点G ,则GBGD= 2/5或2、3 .8.如图,在ABC ∆中,∠ACB=︒90,AC=4,BC=3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 4、5 .B9.如图2,在△ABC 中,AD 是BC 上的中线,BC=4,∠ADC=30°,把△ADC 沿AD 所在直线翻折后点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 1 .10.如图,半径为1且相外切的两个等圆都内切于半径为3的圆,那么图中阴影部分的周长为 7π/3 .11.如图,在△ABC 中,AB = AC ,BD 、CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,那么tan ∠ABC =_____3______.12.已知在△AOB 中,∠B =90°,AB=OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标为 ()6,2- .13.在△ABC 中,AB=AC ,∠A=80°,将△ABC 绕着点B 旋转,使点A 落在直线BC 上,点C 落在点'C ,则∠'BCC = 65,25 .C /BDCA图2ABCDEABC14.如图,已知在直角三角形ABC中,∠C=90°,AB=5,BC=3,将ABC∆绕着点B顺时针旋转,使点C落在边AB上的点C′处,点A落在点A′处,则AA′的长为15.如图,将矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上点P处,已知︒MPN,PM=3,PN=4,,那么矩形纸片ABCD的面积为 144/5 .∠90=16.在Rt△ABC中,∠C=90°,AB=2,将这个三角形绕点C旋转60°后,AB的中点D落在点D′处,那么DD′的长为 1 .17.在△ABC中,AB=AC=5,若将△ABC沿直线BD翻折,使点C落在直线AC上的点C′处,AC′=3,则BC18. 在Rt △ABC 中,∠A<∠B,CM 是斜边AB 上的中线,将△ACM 沿直线CM 翻折,点A 落在D 处,若CD 恰好与AB 垂直,则∠A = 30 度。

上海中考数学18题训练 图形的平移、翻折、旋转及点的运动(原卷版)

上海中考数学18题训练  图形的平移、翻折、旋转及点的运动(原卷版)

上海中考数学18题训练图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动是初中数学图形的几种基本运动形式,是初中数学的重要内容之一.这类问题常常要运用“动”的思路去观察、分析、推理、猜想、探究相关图形的位置变化情况或图形的有关性质,对提高数学思维能力与发展空间观念有重要作用,也是近年的中考试题的一个热点.图形的平移、翻折、旋转有一个重要性质:任何图形经过平移、翻折、旋转后,除图形的位置发生变化外,图形的形状、大小保持不变.这个性质在解决图形运动的有关问题中常用.【例1】(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在【例2】(2020•静安区一模)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与【例3】(2020•闵行区一模)如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC1.(2020•青浦区一模)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边2.(2020•杨浦区一模)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A 落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B所在直线于点F,联结A1E,3.(2020•崇明区一模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边4.(2020•闵行区一模)已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在BC的5.(2020•徐汇区一模)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点6.(2020•普陀区一模)如图,在Rt△ABC中,∠C=90°,AC=5,sin B=513,点P为边BC上一点,PC=3,将△ABC绕点P旋转得到△A'B'C'(点A、B、C分别与点A'、B'、C'对应),使B'C'∥AB,边A'C'7.(2020•奉贤区一模)如图,已知矩形ABCD(AB>BC),将矩形ABCD绕点B顺时针旋转90°,点A、8.(2020•嘉定区一模)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距9.(2020•金山区一模)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B′,则BB′的长等10.(2020•松江区一模)如图,矩形ABCD中,AD=1,AB=k,将矩形ABCD绕着点B顺时针旋转90°得到矩形A′BC′D′,联结AD′,分别交边CD,A′B于E、F,如果AE=√2D′F,那么k=.11.(2019•浦东新区二模)如图,已知在△ABC中,AB=3,AC=2,∠A=45o,将这个三角形绕点B旋转,12.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转13.(2019•长宁区二模)如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点C旋转,点A、B的14.(2019•奉贤区二模)如图,矩形ABCD,AD=a,将矩形ABCD绕着顶点B顺时针旋转,得到矩形EBGF,顶点A、D、C分别与点E、F、G对应(点D与点F不重合).如果点D、E、F在同一条直线上,那么15.(2019•青浦区二模)如图,在矩形ABCD中,AB=3,E为AD的中点,F为CD上一点,且DF=2CF,16.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于17.(2019•杨浦区二模)如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点。

重庆中考数学18题专题训练

重庆中考数学18题专题训练

题型一 方程问题1、某步行街摆放有若干盆甲、乙、丙三种造型的盆景。

甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙咱盆景由10朵红花、18朵黄花和25朵紫花搭配而成。

这些盆景一共用了2900朵红花,3750朵紫花,由黄花一共用了 朵。

2、已知AB 是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB 段相遇,必须倒车才能继续通行。

如果小汽车在AB 段正常行驶需10分钟,大卡车在AB 段正常行驶需20分钟,小汽车在AB 段倒车的速度是它正常行驶速度的51,大卡车在AB 段倒车的速度是它正常行驶速度的81,小汽车需倒车的路程是大卡车需倒车的路程的4倍。

问两车都通过AB 这段狭窄路面的最短时间是 分钟。

3、甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品,商品买来后,甲、乙分别比丙多拿了11件商品,最后结算时,甲付给丙14元,那么,乙应付给丙 元。

4、山脚下有一个池塘,山泉以固定的流量向池塘里流淌,现在池塘中有一定的水,若一台A 型抽水机1小时刚好抽完,若两台A 型抽水机20分钟刚好抽完,若三台A 型抽水机同时抽 分钟可以抽完。

5、甲、乙两厂生产同一种产品,都计划把全年的产品销往重庆,这样两厂的产品就能占有重庆市场同类产品的43。

然而实际情况并不理想,甲厂仅有21的产品、乙厂仅有31的产品销到了重庆,两厂的产品仅占了重庆市场同类产品的31。

则甲厂该产品的年产量与乙厂该产品的年产量的比为 。

5、我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费,如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为____________立方米。

6、采石场工人爆破时,为了确保安全,点燃炸药导火线后要在炸药爆破前转移到400米以外的安全区域,导火索燃烧速度是1cm/秒,人离开的速度是5米/秒,至少要导火索的长度是_____________cm 。

2023上海中考数学第18题

2023上海中考数学第18题

2023上海中考数学第18题摘要:一、引言1.上海中考数学第18题的重要性2.2023年上海中考数学第18题的背景二、题目解析1.题目内容概述2.题目考查的知识点3.解题思路与方法三、解题过程1.分析题目,理解问题2.运用相关知识点进行解答3.总结解题过程,得出答案四、题目难度及意义1.题目难度评价2.对考生的能力要求3.对未来数学教育的影响五、结论1.对2023年上海中考数学第18题的总结2.对考生备考的建议正文:一、引言上海中考数学第18题一直以来都是广大考生关注的焦点。

作为中考数学试卷中的一道压轴题,它不仅考查了学生对数学知识的掌握程度,还考察了学生的思维能力和应变能力。

2023年上海中考数学第18题在这样的背景下应运而生,备受瞩目。

二、题目解析2023年上海中考数学第18题的题目内容涉及到几何、代数等多个知识点,考查了学生对知识点的综合运用能力。

题目具有一定的难度,需要考生具备较强的数学素养和逻辑思维能力。

三、解题过程为了更好地解答这道题目,我们首先需要对题目进行深入的理解,明确题目所要求的内容。

然后,根据自己掌握的知识点,逐步进行解答。

在解题过程中,不仅要注重速度,还要保证正确率。

四、题目难度及意义2023年上海中考数学第18题的难度较高,对考生的能力要求也相对较高。

考生需要在备考过程中加强自己的数学基本功,提高解题能力。

此外,这道题目也对未来的数学教育产生了积极的影响,引导教育工作者注重培养学生的综合素质和实际应用能力。

五、结论总的来说,2023年上海中考数学第18题是一道具有挑战性的题目,对考生的能力要求较高。

在备考过程中,考生需要加强基础知识的学习,提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档