九年级数学利用列表法估算一元二次方程解的取值范围2

合集下载

一元二次方程求解教法解析

一元二次方程求解教法解析

一元二次方程讲解与解析一元二次方程一元:代表未知数的个数,这里指的是只含有一个未知数;次:代表次数,这里指次数为2。

第一节一元二次方程的概念:知识点1一元一次方程的概念定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

了解:只有同时满足三个条件:①是整式方程;②只含一个未知数;③未知数最高次数为2。

这样的方程才是一元二次方程,不满足其中任意一条件都不是一元二次方程。

一元二次方程的一般式为:ax²+bx+c=0(a≠0)其中ax²为二次项,bx为一次项,c为常数项。

a为二次项的系数,b为一次项的系数。

尽可能在正常情况下将右边的数值移动到左边,使右边的数值为0。

【总结】上面的方程都只含有一个未知数x的整式方程并且都可以化成ax²+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。

我们吧ax²+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax²,bx,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数。

例子:4x²+5x-1=0(一般形式)。

4x²为二次项,5x为一次项,-1为常数项。

4为二次项系数,5为一次项系数。

随堂练习:1.根据题意列方程:已知直角三角形的三边长为连续整数,求它的三边长。

解:设直角三角形的三边长为x,x+1,x+2。

x²+(x+1)²=(x+2)²(只需要列车方程到这步即可)x²-2x-3 =0x²-2x+1²=3+1²(x-1)²=4x-1=±2习题2.1知识技能1.根据题意,列方程:(1)有一个面积为54㎡的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,这个正方形的变长是多少?解:设这个正方形的边长是x m(x>0)。

利用列表法估算一元二次方程解的取值范围最新版

利用列表法估算一元二次方程解的取值范围最新版

(2)通过以上探索,你能估计出 x 的整数部分为____3____, 十分位为____3____.
用列表法估算一元二次方程的解的取值范围 【例题】为了绿化学校校园,需将草皮移植到操场,若矩 形操场的长比宽多 14 m,而操场的面积是 3 300 m2,求绿化后 操场的宽的取值范围(精确到 0.1). 思路点拨: 列表 → 逐步缩小取值范围
x
50 50.7 50.8 50.9 51
x2+14x-3 300 -100 -19.71 -8.16 3.41 15
所以操场的宽的取值范围为 50.8 m<x<50.9 m. 【规律总结】通过解决实际问题,探索了一元二次方程的
解或近似解,并了解近似计算的重要思想——“夹逼”思想.
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方

北师大版九年级数学上册2.1:认识一元二次方程 教学案

北师大版九年级数学上册2.1:认识一元二次方程 教学案

学科讲义·初三数学 上数学课时,必须全神贯注,心无旁骛,专心听讲,一旦走神,就再也融不进数学老师的世界里了1 第二章 一元二次方程第一节 认识一元二次方程学习目标 1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.能够利用一元二次方程的定义求字母的值;用一元二次方程的根求代数式的值。

3.体会方程的模型思想。

(难点)知识点1: 一元二次方程的定义 如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2. 同时还要注意在判断时,需将方程化成一般形式。

知识点2: 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。

其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。

注意:(1)将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx ,则b =0;若没有出现常数项,则c =0.(3)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(4)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

知识点解析学科讲义·初三数学 数学老师以4G 的速度讲课,学霸以WiFi 的速度听着,学神以3G 的速度记着,而学渣当场掉线,And you? 2 (5)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

知识点3:一元二次方程的解(1)使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。

一元二次方程的解也叫一元二次方程的根。

认识一元二次方程 北师大版九年级数学上册

认识一元二次方程 北师大版九年级数学上册
符合要求的范围.
课堂练习
1. 下表是某同学求代数式x²-x的值的情况,根据表格可知方 程x²-x=2的解是( D )
x x2-x
-2 -1 0 1 2 3 …
6
2 0026…
A. x=-1 C. x=2
B. x=0 D. x1=-1,x2=2
课堂练习
2. 根据表格,选取一元二次方程ax²+bx+c=0(a≠0)的一 个近似解取值范围( C )
解:设所求的宽度为 x m,根据 题意可列方程:
(8 - 2x) (5 - 2x) =18
新知讲解
x 满足方程(8-2x)(5-2x)=18.
(1)x 可能小于 0 吗?可能大于 4 吗?可能大于 2.5 吗?说说 你的理由.
x 不可能小于 0,因为当x<0时,不符合题意; 不可能大于4,因为当x>4时,8-2x<0,不符合题意; 不可能大于2.5,因为当x>2.5时,5-2x<0不符合题意.
2.1 认识一元二次方程
新知导入
1. 什么是一元二次方程? 只含有一个未知数 x 的整式方程 1 ,并且都可以化成ax²+bx +c =0(a,b,c 为常数,a ≠ 0)的形式,这样的方程叫做一元二次方程.
2. 把一元二次方程3x²+2x=5化成一元二次方程的一般形式, 并说出它的二次项、一次项系数和常数项.
1 < x<1.5
x²+12x -15=0
新知讲解
你还能进一步
缩小范围吗? (3)你能猜出滑动距离 x(m)的大致范围吗?
x
x²+12x-15=0
1.1 -0.59
1.2 0.84
1.3 2.29
1.4 3.75

九年级数学下册 2.5.2 二次函数与一元二次方程教案 北师大版(2021学年)

九年级数学下册 2.5.2 二次函数与一元二次方程教案 北师大版(2021学年)

九年级数学下册2.5.2 二次函数与一元二次方程教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册2.5.2 二次函数与一元二次方程教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册2.5.2 二次函数与一元二次方程教案(新版)北师大版的全部内容。

课题:2。

5.2二次函数与一元二次方程教学目标:1.复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.2.让学生体验一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c与直线y=h (h是实数)图象交点的横坐标的探索过程,掌握用图象交点的方法求一元二次方程ax2+bx+c =h的近似根.3.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。

教学重点与难点:重点:1。

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.经历用图象法求一元二次方程的近似根的过程。

难点:利用二次函数的图象求一元二次方程的近似根并且估算。

教学过程:一、复习回顾,开辟道路二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?1.若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数y=ax2+bx+c的图象与x轴交点坐标是.2.抛物线y=0。

5x2—x+3与x轴的交点情况是()A 、两个交点B 、一个交点 C、没有交点 D 、画出图象后才能说明3.不画图象,求抛物线y =x 2—x -6与x 轴交点坐标.处理方式:以问题的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正.设计意图:这一环节属于课前热身训练准备利用5分钟时间让学生尽快进入到学习新知识的准备中来.问题(1)(2)是对上节课知识内容的复习,考察学生对二次函数与一元二次方程关系的理解是否准确。

新北师大版九年级上册第二章一元二次方程全章教案

新北师大版九年级上册第二章一元二次方程全章教案

新北师大版九年级上册第二章一元二次方程全章教案(总21页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第二章 一元二次方程 认识一元二次方程-(1) 晋公庙中学数学组学习目标:1、会根据具体问题列出一元二次方程。

通过“花边有多宽”,“梯子的底端滑动多少米”等问题的分析,列出方程,体会方程的模型思想,2.通过分析方程的特点,抽象出一元二次方程的概念,培养归纳分析的能力 3.会说出一元二次方程的一般形式,会把方程化为一般形式。

学习重点:一元二次方程的概念学习难点:如何把实际问题转化为数学方程 学习过程:一、导入新课:什么是一元一次方程什么是二元一次方程 二、自学指导:1、自主学习:自学课本31页至32页内容,独立思考解答下列问题:1)情境问题:列方程解应用题:一个面积为120 m 2的矩形苗圃,它的长比宽多2m 。

苗圃的长和宽各是多少?设未知数列方程。

你能将方程化成ax 2+bx+c=0的形式吗?阅读课本P48,回答问题: 1)什么是一元二次方程?2)什么是一元二次方程的一般形式二次项及二次项系数、一次项及一次项系数、常数项2、合作交流:1.一元二次方程应用举例:1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m ,宽为5m ,如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?列 方程并化成一般形式。

2)求五个连续整数,使前三个数的平方和等于后两个数的平方和。

如果设中间的一个数为x ,列 方程并化成一般形式。

3)如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简。

如果设梯子底端滑动x m ,列 方程并化成一般形式。

2.知识梳理:1)一元二次方程的概念:强调三个特征:①它是______方程;②它只含______未知数;③方程中未知数的最高次数是__________.8一元二次方程的一般形式: 在任何一个一元二次方程中,_______是必不可少的项.2)几种不同的表示形式:①ax 2+bx+c=0 (a ≠0,b ≠0,c ≠0) ② ___________ (a ≠0,b ≠0,c=0) ③____________ (a ≠0,b=0,c ≠0) ④___________ (a ≠0,b=0,c=0) 三、当堂训练1、判断下列方程是不是一元二次方程,并说明理由。

北师大版九年级数学上第二章一元二次方程2

北师大版九年级数学上第二章一元二次方程2

自主学习
基础夯实
整合运用
思维拓展
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
典例导学 一名跳水运动员进行 10 m 跳台跳水训练,运动员必须在距水面 5 m
以上完成规定动作,否则容易出现失误,假设运动员起跳后的运动时间 t(s)和距离水面高度 h(m)满足:h=10+3t-5t2,那么他最多有多长时 间完成规定动作?(精确到 0.1 s) 【思路分析】先把函数关系转化成一元二次方程,并把方程化成一元二 次方程的一般形式.结合实际问题在 t 的取值范围内列表,采用“夹逼” 的方法求 t 的近似值.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
17.如图,现有篱笆长 11 m,一面靠墙,要建一个矩形养鸡场.
(1)设宽为 xm,则长为((1111--22xx)) m,面积为((--22xx22++1111xx) )m2;
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
(2)填写下列表格:
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
14.一元二次方程(a+1)x2+ax+1-a2=0 的一个根为 0,求 a 的值. a+1≠0,
解:由题意,得1-a2=0, ∴a=1.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
15.关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的一个根为 1,且 a,b 满足等式 b= a-3+ 3-a+3,求 c 的值.
=2 的根是
(D )
x

人教版九年级数学教案-一元二次方程的解及其估算(1)

人教版九年级数学教案-一元二次方程的解及其估算(1)

第2課時一元二次方程的解及其估算1.經歷一元二次方程的解或近似解的探索過程,增進對方程解的認識;(重點)2.會用“夾逼法”估算方程的解,培養學生的估算意識和能力.(難點)一、情景導入在上一課時情境導入中,苗圃的寬滿足方程x(x+2)=120,你能求出該方程的解嗎?二、合作探究探究點一:一元二次方程的解下列哪些數是方程x2-6x+8=0的根?0,1,2,3,4,5,6,7,8,9,10.解析:把0,1,2,3,4,5,6,7,8,9,10分別代入方程x2-6x+8=0中,發現當x=2和x=4時,方程x2-6x+8=0成立,所以x=2,x=4是方程x2-6x+8=0的根.解:2,4是方程x2-6x+8=0的根.方法總結:(1)使一元二次方程左右兩邊相等的未知數的值叫做一元二次方程的解,也叫一元二次方程的根.(2)判斷一個數是否為某個一元二次方程的根,我們只需要將這個數當作未知數的值分別代入原方程的左右兩邊,看左右兩邊代數式的值是否相等,若相等,則這個數是一元二次方程的根;若不相等,則這個數不是一元二次方程的根.探究點二:估算一元二次方程的近似解請求出一元二次方程x2-2x-1=0的正數根(精確到0.1).解析:先列表取值,初步確定正數根x在哪兩個整數之間,然後再用類似的方法逐步確定出x的近似正數根.解:(1)列表,依次取x=0,1,2,3,…x 0123…x2-2x--1-2-12…1由上表可發現,當2<x<3時,-1<x2-2x-1<2;(2)繼續列表,依次取x=2.1,2.2,2.3,2.4,2.5,…x 2.1 2.2 2.3 2.4 2.5…x2-2x--0.79-0.56-0.31-0.040.25…1由上表可發現,當2.4<x<2.5時,-0.04<x2-2x-1<0.25;(3)取x=2.45,則x2-2x-1≈0.1025.∴2.4<x<2.45,∴x≈2.4.方法總結:(1)利用列表法估算一元二次方程根的取值範圍的步驟是:首先列表,利用未知數的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數,a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等於0的未知數的大致取值範圍,然後再進一步在這個範圍內取值,逐步縮小範圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值範圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值範圍很重要,因為只有在這個範圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,採用“夾逼法”:(1)先根據實際問題確定其解的大致範圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為複雜的方程時應用廣泛.在本節課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數學活動的經驗,提高探究、發現和創新的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随堂小练 1.根据关于 x 的一元二次方程 x2+px+q=0,可列表如下:
x
x2 +px+q
0.8
-4.76
0.9
Hale Waihona Puke -3.3911.1
1.2
1.3
… …
-2 -0.59 0.84 2.29
则方程 x2+px+q=0 的一个根满足( C )
A.根的整数部分是 0,十分位是 5 B.根的整数部分是 0,十分位是 8 C.根的整数部分是 1,十分位是 1 D.根的整数部分是 1,十分位是 2
2.下面是小明探索方程 x2-3x-1=0 的正数解的过程. 第一步: x 1 2 3 4 3 -3 -3 -1
x2-3x-1
3 4 所以:________ <x<________.
第二步:
x
x2-3x-1
3.1
3.2
3.3
3.4
-0.69 -0.36 -0.01 0.36
3.4 3.3 所以:________ <x<________. (1)请你帮小明填完空格,完成他没完成的部分;
第 2 课时
利用列表法估算一元二次方程解的取值范围
用列表法估算一元二次方程的解的取值范围(重 难点)
步骤:
(1)列表:利用未知数的取值,分别计算 ax2+bx+c 的值, 在表中找到使 ax2+bx+c 可能等于 0 的未知数的大致取值范围; (2)进一步在这个范围内取值,逐步缩小范围,直到所要求 的精确度为止.
3 (2)通过以上探索,你能估计出 x 的整数部分为________ , 3 十分位为________ .
用列表法估算一元二次方程的解的取值范围
【例题】为了绿化学校校园,需将草皮移植到操场,若矩
形操场的长比宽多 14 m,而操场的面积是 3 300 m2,求绿化后 操场的宽的取值范围(精确到 0.1).
思路点拨: 列表 → 逐步缩小取值范围
解:设绿化后操场的宽为 x m,根据题意,得 x(x+14)=3 300,即 x2+14x-3 300=0. 列表取值如下: x 45 49 50 51 52 132
x2 +14x-3 300 -645 -213 -100 15
从上表中可以看出,x 的整数部分的取值范围为 50<x<51. 再列表取值如下:
x
50
50.7
50.8
50.9 3.41
51 15
x2+14x-3 300 -100 -19.71 -8.16
所以操场的宽的取值范围为 50.8 m<x<50.9 m. 【规律总结】通过解决实际问题,探索了一元二次方程的 解或近似解,并了解近似计算的重要思想——“夹逼”思想.
相关文档
最新文档